The Mediating Role of Endocrine Factors in the Positive Relationship Between Fat Mass and Bone Mineral Content in Children Aged 9-11 Years: The Physical Activity and Nutrition in Children Study

Annie M Constable, Dimitris Vlachopoulos, Alan R Barker, Sarah A Moore, Sonja Soininen, Eero A Haapala, Juuso Väistö, Jarmo Jääskeläinen, Raimo Voutilainen, Seppo Auriola, Merja R Häkkinen, Tomi Laitinen, Timo A Lakka, Annie M Constable, Dimitris Vlachopoulos, Alan R Barker, Sarah A Moore, Sonja Soininen, Eero A Haapala, Juuso Väistö, Jarmo Jääskeläinen, Raimo Voutilainen, Seppo Auriola, Merja R Häkkinen, Tomi Laitinen, Timo A Lakka

Abstract

Introduction: We aimed to investigate whether the relationship between fat mass and bone mineral content (BMC) is mediated by insulin, leptin, adiponectin, dehydroepiandrosterone sulphate, testosterone and estradiol in children aged 9-11 years.

Materials and methods: We utilised cross-sectional data from the Physical Activity and Nutrition in Children study (n = 230 to 396; 112 to 203 girls). Fat mass and BMC were assessed with dual-energy X-ray absorptiometry. Endocrine factors were assessed from fasted blood samples. We applied the novel 4-way decomposition method to analyse associations between fat mass, endocrine factors, and BMC.

Results: Fat mass was positively associated with BMC in girls (ß = 0.007 to 0.015, 95% confidence interval (CI) 0.005 to 0.020) and boys (ß = 0.009 to 0.015, 95% CI 0.005 to 0.019). The relationship between fat mass and BMC was mediated by free leptin index in girls (ß = -0.025, 95% CI -0.039 to -0.010) and boys (ß = -0.014, 95% CI -0.027 to -0.001). The relationship between fat mass and BMC was partially explained by mediated interaction between fat mass and free leptin index in boys (ß = -0.009, 95% CI -0.013 to -0.004) and by interaction between fat mass and adiponectin in girls (ß = -0.003, 95% CI -0.006 to -0.000).

Conclusion: At greater levels of adiponectin and free leptin index, the fat mass and BMC relationship becomes less positive in girls and boys respectively. The positive association between fat mass with BMC was largely not explained by the endocrine factors we assessed.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT01803776], identifier NCT01803776.

Keywords: DXA (dual-energy X-ray absorptiometry); adiponectin; adiposity; insulin; leptin; paediatric.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Constable, Vlachopoulos, Barker, Moore, Soininen, Haapala, Väistö, Jääskeläinen, Voutilainen, Auriola, Häkkinen, Laitinen and Lakka.

Figures

Figure 1
Figure 1
Participant flow chart. Physical Activity and Nutrition in Children, PANIC; Total body less head bone mineral content, TBLH BMC; Dehydroepiandrosterone sulphate, DHEAS.
Figure 2
Figure 2
Components of the 4-way decomposition, as described by VanderWeele (20), of the total association between fat mass with TBLH BMC. Total body less head bone mineral content, TBLH BMC.
Figure 3
Figure 3
Summary of significant mediation and moderation effects from the 4-way decomposition. Total body less head bone mineral content, TBLH BMC. All models adjusted for age, stature, pubertal status, lean mass, and baseline TBLH BMC. Girls: n = 191 for adiponectin, n = 190 for free leptin index, Boys: n = 181.

