Falls prevention through physical and cognitive training (falls PACT) in older adults with mild cognitive impairment: a randomized controlled trial protocol

Donald S Lipardo, William W N Tsang, Donald S Lipardo, William W N Tsang

Abstract

Background: The presence of mild cognitive impairment (MCI) in older adults increases their fall risk. While physical exercise is effective in reducing falls rate and risk of falls, and cognitive training in improving cognitive functioning in healthy older adults, their effectiveness in preventing falls and reducing risks of falls in MCI when administered simultaneously is not yet established. Therefore, this study aims to determine the effectiveness of combined physical and cognitive training in preventing falls and decreasing risks of falls among community-dwelling older persons with MCI.

Methods/design: This is a single-blind, multicentre, randomized controlled trial. At least ninety-three community-dwelling older adults with MCI aged 60 or above will be recruited. They will be randomly allocated into four groups: Physical Training alone (PT), Cognitive Training alone (CT), combined Physical And Cognitive Training (PACT) and Waitlist Group (WG). The PT group will perform exercises (flexibility, endurance, strengthening, and balance training) for 60-90 min three times per week for 12 weeks. The CT group will be involved in a paper-based training focusing on orientation, memory, attention and executive functioning for 60-90 min per session, once a week for 12 weeks. The PACT group will undergo cognitive training incorporated in physical exercise for 60-90 min three times per week for 12 weeks. The WG will receive the intervention, combined physical and cognitive training, at a later date. Assessors blinded to participant allocation will conduct pre-intervention, post-intervention, and 6-month follow-up assessments. The primary outcome measure will be falls rate. The secondary outcome measures will be Physiologic Profile Assessment and Falls Risk for Older Persons in the Community, and assessments that evaluate cognitive, physical and psychological factors related to falls.

Discussion: Considering the possible physical, social, financial and psychological consequences of a fall, we hope to provide insights on the effectiveness of combining physical and cognitive training on falls and fall-related factors for older adults with MCI. It is projected that the combined interventions will lead to significantly lower falls rate and reduced risk of falls compared to using single or no intervention.

Trial registration: ClinicalTrials.gov NCT03167840 . Registered on May 30, 2017.

Keywords: Accidental falls; Cognitive training; Falls rate; Mild cognitive impairment; Older adults; Physical exercise.

Conflict of interest statement

Ethics approval and consent to participate

This trial protocol was reviewed and approved by the Human Subjects Ethics Sub-committee of The Hong Kong Polytechnic University-Department of Rehabilitation Sciences (HSEARS20170402001) and the Ethics Review Committee of the University of Santo Tomas-College of Rehabilitation Sciences (FI-2017-002). This proposed study conforms to the principles of the Declaration of Helsinki 2013 and Good Clinical Practice guidelines.

The Participant’s Information Sheet and Consent Form will be provided and explained to the participants by the researchers to ensure that they are knowledgeable and well-informed about the purpose of the study and how it will be conducted. They are expected to give their decision after all concerns and questions have been explained. The older adults’ participation is completely voluntary. They have the right to withdraw at any time during the study without a reason, which will not lead to unfair treatment. Only those who will sign the consent form will be included in this study. A guardian as the legal representative will be asked to co-sign the consent form. In the event of any publication involving this study, their identities will remain confidential.

Consent for publication

Not applicable.

Competing interests

This study will be conducted under the Research Studentship Scholarship of The Hong Kong Polytechnic University, Hong Kong SAR, China.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of the study

