Transcranial direct current stimulation (a-tCDS) after subacromial injections in patients with subacromial pain syndrome: a randomized controlled pilot study

Samuel Larrivée, Frédéric Balg, Guillaume Léonard, Sonia Bédard, Michel Tousignant, Patrick Boissy, Samuel Larrivée, Frédéric Balg, Guillaume Léonard, Sonia Bédard, Michel Tousignant, Patrick Boissy

Abstract

Background: Subacromial pain syndrome (SAPS) is a common complaint in orthopaedics. Subacromial corticosteroid injections (CSI) can relieve pain in the short term. Anodal transcranial direct current stimulation (a-tDCS) has been used for symptomatic pain relief in a variety of chronic pain conditions. The aim of this pilot study was to assess whether the application a-tDCS could enhance the symptomatic relief provided by CSI in patients affected by SAPS.

Methods: Thirty-eight participants (18 to 65-year-old) suffering from SAPS were recruited to have a CSI and randomly allocated to receive, 1 weeks post CSI, real a-tDCS (r-tDCS), sham tDCS (s-tDCS) or no intervention (Control). Upper limb function was measured 1 week prior to the CSI, at the 2- and 4-week follow-ups using self-administered questionnaires and physical measures. Self-reported pain and activity during each day were logged by the participants using visual analog scales (VAS). Differences between groups were tested using repeated-measures ANOVAs.

Results: Pain VAS and the Single Assessment Numeric Evaluation scale (SANE) showed significant improvement from baseline 2 weeks and 4 weeks after CSI in all groups (p < 0.05). There were no significant group X time interaction 2 weeks following tDCS treatment in any of the variables.

Conclusion: All groups showed significant improvement in pain VAS and SANE scores following the CSI. One session of a-tDCS treatment 2 weeks following CSI did not result in any additive or potentializing effects when compared to a s-tDCS or a control group.

Trial registration: ClinicalTrials.gov, NCT03967574 . Registered 30 May 2019 - Retrospectively registered.

Keywords: Accelerometry; Rotator cuff tendinitis; Shoulder activity; Subacromial bursitis; Subacromial pain syndrome.

Conflict of interest statement

The funding sources were not involved in the study design, conduct or reporting. The authors reported no financial affiliation or involvement with any commercial organization that has a direct financial interest in any matter included in this manuscript.

Figures

Fig. 1
Fig. 1
a-tDCS assembly. The anode (a) was applied on the M1 cortical zone for the rotator cuff as identified using TMS. The cathode (b) was applied over the contralateral eyebrow. The sponge electrodes where then secured with rubber band and adhesive tape and soaked in saline
Fig. 2
Fig. 2
The WIMU-GPS accelerometer
Fig. 3
Fig. 3
CONSORT flow diagram

