Oxidative Stress Induces a VEGF Autocrine Loop in the Retina: Relevance for Diabetic Retinopathy

Maria Grazia Rossino, Matteo Lulli, Rosario Amato, Maurizio Cammalleri, Massimo Dal Monte, Giovanni Casini, Maria Grazia Rossino, Matteo Lulli, Rosario Amato, Maurizio Cammalleri, Massimo Dal Monte, Giovanni Casini

Abstract

Background: Oxidative stress (OS) plays a central role in diabetic retinopathy (DR), triggering expression and release of vascular endothelial growth factor (VEGF), the increase of which leads to deleterious vascular changes. We tested the hypothesis that OS-stimulated VEGF induces its own expression with an autocrine mechanism.

Methods: MIO-M1 cells and ex vivo mouse retinal explants were treated with OS, with exogenous VEGF or with conditioned media (CM) from OS-stressed cultures.

Results: Both in MIO-M1 cells and in retinal explants, OS or exogenous VEGF induced a significant increase of VEGF mRNA, which was abolished by VEGF receptor 2 (VEGFR-2) inhibition. OS also caused VEGF release. In MIO-M1 cells, CM induced VEGF expression, which was abolished by a VEGFR-2 inhibitor. Moreover, the OS-induced increase of VEGF mRNA was abolished by a nuclear factor erythroid 2-related factor 2 (Nrf2) blocker, while the effect of exo-VEGF resulted Nrf2-independent. Finally, both the exo-VEGF- and the OS-induced increase of VEGF expression were blocked by a hypoxia-inducible factor-1 inhibitor.

Conclusions: These results are consistent with the existence of a retinal VEGF autocrine loop triggered by OS. This mechanism may significantly contribute to the maintenance of elevated VEGF levels and therefore it may be of central importance for the onset and development of DR.

