Effects of prenatal micronutrients supplementation timing on pregnancy-induced hypertension: Secondary analysis of a double-blind randomized controlled trial

Yingying Liu, Nan Li, Zuguo Mei, Zhiwen Li, Rongwei Ye, Le Zhang, Hongtian Li, Yali Zhang, Jian-Meng Liu, Mary K Serdula, Yingying Liu, Nan Li, Zuguo Mei, Zhiwen Li, Rongwei Ye, Le Zhang, Hongtian Li, Yali Zhang, Jian-Meng Liu, Mary K Serdula

Abstract

In this secondary analysis of data from a double-blind randomized controlled trial (clinicaltrials.gov identifier: NCT00133744) of micronutrient supplementation (multiple micronutrients [MMN], iron-folic acid [IFA] and folic acid [FA] alone), we examined the potential modifying effect of gestational age at enrolment on the association of antenatal supplementation and pregnancy-induced hypertension (PIH). We included 18,775 nulliparous pregnant women with mild or no anaemia who were enrolled at 20 weeks of gestation or earlier from five counties of northern China. Women were randomly assigned to receive daily FA, IFA or MMN from enrolment until delivery. We used logistic regression to evaluate the association between PIH and timing of micronutrient supplementation. The incidence of PIH was statistically significantly lower among women who began MMN supplementation before 12 gestational weeks compared with women who began MMN supplementation at 12 weeks or later (RR = 0.74, 95% CI: 0.60-0.91). A similar protective effect was observed for both early-onset (<28 weeks, RR 0.45, 0.21-0.96) and late-onset of PIH (≥28 weeks, RR 0.77, 0.63-0.96). No statistically significant association was observed between PIH occurrence and timing of supplementation for FA or IFA. Maternal MMN supplementation and antenatal enrolment during the first trimester of pregnancy appeared to be of importance in preventing both early- and late-onset of PIH.

Keywords: United Nations multiple micronutrient antenatal preparation; antenatal enrolment; double-blind RCT; large cohort study; micronutrients; pregnancy-induced hypertension; prenatal nutrition.

Conflict of interest statement

All authors read and approved the final manuscript and none of conflict of interest or competing interest consists.

© 2021 The Authors. Maternal & Child Nutrition published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Flowchart of participants