References

    1. van der Windt DA, Koes BW, de Jong BA, Bouter LM. Shoulder disorders in general practice: incidence, patient characteristics, and management. Ann Rheum Dis. 1995;54(12):959–964. doi: 10.1136/ard.54.12.959.
    1. Ostor AJ, Richards CA, Prevost AT, Speed CA, Hazleman BL. Diagnosis and relation to general health of shoulder disorders presenting to primary care. Rheumatology. 2005;44(6):800–805. doi: 10.1093/rheumatology/keh598.
    1. MacDermid JC, Ramos J, Drosdowech D, Faber K, Patterson S. The impact of rotator cuff pathology on isometric and isokinetic strength, function, and quality of life. J Shoulder Elbow Surg. 2004;13(6):593–598. doi: 10.1016/j.jse.2004.03.009.
    1. Chipchase LS, O'Connor DA, Costi JJ, Krishnan J. Shoulder impingement syndrome: preoperative health status. J Shoulder Elbow Surg. 2000;9(1):12–15. doi: 10.1016/S1058-2746(00)90003-X.
    1. Diercks RL, Bron C, Dorrestijn O, Meskers CG, Naber R, de Ruiter T, et al. Guideline for diagnosis and treatment of subacromial pain syndrome. 2014.
    1. Lewis JS. Rotator cuff tendinopathy: a model for the continuum of pathology and related management. Br J Sports Med. 2010;44(13):918–923. doi: 10.1136/bjsm.2008.054817.
    1. Arroll B, Goodyear-Smith F. Corticosteroid injections for painful shoulder: a meta-analysis. Brit J Gen Pract. 2005;55(512):224–228.
    1. Mohamadi A, Chan JJ, Claessen FM, Ring D, Chen NC. Corticosteroid injections give small and transient pain relief in rotator cuff Tendinosis: a meta-analysis. Clin Orthop Relat Res. 2017;475(1):232–243. doi: 10.1007/s11999-016-5002-1.
    1. Buchbinder R, Green S, Youd JM. Corticosteroid injections for shoulder pain. Cochrane Database Syst Rev. 2003;1:CD004016.
    1. Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010;376(9754):1751–1767. doi: 10.1016/S0140-6736(10)61160-9.
    1. Cloke DJ, Watson H, Purdy S, Steen IN, Williams JR. A pilot randomized, controlled trial of treatment for painful arc of the shoulder. J Shoulder Elbow Surg. 2008;17(1 Suppl):17S–21S. doi: 10.1016/j.jse.2007.07.005.
    1. Johansson K, Bergstrom A, Schroder K, Foldevi M. Subacromial corticosteroid injection or acupuncture with home exercises when treating patients with subacromial impingement in primary care--a randomized clinical trial. Fam Pract. 2011;28(4):355–365. doi: 10.1093/fampra/cmq119.
    1. Rhon DI, Boyles RB, Cleland JA. One-year outcome of subacromial corticosteroid injection compared with manual physical therapy for the management of the unilateral shoulder impingement syndrome: a pragmatic randomized trial. Ann Intern Med. 2014;161(3):161–169. doi: 10.7326/M13-2199.
    1. Say F, Gurler D, Bulbul M. Platelet-rich plasma versus steroid injection for subacromial impingement syndrome. J Orthop Surg. 2016;24(1):62–66. doi: 10.1177/230949901602400115.
    1. Shams A, El-Sayed M, Gamal O, Ewes W. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016;26(8):837–842. doi: 10.1007/s00590-016-1826-3.
    1. Kim Y-S, Park J-Y, Lee C-S, Lee S-J. Does hyaluronate injection work in shoulder disease in early stage? A multicenter, randomized, single blind and open comparative clinical study. J Shoulder Elbow Surg. 2012;21(6):722–727. doi: 10.1016/j.jse.2011.11.009.
    1. Penning LI, de Bie RA, Walenkamp GH. The effectiveness of injections of hyaluronic acid or corticosteroid in patients with subacromial impingement: a three-arm randomised controlled trial. J Bone Joint Surg. 2012;94(9):1246–1252. doi: 10.1302/0301-620X.94B9.28750.
    1. Byun SD, Park DH, Choi WD, Lee ZI. Subacromial Bursa injection of hyaluronate with steroid in patients with Peri-articular shoulder disorders. Ann Rehabil Med. 2011;35(5):664–672. doi: 10.5535/arm.2011.35.5.664.
    1. Frank JM, Chahal J, Frank RM, Cole BJ, Verma NN, Romeo AA. The role of acromioplasty for rotator cuff problems. Orthop Clin North Am. 2014;45(2):219–224. doi: 10.1016/j.ocl.2013.12.003.
    1. Crawshaw DP, Helliwell PS, Hensor EMA, Hay EM, Aldous SJ, Conaghan PG. Exercise therapy after corticosteroid injection for moderate to severe shoulder pain: large pragmatic randomised trial. BMJ. 2010;340:c3037. doi: 10.1136/bmj.c3037.
    1. O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2018;3(3):CD008208. 10.1002/14651858.CD008208.pub4.