Keywords: HIF-1; MIO-M1; Müller cell; Nrf2; VEGFR2; conditioned medium; diabetic retinopathy; retinal explant.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(A) and (B) represent vascular endothelial growth factor (VEGF) mRNA expression in MIO-M1 cells and in retinal explants, respectively, exposed to oxidative stress (OS; 400 µM H2O2 for MIO-M1 cells and 100 µM H2O2 for retinal explants) for 24 h and effect of a vascular endothelial growth factor receptor 2 (VEGFR2) blocker (0.1 µM Apatinib for MIO-M1 cells and 25 µM SU1498 for retinal explants). * p < 0.05 and ** p < 0.01 relative to controls (Ctrl); §p < 0.05 and §§p < 0.01 relative to OS. (C) and (D) represent VEGF mRNA expression in MIO-M1 cells and in retinal explants, respectively, exposed to different concentrations of exogenous VEGF (exo-VEGF) for 24 h. * p < 0.05 ** p < 0.01 and *** p < 0.001 relative to Ctrl. (E) and (F) represent VEGF mRNA expression in MIO-M1 cells and in retinal explants, respectively, in response to the most effective concentration of exo-VEGF (1 ng/mL in MIO-M1 cells and 10 ng/mL in retinal explants) and the effect of a VEGFR2 blocker (Apatinib for MIO-M1 cells and SU1498 for retinal explants). * p < 0.05 and *** p < 0.001 relative to Ctrl; §p < 0.05 and §§p < 0.01 relative to exo-VEGF. n = 3 in (AE); n = 5 in (F).
Figure 2
Figure 2
VEGFR2 immunofluorescence in MIO-M1 cells (A,C,E) and in cryostat sections of retinal explants (B,D,F) in Ctrl (A,B), in the presence of 1 ng/mL (MIO-M1 cells) or 10 ng/mL (retinal explants) of exo-VEGF (C,D) and in the presence of exo-VEGF with a VEGR2 blocker (0.1 µM Apatinib for MIO-M1 cells and 25 µM SU1498 for retinal explants: E,F). In the images of MIO-M1 cells (A,C,E), above background, specific VEGFR2 immunolabeling was highlighted using Adobe Photoshop, and it appears as bright, whitish dots. Background, non-specific immunostaining is dark green. Cell nuclei were visualized with Hoechst and actin filaments with rhodamine-conjugated phalloidin. In retinal explants (B,D,F), specific VEGR2 immunostaining is bright green, while cell nuclei were visualized with DAPI counterstain. Putative immunolabeled blood vessels are indicated by arrows; putative immunolabeled Müller cell processes are indicated by arrowheads. GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer. Scale bars, 20 µm. G and H indicate VEGFR2 immunofluorescence levels normalized to Ctrl in MIO-M1 cells and in retinal explants, respectively, in the different experimental conditions. eV, exo-VEGF. * p < 0.05 and ** p < 0.01 relative to Ctrl. n = 4.
Figure 3
Figure 3
(A) VEGF release in the culture medium of MIO-M1 cells exposed to OS for 24 h, as measured with ELISA. (B) VEGF mRNA expression in MIO-M1 cells incubated for 24 h in the conditioned medium of untreated MIO-M1 cells (CM-Ctrl) or of MIO-M1 cells exposed to OS for 24 h (CM-OS), with or without the VEGFR2 blocker Apatinib at 0.1 µM. *** p < 0.001 relative to control MIO-M1 cell cultures (Ctrl) (A) or to untreated MIO-M1 cell cultures (that is incubated in non-conditioned medium, Unt) (B), §§§p < 0.001 relative to CM-OS, and ###p < 0.001 relative to CM-Ctrl as evaluated with one-way ANOVA followed by Newman–Keuls post-hoc test. op < 0.005 with respect to Unt as evaluated with one-way ANOVA followed by uncorrected Fisher’s LSD post-hoc test. n = 4 in (A); n = 6 in (B). (CG): Images of VEGFR2 immunofluorescence in MIO-M1 cells in the experimental conditions as in (B). Other details as in Figure 2. Scale bar, 20 µm.
Figure 4
Figure 4