References

    1. Tyrovolas S, Koyanagi A, Lara E, Santini ZI, Haro JM. Mild cognitive impairment is associated with falls among older adults: findings from the Irish longitudinal study on ageing (TILDA) Exp Gerontol. 2016;75:42–47. doi: 10.1016/j.exger.2015.12.008.
    1. Liu-Ambrose TY, Ashe MC, Graf P, Beattie BL, Khan KM. Increased risk of falling in older community-dwelling women with mild cognitive impairment. Phys Ther. 2008;88:1482–1491. doi: 10.2522/ptj.20080117.
    1. Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214–228. doi: 10.1111/joim.12190.
    1. Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Thalamuthu A, Andrews G, et al. The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: the COSMIC collaboration. PLoS One. 2015;10:e0142388. doi: 10.1371/journal.pone.0142388.
    1. Delbaere K, Kochan NA, Close JCT, Menant JC, Sturnieks DL, Brodaty H, et al. Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am J Geriatr Psychiatry. 2012;20:845–853. doi: 10.1097/JGP.0b013e31824afbc4.
    1. Camicioli R, Majumdar SR. Relationship between mild cognitive impairment and falls in older people with and without Parkinson's disease: 1-year prospective cohort study. Gait Posture. 2010;32:87–91. doi: 10.1016/j.gaitpost.2010.03.013.
    1. Segev-Jacubovski O, Herman T, Yogev-Seligmann G, Mirelman A, Giladi N, Hausdorff JM. The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Rev Neurother. 2011;11:1057–1075. doi: 10.1586/ern.11.69.
    1. Muir SW, Berg K, Chesworth B, Klar N, Speechley M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: a systematic review and meta-analysis. J Clin Epidemiol. 2010;63:389–406. doi: 10.1016/j.jclinepi.2009.06.010.
    1. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52:1121–1129. doi: 10.1111/j.1532-5415.2004.52310.x.
    1. Doi T, Shimada H, Park H, Makizako H, Tsutsumimoto K, Uemura K, et al. Cognitive function and falling among older adults with mild cognitive impairment and slow gait. Geriatr Gerontol Int. 2015;15:1073–1078. doi: 10.1111/ggi.12407.
    1. Sherrington C, Michaleff ZA, Fairhall N, Paul SS, Tiedemann A, Whitney J, et al. Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. Br J Sports Med. 2016; 10.1136/bjsports-2016-096547.
    1. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:Cd007146.
    1. Power V, Clifford AM. Characteristics of optimum falls prevention exercise programmes for community-dwelling older adults using the FITT principle. Eur Rev Aging Phys Act. 2013;10:95–106. doi: 10.1007/s11556-012-0108-2.
    1. Logsdon RG, McCurry SM, Pike KC, Teri L. Making physical activity accessible to older adults with memory loss: a feasibility study. Gerontologist. 2009;49(1):S94–S99. doi: 10.1093/geront/gnp082.
    1. Uemura K, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, et al. Cognitive function affects trainability for physical performance in exercise intervention among older adults with mild cognitive impairment. Clin Interv Aging. 2013;8:97–102. doi: 10.2147/CIA.S39434.
    1. Gates N, Fiatarone Singh NA, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21:1086–1097. doi: 10.1016/j.jagp.2013.02.018.
    1. Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Disord. 2014;38:347–365. doi: 10.1159/000365388.
    1. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016. 10.1136/bjsports-2016-09719.
    1. Law LL, Barnett F, Yau MK, Gray MA. Effects of functional tasks exercise on older adults with cognitive impairment at risk of Alzheimer's disease: a randomised controlled trial. Age Ageing. 2014;43:813–820. doi: 10.1093/ageing/afu055.
    1. Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer's or vascular type: a review. Alzheimers Res Ther. 2013. 10.1186/alzrt189.
    1. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–2281. doi: 10.1001/jama.288.18.2271.
    1. Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–2814. doi: 10.1001/jama.296.23.2805.
    1. Reijnders J, van Heugten C, van Boxtel M. Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res Rev. 2013;12:263–275. doi: 10.1016/j.arr.2012.07.003.
    1. Valenzuela M, Sachdev P. Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am J Geriatr Psychiatry. 2009;17:179–187. doi: 10.1097/JGP.0b013e3181953b57.
    1. Muir SW, Beauchet O, Montero-Odasso M, Annweiler C, Fantino B, Speechley M. Association of executive function impairment, history of falls and physical performance in older adults: a cross-sectional population-based study in eastern France. J Nutr Health Aging. 2013;17:661–665. doi: 10.1007/s12603-013-0045-4.
    1. Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM. Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci. 2010;65A:1086–1092. doi: 10.1093/gerona/glq077.
    1. Karbach J, Verhaeghen P. Making working memory work. Psychol Sci. 2014;25:2027–2037. doi: 10.1177/0956797614548725.