    1. Zaghi S, Heine N, Fregni F. Brain stimulation for the treatment of pain: a review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. J Pain Manag. 2009;2(3):339–352.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Schabrun SM, Jones E, Elgueta Cancino EL, Hodges PW. Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain Stimul. 2014;7(3):451–459. doi: 10.1016/j.brs.2014.01.058.
    1. Zhu CE, Yu B, Zhang W, Chen WH, Qi Q, Miao Y. Effectiveness and safety of transcranial direct current stimulation in fibromyalgia: a systematic review and meta-analysis. J Rehabil Med. 2017;49(1):2–9. doi: 10.2340/16501977-2179.
    1. Feng WW, Bowden MG, Kautz S. Review of transcranial direct current stimulation in poststroke recovery. Top Stroke Rehabil. 2013;20(1):68–77. doi: 10.1310/tsr2001-68.
    1. Ahn H, Woods AJ, Kunik ME, Bhattacharjee A, Chen Z, Choi E, et al. Efficacy of transcranial direct current stimulation over primary motor cortex (anode) and contralateral supraorbital area (cathode) on clinical pain severity and mobility performance in persons with knee osteoarthritis: an experimenter- and participant-blinded, randomized, sham-controlled pilot clinical study. Brain Stimul. 2017;10(5):902–909. doi: 10.1016/j.brs.2017.05.007.
    1. Borckardt JJ, Reeves ST, Robinson SM, May JT, Epperson TI, Gunselman RJ, et al. Transcranial direct current stimulation (tDCS) reduces postsurgical opioid consumption in total knee arthroplasty (TKA) Clin J Pain. 2013;29(11):925–928. doi: 10.1097/AJP.0b013e31827e32be.
    1. Glaser J, Reeves ST, Stoll WD, Epperson TI, Hilbert M, Madan A, et al. Motor/prefrontal Transcranial direct current stimulation (tDCS) following lumbar surgery reduces postoperative analgesia use. Spine. 2016;41(10):835–839. doi: 10.1097/BRS.0000000000001525.
    1. Ngomo S, Mercier C, Bouyer LJ, Savoie A, Roy JS. Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy. Clin Neurophysiol. 2015;126(2):365–371. doi: 10.1016/j.clinph.2014.05.035.
    1. Pelletier R, Higgins J, Bourbonnais D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet Disord. 2015;16:25. doi: 10.1186/s12891-015-0480-y.
    1. Cosentino G, Fierro B, Paladino P, Talamanca S, Vigneri S, Palermo A, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex. Eur J Neurosci. 2012;35(1):119–124. doi: 10.1111/j.1460-9568.2011.07939.x.
    1. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–850. doi: 10.1016/j.clinph.2005.12.003.
    1. Kirkley A, Alvarez C, Griffin S. The development and evaluation of a disease-specific quality-of-life questionnaire for disorders of the rotator cuff: the Western Ontario rotator cuff index. Clin J Sport Med. 2003;13(2):84–92. doi: 10.1097/00042752-200303000-00004.
    1. Beaton DE, Wright JG, Katz JN. Development of the QuickDASH: comparison of three item-reduction approaches. J Bone Joint Surg (Am Vol) 2005;87A(5):1038–1046.
    1. Franchignoni F, Vercelli S, Giordano A, Sartorio F, Bravini E, Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH) J Orthop Sports Phys Ther. 2014;44(1):30–39. doi: 10.2519/jospt.2014.4893.
    1. Gummesson C, Ward MM, Atroshi I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): validity and reliability based on responses within the full-length DASH. BMC Musculoskelet Disord. 2006;7:44. doi: 10.1186/1471-2474-7-44.
    1. Mintken PE, Glynn P, Cleland JA. Psychometric properties of the shortened disabilities of the arm, shoulder, and hand questionnaire (QuickDASH) and numeric pain rating scale in patients with shoulder pain. J Shoulder Elbow Surg. 2009;18(6):920–926. doi: 10.1016/j.jse.2008.12.015.
    1. Polson K, Reid D, McNair PJ, Larmer P. Responsiveness, minimal importance difference and minimal detectable change scores of the shortened disability arm shoulder hand (QuickDASH) questionnaire. Man Ther. 2010;15(4):404–407. doi: 10.1016/j.math.2010.03.008.
    1. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–942. doi: 10.1093/ajcn/36.5.936.
    1. Boissy P, Blamoutier M, Briere S, Duval C. Quantification of free-living community mobility in healthy older adults using wearable sensors. Front Public Health. 2018;6:216. doi: 10.3389/fpubh.2018.00216.
    1. Boissy P, Hamel M, Brière S. InventorsUniversal actigraphic device and method for use therefor patent US 20120232430A1. 2012.
    1. Larrivée S, Balg F, Léonard G, Bédard S, Tousignant M, Boissy P. Wrist-based accelerometers and visual analog scales as outcome measures for shoulder activity during daily living in patients with rotator cuff Tendinopathy: instrument validation study. JMIR. 2019;6(2):e14468.