(A) VEGF release in the culture medium of retinal explants exposed to OS for 24 h, as measured with ELISA. (B) VEGF mRNA expression in retinal explants incubated for 24 h in non-conditioned medium (Ctrl) or in explants incubated for 24 h in the conditioned medium of explants exposed to OS for 24 h (CM-24h). (C) VEGF release in the culture medium of retinal explants exposed to OS for 5 days, as measured with ELISA. (D) VEGF mRNA expression in retinal explants incubated for 24 h in the conditioned medium of untreated explants (CM-Ctrl) or in explants incubated for 24 h in the conditioned medium of explants exposed to OS for 5 days (CM-5D). ** p < 0.01 and *** p < 0.001 relative to Ctrl. n = 3 in all graphs.
Figure 5
Figure 5
Immunofluorescence images documenting nuclear factor erythroid 2-related factor 2 (Nrf2) production and nuclear translocation in Ctrl, OS-treated (OS) and in OS-treated MIO-M1 cells incubated in the presence of the Nrf2 inhibitor ML385 at 5 µM (OS + ML385). (A1), (B1) and (C1) show the overall Nrf2 immunostaining of MIO-M1 cells in the three different conditions; (A2), (B2) and (C2) show the Hoechst-stained cell nuclei; (A3), (B3) and (C3) are merged images of the previous two; (A4), (B4) and (C4) show Nrf2 immunostaining limited to the cell nucleus. Scale bar, 50 µm. The histograms in (D) represent the quantification of immunofluorescence intensity within the nuclei of MIO-M1 cells in the different experimental conditions. The values are relative to that corresponding to 0 µM ML385. ** p < 0.01 and *** p < 0.001 relative to 0 µM ML385; §§p < 0.01 relative to OS + 0 µM ML385; ###p < 0.001 relative to OS + 1 µM ML385. The histograms in (E) represent VEGF mRNA expression in MIO-M1 cells exposed to OS for 24 h and effect of the Nrf2 inhibitor ML385. ** p < 0.01 relative to Ctrl; §§p < 0.01 relative to OS. n = 8 in (D); n = 3 in (E).
Figure 6
Figure 6
Immunofluorescence images documenting Nrf2 production and nuclear translocation in Ctrl, in exo-VEGF-treated and in exo-VEGF-treated MIO-M1 cells incubated in the presence of the Nrf2 inhibitor ML385 (exo-VEGF + ML385). (A1), (B1) and (C1) show the overall Nrf2 immunostaining of MIO-M1 cells in the three different conditions; (A2), (B2) and (C2) show the Hoechst-stained cell nuclei; (A3), (B3) and (C3) are merged images of the previous two; (A4), (B4) and (C4) show Nrf2 immunostaining limited to the cell nucleus. Scale bar, 50 µm. The histograms in (D) represent the quantification of immunofluorescence intensity within the nuclei of MIO-M1 cells in the different experimental conditions. The values are relative to that corresponding to 0 µM ML385; eV, exo-VEGF. The histograms in (E) represent VEGF mRNA expression in MIO-M1 cells exposed to exo-VEGF (eV) for 24 h and effect of the Nrf2 inhibitor ML385. *** p < 0.001 relative to Ctrl. n = 4 in (D); n = 3 in (E).
Figure 7
Figure 7
VEGF mRNA expression in MIO-M1 cells exposed to OS or to exo-VEGF (eV) for 24 h and effect of the hypoxia inducible factor-1 inhibitor acriflavine (ACF) at 5 µM. * p < 0.05, ** p < 0.01 and *** p < 0.001 relative to Ctrl; §§§p < 0.001 relative to OS; ###p < 0.001 relative to eV. n = 4.
Figure 8
Figure 8
Schematic interpretation of the results of the present study and of other data in the literature showing the possible mechanism of an OS-induced VEGF autocrine loop in the retina. This mechanism can be divided into two parts (pathways). According to our observations, in “pathway 1”, OS triggers Nrf2 activation and nuclear translocation. In the nucleus, Nrf2 induces the expression of antioxidant genes, and in particular the one coding the HO-1 enzyme, which is reported in the literature to be able to stabilize HIF-1α. For the sake of simplicity, the diagram does not indicate HIF-1α or STAT3 nuclear translocation, induction of VEGF transcription, VEGF translation, or VEGF release, but simply indicates that HIF-1α stabilization results in VEGF release. This activates “pathway 2”, in which the released VEGF would bind to VEGFR2, which in turn (likely through STAT3 activation, according to the literature) would again stimulate HIF-1α stabilization and nuclear translocation for further VEGF expression and release.