References

    1. Dimitri P. Fat and Bone in Children - Where Are We Now? Ann Pediatr Endocrinol Metab (2018) 23(2):62–9. doi: 10.6065/apem.2018.23.2.62
    1. Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Hangartner TN, et al. . Tracking of Bone Mass and Density During Childhood and Adolescence. J Clin Endocrinol Metab (2010) 95(4):1690–8. doi: 10.1210/jc.2009-2319
    1. Soininen S, Sidoroff V, Lindi V, Mahonen A, Kröger L, Kröger H, et al. . Body Fat Mass, Lean Body Mass and Associated Biomarkers as Determinants of Bone Mineral Density in Children 6-8years of Age - the Physical Activity and Nutrition in Children (PANIC) Study. Bone (2018) 108:106–14. doi: 10.1016/j.bone.2018.01.003
    1. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity During Childhood and Adolescence Augments Bone Mass and Bone Dimensions. Am J Clin Nutr (2004) 80(2):514–23. doi: 10.1093/ajcn/80.2.514
    1. Clark EM, Ness AR, Tobias JH. Adipose Tissue Stimulates Bone Growth in Prepubertal Children. J Clin Endocrinol Metab (2006) 91(7):2534–41. doi: 10.1210/jc.2006-0332
    1. Timpson NJ, Sayers A, Davey-Smith G, Tobias JH. How Does Body Fat Influence Bone Mass in Childhood? A Mendelian Randomization Approach. J Bone Miner Res (2009) 24(3):522–33. doi: 10.1359/jbmr.081109
    1. Reid IR. Fat and Bone. Arch Biochem Biophys (2010) 503(1):20–7. doi: 10.1016/j.abb.2010.06.027
    1. Garnett SP, Högler W, Blades B, Baur LA, Peat J, Lee J, et al. . Relation Between Hormones and Body Composition, Including Bone, in Prepubertal Children. Am J Clin Nutr (2004) 80(4):966–72. doi: 10.1093/ajcn/80.4.966
    1. Torres-Costoso A, Pozuelo-Carrascosa DP, Álvarez-Bueno C, Ferri-Morales A, Miota Ibarra J, Notario-Pacheco B, et al. . Insulin and Bone Health in Young Adults: The Mediator Role of Lean Mass. PloS One (2017) 12(3):e0173874. doi: 10.1371/journal.pone.0173874
    1. Williams GA, Wang Y, Callon KE, Watson M, J-m L, Lam JBB, et al. . In Vitro and In Vivo Effects of Adiponectin on Bone. Endocrinology (2009) 150(8):3603–10. doi: 10.1210/en.2008-1639
    1. Clarke BL, Khosla S. Androgens and Bone. Steroids (2009) 74(3):296–305. doi: 10.1016/j.steroids.2008.10.003
    1. Thrailkill KM, Lumpkin CK, Jr., Bunn RC, Kemp SF, Fowlkes JL. Is Insulin an Anabolic Agent in Bone? Dissecting the Diabetic Bone for Clues. Am J Physiol Endocrinol Metab (2005) 289(5):E735–E45. doi: 10.1152/ajpendo.00159.2005
    1. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. . Recombinant Human Leptin in Women With Hypothalamic Amenorrhea. N Engl J Med (2004) 351(10):987–97. doi: 10.1056/NEJMoa040388
    1. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD. Serum Adiponectin and Bone Mineral Density in Women. J Clin Endocrinol Metab (2007) 92(4):1517–23. doi: 10.1210/jc.2006-2097
    1. Cauley JA. Estrogen and Bone Health in Men and Women. Steroids (2015) 99:11–5. doi: 10.1016/j.steroids.2014.12.010
    1. Lawlor DA, Sattar N, Sayers A, Tobias JH. The Association of Fasting Insulin, Glucose, and Lipids With Bone Mass in Adolescents: Findings From a Cross-Sectional Study. J Clin Endocrinol Metab (2012) 97(6):2068–76. doi: 10.1210/jc.2011-2721
    1. Afghani A, Goran MI. The Interrelationships Between Abdominal Adiposity, Leptin and Bone Mineral Content in Overweight Latino Children. Horm Res (2009) 72(2):82–7. doi: 10.1159/000232160
    1. Sayers A, Timpson NJ, Sattar N, Deanfield J, Hingorani AD, Davey-Smith G, et al. . Adiponectin and Its Association With Bone Mass Accrual in Childhood. J Bone Miner Res (2010) 25(10):2212–20. doi: 10.1002/jbmr.116
    1. VanderWeele TJ. Mediation Analysis: A Practitioner’s Guide. Annu Rev Public Health (2016) 37(1):17–32. doi: 10.1146/annurev-publhealth-032315-021402