References

    1. Ahsan, T. , Banu, S. , Nahar, Q. , Ahsan, M. , Khan, M. N. , & Islam, S. N. (2013). Serum trace elements levels in preeclampsia and eclampsia: Correlation with the pregnancy disorder. Biological Trace Element Research, 152(3), 327–332. 10.1007/s12011-013-9637-4
    1. Allen, L. H. (2005). Multiple micronutrients in pregnancy and lactation: An overview. The American Journal of Clinical Nutrition, 81(5), 1206S–1212S. 10.1093/ajcn/81.5.1206
    1. Ananth, C. V. , & Basso, O. (2010). Impact of pregnancy‐induced hypertension on stillbirth and neonatal mortality. Epidemiology, 21(1), 118–123. 10.1097/EDE.0b013e3181c297af
    1. Bellamy, L. , Casas, J. P. , Hingorani, A. D. , & Williams, D. J. (2007). Pre‐eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta‐analysis. BMJ, 335(7627), 974. 10.1136/
    1. Casanueva, E. , & Viteri, F. E. (2003). Iron and oxidative stress in pregnancy. The Journal of Nutrition, 133(5), 1700S–1708S. 10.1093/jn/133.5.1700S
    1. Cetin, I. , Berti, C. , & Calabrese, S. (2010). Role of micronutrients in the periconceptional period. Human Reproduction Update, 16(1), 80–95. 10.1093/humupd/dmp025
    1. Chappell, L. C. , Seed, P. T. , Briley, A. L. , Kelly, F. J. , Lee, R. , Hunt, B. J. , … Poston, L. (1999). Effect of antioxidants on the occurrence of pre‐eclampsia in women at increased risk: A randomised trial. Lancet, 354(9181), 810–816. 10.1016/S0140-6736(99)80010-5
    1. Chen, S. , Li, N. , Mei, Z. , Ye, R. , Li, Z. , Liu, J. , & Serdula, M. K. (2018). Micronutrient supplementation during pregnancy and the risk of pregnancy‐induced hypertension: A randomized clinical trial. Clinical Nutrition, 38, 146–151. 10.1016/j.clnu.2018.01.029
    1. Conde‐Agudelo, A. , Romero, R. , Kusanovic, J. P. , & Hassan, S. S. (2011). Supplementation with Vitamins C and E during pregnancy for the prevention of preeclampsia and other adverse maternal and perinatal outcomes: A systematic review and metaanalysis. American Journal of Obstetrics and Gynecology, 204(6), 503‐e1. 10.1016/j.ajog.2011.02.020
    1. Elmugabil, A. , Hamdan, H. Z. , Elsheikh, A. E. , Rayis, D. A. , Adam, I. , & Gasim, G. I. (2016). Serum calcium, magnesium, zinc and copper levels in sudanese women with preeclampsia. PLoS One, 11(12), e0167495. 10.1371/journal.pone.0167495
    1. Ephraim, R. K. , Osakunor, D. N. , Denkyira, S. W. , Eshun, H. , Amoah, S. , & Anto, E. O. (2014). Serum calcium and magnesium levels in women presenting with pre‐eclampsia and pregnancy‐induced hypertension: a case‐control study in the Cape Coast metropolis, Ghana. BMC Pregnancy and Childbirth, 14, 390. 10.1186/s12884-014-0390-2
    1. Fall, C. H. , Fisher, D. J. , Osmond, C. , Margetts, B. M. , & Maternal Micronutrient Supplementation Study Group . (2009). Multiple micronutrient supplementation during pregnancy in low‐income countries: A meta‐analysis of effects on birth size and length of gestation. Food and Nutrition Bulletin, 30(4 Suppl), S533–S546. 10.1177/15648265090304S408
    1. Fenzl, V. , Flegar‐Mestric, Z. , Perkov, S. , Andrisic, L. , Tatzber, F. , Zarkovic, N. , & Duic, Z. (2013). Trace elements and oxidative stress in hypertensive disorders of pregnancy. Archives of Gynecology and Obstetrics, 287(1), 19–24. 10.1007/s00404-012-2502-4
    1. Haider, B. A. , Yakoob, M. Y. , & Bhutta, Z. A. (2011). Effect of multiple micronutrient supplementation during pregnancy on maternal and birth outcomes. BMC Public Health, 11(Suppl 3), S19. 10.1186/1471-2458-11-S3-S19
    1. He, L. , Lang, L. , Li, Y. , Liu, Q. , & Yao, Y. (2016). Comparison of serum zinc, calcium, and magnesium concentrations in women with pregnancy‐induced hypertension and healthy pregnant women: A meta‐analysis. Hypertension in Pregnancy, 35(2), 202–209. 10.3109/10641955.2015.1137584
    1. Henriques, A. C. , Carvalho, F. H. , Feitosa, H. N. , Macena, R. H. , Mota, R. M. , & Alencar, J. C. (2014). Endothelial dysfunction after pregnancy‐induced hypertension. International Journal of Gynaecology and Obstetrics, 124(3), 230–234. 10.1016/j.ijgo.2013.08.016
    1. Jain, S. , Sharma, P. , Kulshreshtha, S. , Mohan, G. , & Singh, S. (2010). The role of calcium, magnesium, and zinc in pre‐eclampsia. Biological Trace Element Research, 133(2), 162–170. 10.1007/s12011-009-8423-9
    1. Jennifer Ribowsky, C. H. (2012). Pregnancy‐induced hypertension. Clinician Reviews, 22(5), 27–32.