References

    1. Wang W., Lo A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018;19:1816. doi: 10.3390/ijms19061816.
    1. Whitehead M., Wickremasinghe S., Osborne A., Van Wijngaarden P., Martin K.R. Diabetic retinopathy: A complex pathophysiology requiring novel therapeutic strategies. Expert Opin. Biol. Ther. 2018;18:1257–1270. doi: 10.1080/14712598.2018.1545836.
    1. Hernández C., Monte M.D., Simó R., Casini G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J. Diabetes Res. 2016;2016:1–18. doi: 10.1155/2016/9508541.
    1. Amato R., Biagioni M., Cammalleri M., Monte M.D., Casini G. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2016;57:3066. doi: 10.1167/iovs.16-19285.
    1. Lange C., Storkebaum E., De Almodóvar C.R., Dewerchin M., Carmeliet P. Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nat. Rev. Neurol. 2016;12:439–454. doi: 10.1038/nrneurol.2016.88.
    1. Rossino M.G., Monte M.D., Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front. Mol. Neurosci. 2019;13:1172. doi: 10.3389/fnins.2019.01172.
    1. Takata K., Morishige K.-I., Takahashi T., Hashimoto K., Tsutsumi S., Yin L., Ohta T., Kawagoe J., Takahashi K., Kurachi H. Fasudil-induced hypoxia-inducible factor-1 degradation disrupts a hypoxia-driven vascular endothelial growth factor autocrine mechanism in endothelial cells. Mol. Cancer Ther. 2008;7:1551–1561. doi: 10.1158/1535-7163.MCT-07-0428.
    1. Ohba T., Cates J.M.M., Cole H.A., Slosky D.A., Haro H., Ando T., Schwartz H.S., Schoenecker J.G. Autocrine VEGF/VEGFR1 Signaling in a Subpopulation of Cells Associates with Aggressive Osteosarcoma. Mol. Cancer Res. 2014;12:1100–1111. doi: 10.1158/1541-7786.MCR-14-0037.
    1. González-Pacheco F.R., Deudero J.J.P., Castellanos M.C., Castilla M.A., Álvarez-Arroyo M.V., Yagüe S., Caramelo C. Mechanisms of endothelial response to oxidative aggression: Protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am. J. Physiol. Circ. Physiol. 2006;291:H1395–H1401. doi: 10.1152/ajpheart.01277.2005.
    1. Chen G., Xu X., Zhang L., Fu Y., Wang M., Gu H., Xie X. Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Res. 2014;24:1121–1136. doi: 10.1038/cr.2014.112.
    1. Ji Y., Chen S., Li K., Xiao X., Xu T., Zheng S. Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br. J. Dermatol. 2014;170:78–86. doi: 10.1111/bjd.12592.
    1. Saint-Geniez M., Maharaj A.S.R., Walshe T.E., Tucker B.A., Sekiyama E., Kurihara T., Darland D.C., Young M.J., D’Amore P.A. Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors. PLoS ONE. 2008;3:e3554. doi: 10.1371/journal.pone.0003554.
    1. Byeon S.H., Lee S.C., Choi S.H., Lee H.K., Lee J.H., Chu Y.K., Kwon O.W. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Investig. Ophthalmol. Vis. Sci. 2010;51:1190–1197. doi: 10.1167/iovs.09-4144.
    1. Lee S., Chen T.T., Barber C.L., Jordan M.C., Murdock J., Desai S., Ferrara N., Nagy A., Roos K.P., Iruela-Arispe M.L. Autocrine VEGF Signaling Is Required for Vascular Homeostasis. Cell. 2007;130:691–703. doi: 10.1016/j.cell.2007.06.054.
    1. Bartoli M., Platt D.H., Lemtalsi T., Gu X., Brooks S.E., Marrero M.B., Caldwell R.B. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 2003;17:1–18. doi: 10.1096/fj.02-1084fje.
    1. Monte M.D., Martini D., Ristori C., Azara D., Armani C., Balbarini A., Bagnoli P. Hypoxia effects on proangiogenic factors in human umbilical vein endothelial cells: Functional role of the peptide somatostatin. Naunyn Schmiedeberg’s Arch. Pharmacol. 2011;383:593–612. doi: 10.1007/s00210-011-0625-y.
    1. Deudero J.J.P., Caramelo C., Castellanos M.C., Neria F., Fernández-Sánchez R., Calabia O., Peñate S., González-Pacheco F.R. Induction of Hypoxia-inducible Factor 1α Gene Expression by Vascular Endothelial Growth Factor. J. Biol. Chem. 2008;283:11435–11444. doi: 10.1074/jbc.M703875200.
    1. Klettner A., Westhues D., Lassen J., Bartsch S., Roider J. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol. Vis. 2013;19:281–291.
