The effect of electrically heated humidifier on the body temperature and blood loss in spinal surgery under general anesthesia

Hyun Kyu Lee, Yeon-Hee Jang, Kwan-Woong Choi, Jae Ho Lee, Hyun Kyu Lee, Yeon-Hee Jang, Kwan-Woong Choi, Jae Ho Lee

Abstract

Background: General anesthesia often produces some degree of hypothermia and hypothermia causes much more blood loss during surgery than normothermia. Electrically heated humidifiers (EHHs) have been used for patients under general anesthesia and in the intensive care unit. However, the benefits of the EHH have not been widely reported in the literature.

Methods: Patients scheduled for posterior lumbar spine fusion, were randomly assigned to a mechanically ventilated with EHH circuit group or to a conventional respiratory circuit group. Their tympanic membrane temperature was monitored every 30 min after induction up to 180 min, and perioperative blood losses, transfusion requirements during surgery, and other complications were noted.

Results: Patients in the control group (n = 40) showed a lower mean body temperature at all times than immediately after induction, while the EHH group (n = 40) showed a lower body temperature from 60 minute after induction comparing to the initial temperature. Furthermore, patients in the EHH group had a higher mean body temperature than patients in the control group during surgery (35.9 ± 0.4 vs 35.4 ± 0.5, P < 0.001). Mean intraoperative blood loss (9.75 ± 5.4 vs 7.48 ± 3.9, P = 0.035) and transfusion requirements (57.5% vs 25%, P = 0.006) were significantly less in the EHH group, but postoperative blood loss, duration of hospitalization, and other complications were not significantly different in the two study groups.

Conclusions: The use of an electrically heated humidifier did not prevent a body temperature drop under general anesthesia. However, it helped maintain body temperature and was associated less blood loss and transfusion requirement during surgery.

Keywords: Blood loss; Complication; Electrically heated humidifier; General anesthesia; Hypothermia; Transfusion.

References

    1. Matsukawa T, Sessler DI, Sessler AM, Schroeder M, Ozaki M, Kurz A, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology. 1995;82:662–673.
    1. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet. 1996;347:289–292.
    1. Valeri CR, Khabbaz K, Khuri SF, Marquardt C, Ragno G, Feingold H, et al. Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg. 1992;104:108–116.
    1. Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR. Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost. 1994;71:633–640.
    1. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of wound infection and temperature group. N Engl J Med. 1996;334:1209–1215.
    1. Just B, Delva E, Camus Y, Lienhart A. Oxygen uptake during recovery following naloxone. Relationship with intraoperative heat loss. Anesthesiology. 1992;76:60–64.
    1. Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Oslon KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA. 1997;277:1127–1134.
    1. Lenhardt R, Marker E, Goll V, Tschernich H, Kurz A, Sessler DI, et al. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology. 1997;87:1318–1323.
    1. Murat I, Bernière J, Conatant I. Evaluation of the efficacy of a forced-air warmer (Bair Hugger) during spinal surgery in children. J Clin Anesth. 1994;6:425–429.
    1. Jeong SM, Hahm KD, Jeong YB, Yang HS, Choi IC. Warming of intravenous fluids prevents hypothermia during off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2008;22:67–70.
    1. Ihn CH, Joo JD, Chung HS, Choi JW, Kim DW, Jeon YS, et al. Comparison of three warming devices for the prevention of core hypothermia and post-anaesthesia shivering. J Int Med Res. 2008;36:923–931.
    1. Sessler DI, Schroeder M. Heat loss in human covered with cotton hospital blankets. Anesth Analg. 1993;77:73–77.
    1. Rathgeber J. Devices used to humidify respired gases. Respir Care Clin N Am. 2006;12:165–182.
    1. Déry R, Pelletier J, Jacques A, Clavet M, Houde JJ. Humidity in anaesthesiology. 3. Heated and moisture patterns in the respiratory tract during anaesthesia with the semi-closed system. Can Anaesth Soc J. 1967;14:287–298.
    1. Stone DR, Downs JB, Paul WL, Perkins HM. Adult body temperature and heated humidification of anesthetic gases during general anesthesia. Anesth Analg. 1981;60:736–741.
    1. Howell WH. Physiology and Biophysics. 20th ed. Philadelphia: Saunders; 1979. pp. 105–112.
    1. Sessler DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology. 2008;109:318–338.
    1. Goldberg ME, Epstein R, Rosenblum F, Larijani GE, Marr A, Lessin J, et al. Do heated humidifiers and heat and moisture exchangers prevent temperature drop during lower abdominal surgery? J Clin Anesth. 1992;4:16–20.
    1. Park HG, Im JS, Park JS, Joe JK, Lee S, Yon JH, et al. A comparative evaluation of humidifier with heated wire breathing circuit under general anesthesia. Korean J Anesthesiol. 2009;57:32–37.
    1. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology. 2008;108:71–77.
    1. Koch CG, Khandwala F, Li L, Estafanous FG, Loop FD, Blackstone EH. Persistent effect of red cell transfusion on health-related quality of life after cardiac surgery. Ann Thorac Surg. 2006;82:13–20.
    1. Koch CG, Li L, Duncan AI, Mihaljevic T, Cosgrove DM, Loop FD, Starr NJ, et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med. 2006;34:1608–1616.
    1. Sessler DI, McGuire J, Sessler AM. Perioperative thermal insulation. Anesthesiology. 1991;74:875–879.

Source: PubMed

3
Suscribir