    1. Sheridan PL, Hausdorff JM. The role of higher-level cognitive function in gait: executive dysfunction contributes to fall risk in Alzheimer's disease. Dement Geriatr Cogn Disord. 2007;24:125–137. doi: 10.1159/000105126.
    1. Liu XY, Li L, Xiao JQ, He CZ, Lyu XL, Gao L, et al. Cognitive training in older adults with mild cognitive impairment. Biomed Environ Sci. 2016;29:356–364.
    1. Jean L, Bergeron ME, Thivierge S, Simard M. Cognitive intervention programs for individuals with mild cognitive impairment: systematic review of the literature. Am J Geriatr Psychiatry. 2010;18:281–296. doi: 10.1097/JGP.0b013e3181c37ce9.
    1. Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009. 10.3389/neuro.22.002.2009.
    1. Train the Brain Consortium. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: The Train the Brain study. Sci Rep. 2017. 10.1038/srep39471.
    1. Anderson-Hanley C, Arciero PJ, Brickman AM, Nimon JP, Okuma N, Westen SC, et al. Exergaming and older adult cognition: a cluster randomized clinical trial. Am J Prev Med. 2012;42:109–119. doi: 10.1016/j.amepre.2011.10.016.
    1. Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23:415–421. doi: 10.1055/s-2002-33735.
    1. Halvarsson A, Franzen E, Faren E, Olsson E, Oddsson L, Stahle A. Long-term effects of new progressive group balance training for elderly people with increased risk of falling - a randomized controlled trial. Clin Rehabil. 2013;27:450–458. doi: 10.1177/0269215512462908.
    1. Reuter I, Mehnert S, Sammer G, Oechsner M, Engelhardt M. Efficacy of a multimodal cognitive rehabilitation including psychomotor and endurance training in Parkinson's disease. J Aging Res. 2012. 10.1155/2012/235765.
    1. Kounti F, Bakoglidou E, Agogiatou C, Lombardo E, Serper LL, Tsolaki M. RHEA,* a nonpharmacological cognitive training intervention in patients with mild cognitive impairment. Top Geriatr Rehabil. 2011;27:289–300. doi: 10.1097/TGR.0b013e31821e59a9.
    1. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Ito K, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE. 2013. 10.1371/journal.pone.0061483.
    1. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, et al. The study of mental and resistance training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. JAMDA. 2014;15:873–880.
    1. Lam LC, Chan WC, Leung T, Fung AW, Leung EM. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition?: A cluster randomized controlled trial. PLoS One. 2015. 10.1371/journal.pone.0118173.
    1. Law LL, Barnett F, Yau MK, Gray MA. Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: a systematic review. Ageing Res Rev. 2014;15:61–75. doi: 10.1016/j.arr.2014.02.008.
    1. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256:240–246. doi: 10.1111/j.1365-2796.2004.01380.x.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Sachdev PS, Lipnicki DM, Crawford J, Reppermund S, Kochan NA, Trollor JN, et al. Risk profiles for mild cognitive impairment vary by age and sex: the Sydney memory and ageing study. Am J Geriatr Psychiatry. 2012;20:854–865. doi: 10.1097/JGP.0b013e31825461b0.
    1. Palmer K, Backman L, Winblad B, Fratiglioni L. Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. Am J Geriatr Psychiatry. 2008;16:603–611. doi: 10.1097/JGP.0b013e3181753a64.
    1. Trombetti A, Hars M, Herrmann FR, Kressig RW, Ferrari S, Rizzoli R. Effect of music-based multitask training on gait, balance, and fall risk in elderly people: a randomized controlled trial. Arch Intern Med. 2011;171:525–533. doi: 10.1001/archinternmed.2010.446.
    1. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c.
    1. Sherrington C, Tiedemann A. Physiotherapy in the prevention of falls in older people. J Physiother. 2015;61:54–60. doi: 10.1016/j.jphys.2015.02.011.
    1. Brum PS, Forlenza OV, Yassuda MS. Cognitive training in older adults with mild cognitive impairment. Dement Neuropsychol. 2009;3:124–131. doi: 10.1590/S1980-57642009DN30200010.
    1. Vojtkofsky T, Feldman RG. Keep your brain stronger for longer: 201 brain exercises for people with mild cognitive impairment. New York: The Experiment, LLC; 2015.
    1. Gross AL, Parisi JM, Spira AP, Kueider AM, Ko JY, Saczynski JS, et al. Memory training interventions for older adults: a meta-analysis. Aging Ment Health. 2012;16:722–734. doi: 10.1080/13607863.2012.667783.
    1. Freiberger E, Häberle L, Spirduso WW, Rixt Zijlstra GA. Long-term effects of three multicomponent exercise interventions on physical performance and fall-related psychological outcomes in community-dwelling older adults: a randomized controlled trial. J Am Geriatr Soc. 2012;60:437–446. doi: 10.1111/j.1532-5415.2011.03859.x.
    1. Winter H, Watt K, Peel NM. Falls prevention interventions for community-dwelling older persons with cognitive impairment: a systematic review. Int Psychogeriatr. 2013;25:215–227. doi: 10.1017/S1041610212001573.