    1. Mei S., Cammalleri M., Azara D., Casini G., Bagnoli P., Monte M.D. Mechanisms underlying somatostatin receptor 2 down-regulation of vascular endothelial growth factor expression in response to hypoxia in mouse retinal explants. J. Pathol. 2011;226:519–533. doi: 10.1002/path.3006.
    1. Grigsby J., Allen D., Ferrigno A., Vellanki S., Pouw C., Hejny W., Tsin A.T. Autocrine and Paracrine Secretion of Vascular Endothelial Growth Factor in the Pre-Hypoxic Diabetic Retina. Curr. Diabetes Rev. 2017;13:161–174. doi: 10.2174/1573399812666161007165944.
    1. Matsuda M., Krempel P.G., Marquezini M.V., Sholl-Franco A., Lameu A., Monteiro M.L.R., Miguel N.C.D.O. Cellular stress response in human Müller cells (MIO-M1) after bevacizumab treatment. Exp. Eye Res. 2017;160:1–10. doi: 10.1016/j.exer.2017.04.005.
    1. Le Y.-Z. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vis. Res. 2017;139:108–114. doi: 10.1016/j.visres.2017.05.005.
    1. Kowluru R.A., Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2. Free Radic. Biol. Med. 2016;103:155–164. doi: 10.1016/j.freeradbiomed.2016.12.030.
    1. Kurihara T., Westenskow P.D., Friedlander M. Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv. Exp. Med. Biol. 2014;801:275–281.
    1. Cervia D., Catalani E., Monte M.D., Casini G. Vascular endothelial growth factor in the ischemic retina and its regulation by somatostatin. J. Neurochem. 2012;120:818–829. doi: 10.1111/j.1471-4159.2011.07622.x.
    1. Behl T., Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol. Res. 2015;99:137–148. doi: 10.1016/j.phrs.2015.05.013.
    1. Klettner A., Roider J. Mechanisms of Pathological VEGF Production in the Retina and Modification with VEGF-Antagonists. Stud. Retinal Choroidal Disord. 2012:277–305.
    1. Penn J.S., Madan A., Caldwell R., Bartoli M., Hartnett M., Caldwell R. Vascular endothelial growth factor in eye disease. Prog. Retin. Eye Res. 2008;27:331–371. doi: 10.1016/j.preteyeres.2008.05.001.
    1. Amato R., Monte M.D., Lulli M., Raffa V., Casini G. Nanoparticle-Mediated Delivery of Neuroprotective Substances for the Treatment of Diabetic Retinopathy. Curr. Neuropharmacol. 2018;16:993–1003. doi: 10.2174/1570159X15666170717115654.
    1. Semeraro F., Cancarini A., Dell’Omo R., Rezzola S., Romano M.R., Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015;2015:1–16. doi: 10.1155/2015/582060.
    1. Canning P., Sorrell F., Bullock A.N. Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 2015;88:101–107. doi: 10.1016/j.freeradbiomed.2015.05.034.
    1. Li L., Pan H., Wang H., Li X., Bu X., Wang Q., Gao Y., Wen G., Zhou Y., Cong Z., et al. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci. Rep. 2016;6:37338. doi: 10.1038/srep37338.
    1. Singh A., Venkannagari S., Oh K.H., Zhang Y.-Q., Rohde J.M., Liu L., Nimmagadda S., Sudini K., Brimacombe K.R., Gajghate S., et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem. Biol. 2016;11:3214–3225. doi: 10.1021/acschembio.6b00651.
    1. Paramasivan P., Kankia I.H., Langdon S.P., Deeni Y.Y. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. Cancer Drug Resist. 2019 doi: 10.20517/cdr.2019.57.
    1. Tonelli C., Chio I.I.C., Tuveson D. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018;29:1727–1745. doi: 10.1089/ars.2017.7342.
    1. Dong F., Zhou X., Li C., Yan S., Deng X., Cao Z., Li L., Tang B., Allen T., Liu J. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol. Ther. 2014;15:1479–1488. doi: 10.4161/15384047.2014.955728.
    1. Basagiannis D., Zografou S., Murphy C., Fotsis T., Morbidelli L., Ziche M., Bleck C., Mercer J., Christoforidis S. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis. J. Cell Sci. 2016;129:4091–4104. doi: 10.1242/jcs.188219.
    1. Dougher M., I Terman B. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene. 1999;18:1619–1627. doi: 10.1038/sj.onc.1202478.
    1. Lampugnani M.G., Orsenigo F., Gagliani M.C., Tacchetti C., Dejana E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 2006;174:593–604. doi: 10.1083/jcb.200602080.