    1. VanderWeele TJ. A Unification of Mediation and Interaction: A 4-Way Decomposition. Epidemiology (2014) 25(5):749–61. doi: 10.1097/EDE.0000000000000121
    1. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. . The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporos Int (2016) 27(4):1281–386. doi: 10.1007/s00198-015-3440-3
    1. Tanner JM. Normal Growth and Techniques of Growth Assessment. Clin Endocrinol Metab (1986) 15(3):411–51. doi: 10.1016/S0300-595X(86)80005-6
    1. Saari A, Sankilampi U, Hannila M-L, Kiviniemi V, Kesseli K, Dunkel L. New Finnish Growth References for Children and Adolescents Aged 0 to 20 Years: Length/Height-for-Age, Weight-for-Length/Height, and Body Mass Index-for-Age. Ann Med (2011) 43(3):235–48. doi: 10.3109/07853890.2010.515603
    1. Cole TJ, Lobstein T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity. Pediatr Obes (2012) 7(4):284–94. doi: 10.1111/j.2047-6310.2012.00064.x
    1. Jaworski M, Pludowski P. Precision Errors, Least Significant Change, and Monitoring Time Interval in Pediatric Measurements of Bone Mineral Density, Body Composition, and Mechanostat Parameters by GE Lunar Prodigy. J Clin Densitom (2013) 16(4):562–9. doi: 10.1016/j.jocd.2013.01.003
    1. Wren TA, Liu X, Pitukcheewanont P, Gilsanz V. Bone Acquisition in Healthy Children and Adolescents: Comparisons of Dual-Energy X-Ray Absorptiometry and Computed Tomography Measures. J Clin Endocrinol Metab (2005) 90(4):1925–8. doi: 10.1210/jc.2004-1351
    1. Kratzsch J, Lammert A, Bottner A, Seidel B, Mueller G, Thiery J, et al. . Circulating Soluble Leptin Receptor and Free Leptin Index During Childhood, Puberty, and Adolescence. J Clin Endocrinol Metab (2002) 87(10):4587–94. doi: 10.1210/jc.2002-020001
    1. Häkkinen MR, Heinosalo T, Saarinen N, Linnanen T, Voutilainen R, Lakka T, et al. . Analysis by LC-MS/MS of Endogenous Steroids From Human Serum, Plasma, Endometrium and Endometriotic Tissue. J Pharm BioMed Anal (2018) 152:165–72. doi: 10.1016/j.jpba.2018.01.034
    1. Discacciati A, Bellavia A, Lee JJ, Mazumdar M, Valeri L. Med4way: A Stata Command to Investigate Mediating and Interactive Mechanisms Using the Four-Way Effect Decomposition. Int J Epidemiol (2018) 48(1):15–20. doi: 10.1093/ije/dyy236
    1. Schoenau E, Land C, Stabrey A, Remer T, Kroke A. The Bone Mass Concept: Problems in Short Stature. Eur J Endocrinol (2004) 151 Suppl 1:S87–91. doi: 10.1530/eje.0.151s087
    1. Bowerman BL, O’Connell RT. Linear Statistical Models: An Applied Approach. Boston: PWS-Kent Pub. Co; (1990).
    1. Fox J. Regression Diagnostics. Thousand Oaks, California: SAGE Publications, Inc; (1991). Available at: .
    1. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr Osteoporos Rep (2020) 18(4):388–400. doi: 10.1007/s11914-020-00599-y
    1. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, et al. . Adiposity and Bone Health in Spanish Adolescents. The HELENA Study. Osteoporos Int (2012) 23(3):937–47. doi: 10.1007/s00198-011-1649-3
    1. Janicka A, Wren TAL, Sanchez MM, Dorey F, Kim PS, Mittelman SD, et al. . Fat Mass Is Not Beneficial to Bone in Adolescents and Young Adults. J Clin Endocrinol Metab (2007) 92(1):143–7. doi: 10.1210/jc.2006-0794
    1. Kindler JM, Lobene AJ, Vogel KA, Martin BR, McCabe LD, Peacock M, et al. . Adiposity, Insulin Resistance, and Bone Mass in Children and Adolescents. J Clin Endocrinol Metab (2019) 104(3):892–9. doi: 10.1210/jc.2018-00353
    1. Peplies J, Jiménez-Pavón D, Savva SC, Buck C, Günther K, Fraterman A, et al. . Percentiles of Fasting Serum Insulin, Glucose, Hba1c and HOMA-IR in Pre-Pubertal Normal Weight European Children From the IDEFICS Cohort. Int J Obes (Lond) (2014) 38(2):S39–47. doi: 10.1038/ijo.2014.134
    1. Dimitri P, Wales JK, Bishop N. Adipokines, Bone-Derived Factors and Bone Turnover in Obese Children; Evidence for Altered Fat-Bone Signalling Resulting in Reduced Bone Mass. Bone (2011) 48(2):189–96. doi: 10.1016/j.bone.2010.09.034