    1. Khan, A. I. , Kabir, I. , Ekstrom, E. C. , Asling‐Monemi, K. , Alam, D. S. , Frongillo, E. A. , … Persson, L. A. (2011). Effects of prenatal food and micronutrient supplementation on child growth from birth to 54 months of age: A randomized trial in Bangladesh. Nutrition Journal, 10, 134. 10.1186/1475-2891-10-134
    1. Li, Z. , Mei, Z. , Zhang, L. , Li, H. , Zhang, Y. , Li, N. , … Serdula, M. K. (2017). Effects of prenatal micronutrient supplementation on spontaneous preterm birth: A double‐blind randomized controlled trial in China. American Journal of Epidemiology, 186(3), 318–325. 10.1093/aje/kwx094
    1. Li, Z. , Ye, R. , Zhang, L. , Li, H. , Liu, J. , & Ren, A. (2013). Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension, 61(4), 873–879. 10.1161/HYPERTENSIONAHA.111.00230
    1. Lindheimer, M. D. , Taler, S. J. , & Cunningham, F. G. (2008). Hypertension in pregnancy. Journal of the American Society of Hypertension, 2(6), 484–494. 10.1016/j.jash.2008.10.001
    1. Liu, J. M. , Mei, Z. , Ye, R. , Serdula, M. K. , Ren, A. , & Cogswell, M. E. (2013). Micronutrient supplementation and pregnancy outcomes: Double‐blind randomized controlled trial in China. JAMA Internal Medicine, 173(4), 276–282. 10.1001/jamainternmed.2013.1632
    1. Lorzadeh, N. , Kazemirad, Y. , & Kazemirad, N. (2020). Investigating the preventive effect of Vitamins C and E on preeclampsia in nulliparous pregnant women. Journal of Perinatal Medicine, 48(6), 625–629. 10.1515/jpm-2019-0469
    1. Ramakrishnan, U. , Grant, F. K. , Imdad, A. , Bhutta, Z. A. , & Martorell, R. (2013). Effect of multiple micronutrient versus iron‐folate supplementation during pregnancy on intrauterine growth. Nestle Nutrition Institute Workshop Series, 74, 53–62. 10.1159/000348401
    1. Rossi, A. C. , & Mullin, P. M. (2011). Prevention of pre‐eclampsia with low‐dose aspirin or Vitamins C and E in women at high or low risk: A systematic review with meta‐analysis. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 158(1), 9–16. 10.1016/j.ejogrb.2011.04.010
    1. Rumiris, D. , Purwosunu, Y. , Wibowo, N. , Farina, A. , & Sekizawa, A. (2006). Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertension in Pregnancy, 25(3), 241–253. 10.1080/10641950600913016
    1. Sarwar, M. S. , Ahmed, S. , Ullah, M. S. , Kabir, H. , Rahman, G. K. , Hasnat, A. , & Islam, M. S. (2013). Comparative study of serum zinc, copper, manganese, and iron in preeclamptic pregnant women. Biological Trace Element Research, 154(1), 14–20. 10.1007/s12011-013-9721-9
    1. Sibai, B. M. (2006). Preeclampsia as a cause of preterm and late preterm (near‐term) births. Seminars in Perinatology, 30(1), 16–19. 10.1053/j.semperi.2006.01.008
    1. Siddiqui, I. A. , Jaleel, A. , Kadri, H. M. , Saeed, W. A. , & Tamimi, W. (2011). Iron status parameters in preeclamptic women. Archives of Gynecology and Obstetrics, 284(3), 587–591. 10.1007/s00404-010-1728-2
    1. Steegers, E. A. P. , von Dadelszen, P. , Duvekot, J. J. , & Pijnenborg, R. (2010). Pre‐eclampsia. The Lancet, 376(9741), 631–644. 10.1016/S0140-6736(10)60279-6
    1. Tande, D. L. , Ralph, J. L. , Johnson, L. K. , Scheett, A. J. , Hoverson, B. S. , & Anderson, C. M. (2013). First trimester dietary intake, biochemical measures, and subsequent gestational hypertension among nulliparous women. Journal of Midwifery & Women's Health, 58(4), 423–430. 10.1111/jmwh.12007
    1. Toblli, J. E. , Cao, G. , Oliveri, L. , & Angerosa, M. (2012). Effects of iron deficiency anemia and its treatment with iron polymaltose complex in pregnant rats, their fetuses and placentas: oxidative stress markers and pregnancy outcome. Placenta, 33(2), 81–87. 10.1016/j.placenta.2011.11.017
    1. Unicef . (1999). Composition of a multi‐micronutrient supplement to be used in pilot programmes among pregnant women in developing countries. New York.
    1. Viteri, F. E. , Casanueva, E. , Tolentino, M. C. , Diaz‐Frances, J. , & Erazo, A. B. (2012). Antenatal iron supplements consumed daily produce oxidative stress in contrast to weekly supplementation in Mexican non‐anemic women. Reproductive Toxicology, 34(1), 125–132. 10.1016/j.reprotox.2012.03.010
    1. Wang, I. K. , Muo, C. H. , Chang, Y. C. , Liang, C. C. , Chang, C. T. , Lin, S. Y. , … Morisky, D. E. (2013). Association between hypertensive disorders during pregnancy and end‐stage renal disease: A population‐based study. CMAJ, 185(3), 207–213. 10.1503/cmaj.120230

Source: PubMed

3
Suscribir