    1. Sun J., Huang W., Yang S.F., Zhang X.P., Yu Q., Zhang Z.Q., Yao J., Li K.R., Jiang Q., Cao C. Galphai1 and Galphai3mediate VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis. Theranostics. 2018;8:4695–4709. doi: 10.7150/thno.26203.
    1. Devoldere J., Peynshaert K., De Smedt S.C., Remaut K. Müller cells as a target for retinal therapy. Drug Discov. Today. 2019;24:1483–1498. doi: 10.1016/j.drudis.2019.01.023.
    1. Cáceres-Del-Carpio J., Moustafa M.T., Toledo-Corral J., Hamid M.A., Atilano S.R., Schneider K., Fukuhara P.S., Costa R.D., Norman J.L., Malik D., et al. In vitro response and gene expression of human retinal Müller cells treated with different anti-VEGF drugs. Exp. Eye Res. 2020;191:107903. doi: 10.1016/j.exer.2019.107903.
    1. Fu S., Dong S., Zhu M., Le Y.-Z. Plant Promoters and Transcription Factors. Springer; Cham, Switzerland: 2018. VEGF as a Trophic Factor for Müller Glia in Hypoxic Retinal Diseases; pp. 473–478.
    1. Fu S., Dong S., Zhu M., Sherry D.M., Wang C., You Z., Haigh J., Le Y.-Z. Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes. Diabetes. 2015;64:3554–3563. doi: 10.2337/db15-0180.
    1. Rübsam A., Parikh S., Fort P.E. Role of Inflammation in Diabetic Retinopathy. Int. J. Mol. Sci. 2018;19:942. doi: 10.3390/ijms19040942.
    1. Kaplan H.J., Chiang C.W., Chen J., Song S.K. Vitreous volume of the mouse measured by quantitative high-resolution MRI. Investig. Ophthalmol. Vis. Sci. 2010;51:4414.
    1. Arjamaa O., Nikinmaa M. Oxygen-dependent diseases in the retina: Role of hypoxia-inducible factors. Exp. Eye Res. 2006;83:473–483. doi: 10.1016/j.exer.2006.01.016.
    1. Agani F., Jiang B.-H. Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets. 2013;13:245–251. doi: 10.2174/1568009611313030003.
    1. Borsi E., Terragna C., Brioli A., Tacchetti P., Martello M., Cavo M. Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl. Res. 2015;165:641–650. doi: 10.1016/j.trsl.2014.12.001.
    1. Chun Y.S., Kim M.S., Park J.W. Oxygen-Dependent and -Independent Regulation of HIF-1alpha. J. Korean Med. Sci. 2002;17:581–588. doi: 10.3346/jkms.2002.17.5.581.
    1. Di Gesualdo F., Capaccioli S., Lulli M. A pathophysiological view of the long non-coding RNA world. Oncotarget. 2014;5:10976–10996. doi: 10.18632/oncotarget.2770.
    1. Martin S.K., Diamond P., Gronthos S., Peet D.J., Zannettino A.C. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia. 2011;25:1533–1542. doi: 10.1038/leu.2011.122.
    1. Lacher S.E., Levings D., Freeman S., Slattery M. Identification of a functional antioxidant response element at the HIF1A locus. Redox Biol. 2018;19:401–411. doi: 10.1016/j.redox.2018.08.014.
    1. Yu H., Chen B., Ren Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1alpha/BNIP3 pathway. Artif. Cells Nanomed. Biotechnol. 2019;47:3657–3663. doi: 10.1080/21691401.2019.1657879.
    1. Choi Y.K., Park J.H., Yun J.A., Cha J.H., Kim Y., Won M.H., Kim K.W., Ha K.S., Kwon Y.G., Kim Y.M. Heme oxygenase metabolites improve astrocytic mitochondrial function via a Ca2 + -dependent HIF-1alpha/ERRalpha circuit. PloS ONE. 2018;13:e0202039.
    1. Kweider N., Fragoulis A., Rosen C., Pecks U., Rath W., Pufe T., Wruck C.J. Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): Implications for preeclampsia. J. Biol. Chem. 2011;286:42863–42872. doi: 10.1074/jbc.M111.286880.
    1. Gao P., Niu N., Wei T., Tozawa H., Chen X., Zhang C., Zhang J., Wada Y., Kapron C.M., Liu J. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget. 2017;8:69139–69161. doi: 10.18632/oncotarget.19932.
    1. Rossino M.G., Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrition. 2019;11:771. doi: 10.3390/nu11040771.
    1. Amato R., Rossino M.G., Cammalleri M., Locri F., Pucci L., Monte M.D., Casini G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrition. 2018;10:1932. doi: 10.3390/nu10121932.

Source: PubMed

3
Suscribir