    1. Dimitri P. The Impact of Childhood Obesity on Skeletal Health and Development. J Obes Metab Syndr (2019) 28(1):4–17. doi: 10.7570/jomes.2019.28.1.4
    1. Blum WF, Englaro P, Hanitsch S, Juul A, Hertel NT, Müller J, et al. . Plasma Leptin Levels in Healthy Children and Adolescents: Dependence on Body Mass Index, Body Fat Mass, Gender, Pubertal Stage, and Testosterone. J Clin Endocrinol Metab (1997) 82(9):2904–10. doi: 10.1210/jcem.82.9.4251
    1. Ellis KJ, Nicolson M. Leptin Levels and Body Fatness in Children: Effects of Gender, Ethnicity, and Sexual Development. Pediatr Res (1997) 42(4):484–8. doi: 10.1203/00006450-199710000-00010
    1. Nagy TR, Gower BA, Trowbridge CA, Dezenberg C, Shewchuk RM, Goran MI. Effects of Gender, Ethnicity, Body Composition, and Fat Distribution on Serum Leptin Concentrations in Children. J Clin Endocrinol Metab (1997) 82(7):2148–52. doi: 10.1210/jc.82.7.2148
    1. Bi X, Loo YT, Henry CJ. Relationships Between Adiponectin and Bone: Sex Difference. Nutrition (2020) 70:110489. doi: 10.1016/j.nut.2019.04.004
    1. Corvalán C, Uauy R, Mericq V. Obesity Is Positively Associated With Dehydroepiandrosterone Sulfate Concentrations at 7 Y in Chilean Children of Normal Birth Weight. Am J Clin Nutr (2013) 97(2):318–25. doi: 10.3945/ajcn.112.037325
    1. Sopher AB, Jean AM, Zwany SK, Winston DM, Pomeranz CB, Bell JJ, et al. . Bone Age Advancement in Prepubertal Children With Obesity and Premature Adrenarche: Possible Potentiating Factors. Obes (Silver Spring) (2011) 19(6):1259–64. doi: 10.1038/oby.2010.305
    1. Elmlinger MW, Kühnel W, Ranke MB. Reference Ranges for Serum Concentrations of Lutropin (LH), Follitropin (FSH), Estradiol (E2), Prolactin, Progesterone, Sex Hormone-Binding Globulin (SHBG), Dehydroepiandrosterone Sulfate (DHEAS), Cortisol and Ferritin in Neonates, Children and Young Adults. Clin Chem Lab Med (2002) 40(11):1151–60. doi: 10.1515/cclm.2002.202
    1. Sizonenko PC, Paunier L. Hormonal Changes in Puberty III: Correlation of Plasma Dehydroepiandrosterone, Testosterone, FSH, and LH With Stages of Puberty and Bone Age in Normal Boys and Girls and in Patients With Addison’s Disease or Hypogonadism or With Premature or Late Adrenarche. J Clin Endocrinol Metab (1975) 41(5):894–904. doi: 10.1210/jcem-41-5-894
    1. Molgaard C, Thomsen BL, Michaelsen KF. The Influence of Calcium Intake and Physical Activity on Bone Mineral Content and Bone Size in Healthy Children and Adolescents. Osteoporos Int (2001) 12(10):887–94. doi: 10.1007/s001980170042
    1. International Society for Clinical Densitometry . 2019 Iscd Official Positions - Pediatric (2019). Available at: .
    1. Goji K. Twenty-Four-Hour Concentration Profiles of Gonadotropin and Estradiol (E2) in Prepubertal and Early Pubertal Girls: The Diurnal Rise of E2 Is Opposite the Nocturnal Rise of Gonadotropin. J Clin Endocrinol Metab (1993) 77(6):1629–35. doi: 10.1210/jcem.77.6.8263151
    1. Ankarberg-Lindgren C, Dahlgren J, Carlsson B, Rosberg S, Carlsson L, Albertsson-Wikland K, et al. . Leptin Levels Show Diurnal Variation Throughout Puberty in Healthy Children, and Follow a Gender-Specific Pattern. Eur J Endocrinol (2001) 145:43–51. doi: 10.1530/eje.0.1450043
    1. Bachran R, Beyer P, Klinkert C, Heidtmann B, Rosenbauer J, Holl RW, et al. . Basal Rates and Circadian Profiles in Continuous Subcutaneous Insulin Infusion (CSII) Differ for Preschool Children, Prepubertal Children, Adolescents and Young Adults. Pediatr Diabetes (2012) 13(1):1–5. doi: 10.1111/j.1399-5448.2011.00777.x
    1. Tobias JH. Fat Mass and Bone Development. Expert Rev Endocrinol Metab (2010) 5(3):323–5. doi: 10.1586/eem.10.15

Source: PubMed

3
Suscribir