    1. Alvarez CM, Litchfield R, Jackowski D, Griffin S, Kirkley A. A prospective, double-blind, randomized clinical trial comparing subacromial injection of betamethasone and xylocaine to xylocaine alone in chronic rotator cuff tendinosis. Am J Sports Med. 2005;33(2):255–262. doi: 10.1177/0363546504267345.
    1. Ekeberg OM, Bautz-Holter E, Tveita EK, Juel NG, Kvalheim S, Brox JI. Subacromial ultrasound guided or systemic steroid injection for rotator cuff disease: randomised double blind study. BMJ. 2009;338:a3112. doi: 10.1136/bmj.a3112.
    1. Bailey RR, Lang CE. Upper-limb activity in adults: referent values using accelerometry. J Rehabil Res Dev. 2013;50(9):1213–1222. doi: 10.1682/JRRD.2012.12.0222.
    1. Rand D, Eng JJ. Arm-hand use in healthy older adults. Am J Occup Ther. 2010;64(6):877–885. doi: 10.5014/ajot.2010.09043.
    1. Bartolozzi A, Andreychik D, Ahmad S. Determinants of outcome in the treatment of rotator cuff disease. Clin Orthop Relat Res. 1994;308:90–97.
    1. Taheriazam A, Sadatsafavi M, Moayyeri A. Outcome predictors in nonoperative management of newly diagnosed subacromial impingement syndrome: a longitudinal study. Med Gen. 2005;7(1):63.
    1. Morrison DS, Frogameni AD, Woodworth P. Non-operative treatment of subacromial impingement syndrome. J Bone Joint Surg Am. 1997;79(5):732–737. doi: 10.2106/00004623-199705000-00013.
    1. Harvey MP, Lorrain D, Martel M, Bergeron-Vezina K, Houde F, Seguin M, et al. Can we improve pain and sleep in elderly individuals with transcranial direct current stimulation? - results from a randomized controlled pilot study. Clin Interv Aging. 2017;12:937–947. doi: 10.2147/CIA.S133423.
    1. Duc C, Farron A, Pichonnaz C, Jolles BM, Bassin JP, Aminian K. Distribution of arm velocity and frequency of arm usage during daily activity: objective outcome evaluation after shoulder surgery. Gait Posture. 2013;38(2):247–252. doi: 10.1016/j.gaitpost.2012.11.021.
    1. Coley B, Jolles BM, Farron A, Bourgeois A, Nussbaumer F, Pichonnaz C, et al. Outcome evaluation in shoulder surgery using 3D kinematics sensors. Gait Posture. 2007;25(4):523–532. doi: 10.1016/j.gaitpost.2006.06.016.
    1. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin J-P, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074–1081. doi: 10.1016/j.jse.2011.05.026.
    1. Pichonnaz C, Duc C, Jolles BM, Aminian K, Bassin JP, Farron A. Alteration and recovery of arm usage in daily activities after rotator cuff surgery. J Shoulder Elbow Surg. 2015;24(9):1346–1352. doi: 10.1016/j.jse.2015.01.017.
    1. Luedtke K, Rushton A, Wright C, Jurgens T, Polzer A, Mueller G, et al. Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: sham controlled double blinded randomised controlled trial. BMJ. 2015;350:h1640. doi: 10.1136/bmj.h1640.
    1. Belley AF, Mercier C, Bastien M, Léonard G, Gaudreault N, Roy J-S. Anodal Transcranial direct-current stimulation to enhance rehabilitation in individuals with rotator cuff Tendinopathy: a triple-blind randomized controlled trial. J Orthop Sports Phys Ther. 2018;48(7):541–551. doi: 10.2519/jospt.2018.7871.
    1. Ellegaard K, Christensen R, Rosager S, Bartholdy C, Torp-Pedersen S, Bandholm T, et al. Exercise therapy after ultrasound-guided corticosteroid injections in patients with subacromial pain syndrome: a randomized controlled trial. Arthritis Res Ther. 2016;18(1):129. doi: 10.1186/s13075-016-1002-5.
    1. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) Clin Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087.
    1. Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209. doi: 10.1016/j.pain.2006.02.023.
    1. Luedtke K, May A, Jurgens TP. No effect of a single session of transcranial direct current stimulation on experimentally induced pain in patients with chronic low back pain--an exploratory study. PLoS One. 2012;7(11):e48857. doi: 10.1371/journal.pone.0048857.
    1. Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. Neuro Rehabil. 2013;33(1):49–56.
    1. Hanchard NC, Lenza M, Handoll HH, Takwoingi Y. Physical tests for shoulder impingements and local lesions of bursa, tendon or labrum that may accompany impingement. Cochrane Database Syst Rev. 2013;4:CD007427.
    1. O'Connell NE, Cossar J, Marston L, Wand BM, Bunce D, Moseley GL, et al. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS One. 2012;7(10):e47514. doi: 10.1371/journal.pone.0047514.

Source: PubMed

3
Suscribir