    1. Sampaio NR, Rosa NMDB, Godoy APS, Pereira DS, Hicks C, Lord SR, et al. Reliability evaluation of the physiological profile assessment to assess fall risk in older people. Gerontol Geriatr Res. 2014;3:179–182.
    1. Lord SR, Menz HB, Tiedemann A. A physiological profile approach to falls risk assessment and prevention. Phys Ther. 2003;83:237–252.
    1. Russell MA, Hill KD, Day LM, Blackberry I, Gurrin LC, Dharmage SC. Development of the falls risk for older people in the community (FROP-com) screening tool. Age Ageing. 2009;38:40–46. doi: 10.1093/ageing/afn196.
    1. Smith T, Gildeh N, Holmes C. The Montreal cognitive assessment: validity and utility in a memory clinic setting. Can J Psychiatr. 2007;52:329–332. doi: 10.1177/070674370705200508.
    1. Julayanont P, Brousseau M, Chertkow H, Phillips N, Nasreddine ZS. Montreal cognitive assessment memory index score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer's disease. J Am Geriatr Soc. 2014;62:679–684. doi: 10.1111/jgs.12742.
    1. Baum CM, Connor LT, Morrison T, Hahn M, Dromerick AW, Edwards DF. Reliability, validity, and clinical utility of the executive function performance test: a measure of executive function in a sample of people with stroke. Am J Occup Ther. 2008;62:446–455. doi: 10.5014/ajot.62.4.446.
    1. Bohannon RW, Schaubert K. Long-term reliability of the timed up-and-go test among community-dwelling elders. J Phys Ther Sci. 2005;17:93–96. doi: 10.1589/jpts.17.93.
    1. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther. 2000;80:896–903.
    1. Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test compared with the 10-meter walk test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther. 2013;36:24–30. doi: 10.1519/JPT.0b013e318248e20d.
    1. Peel NM, Kuys SS, Klein K. Gait speed as a measure in geriatric assessment in clinical settings: a systematic review. J Gerontol A Biol Sci Med Sci. 2013;68:39–46. doi: 10.1093/gerona/gls174.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028.
    1. Hauer K, Yardley L, Beyer N, Kempen G, Dias N, Campbell M, et al. Validation of the falls efficacy scale and falls efficacy scale international in geriatric patients with and without cognitive impairment: results of self-report and interview-based questionnaires. Gerontology. 2010;56:190–199. doi: 10.1159/000236027.
    1. Kempen GI, Todd CJ, Van Haastregt JC, Zijlstra GA, Beyer N, Freiberger E, et al. Cross-cultural validation of the falls efficacy scale international (FES-I) in older people: results from Germany, the Netherlands and the UK were satisfactory. Disabil Rehabil. 2007;29:155–162. doi: 10.1080/09638280600747637.
    1. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the falls efficacy scale-international (FES-I) Age Ageing. 2005;34:614–619. doi: 10.1093/ageing/afi196.
    1. Delbaere K, Close JC, Mikolaizak AS, Sachdev PS, Brodaty H, Lord SR. The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing. 2010;39:210–216. doi: 10.1093/ageing/afp225.
    1. Reker GT, Wong PTP. Psychological and physical well-being in the elderly: the perceived well-being scale (PWB) Can J Aging. 1984;3:23–32. doi: 10.1017/S0714980800006437.
    1. Janssen MF, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res. 2013;22:1717–1727. doi: 10.1007/s11136-012-0322-4.
    1. van Reenen M, Janssen B. EQ-5D-5L user guide: basic information on how to use the EQ-5D-5L instrument. The Netherlands: EuroQol Research Foundation; 2015.
    1. Payakachat N, Ali MM, Tilford JM. Can the EQ-5D detect meaningful change? A systematic review. PharmacoEconomics. 2015;33:1137–1154. doi: 10.1007/s40273-015-0295-6.
    1. Schoene D, Valenzuela T, Lord SR, de Bruin ED. The effect of interactive cognitive-motor training in reducing fall risk in older people: a systematic review. BMC Geriatr. 2014. 10.1186/1471-2318-14-107.
    1. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319:1701–1707. doi: 10.1056/NEJM198812293192604.
    1. Vetter NJ, Ford D. Anxiety and depression scores in elderly fallers. Int J Geriatr Psychiatry. 1989;4:159–163. doi: 10.1002/gps.930040307.
    1. Peel NM. Epidemiology of falls in older age. Can J Aging. 2011;30:7–19. doi: 10.1017/S071498081000070X.
    1. Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12:290–295. doi: 10.1136/ip.2005.011015.
    1. Rubenstein LZ. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35(2):ii37–ii41. doi: 10.1093/ageing/afl084.
    1. Chan WC, Yeung JW, Wong CS, Lam LC, Chung KF, Luk JK, et al. Efficacy of physical exercise in preventing falls in older adults with cognitive impairment: a systematic review and meta-analysis. JAMDA. 2015;16:149–154.
    1. Tangen GG, Engedal K, Bergland A, Moger TA, Mengshoel AM. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys Ther. 2014;94:1123–1134. doi: 10.2522/ptj.20130298.

Source: PubMed

3
Suscribir