Factors associated with Leishmania asymptomatic infection: results from a cross-sectional survey in highland northern Ethiopia

Estefanía Custodio, Endalamaw Gadisa, Luis Sordo, Israel Cruz, Javier Moreno, Javier Nieto, Carmen Chicharro, Abraham Aseffa, Zelalem Abraham, Tsegaye Hailu, Carmen Cañavate, Estefanía Custodio, Endalamaw Gadisa, Luis Sordo, Israel Cruz, Javier Moreno, Javier Nieto, Carmen Chicharro, Abraham Aseffa, Zelalem Abraham, Tsegaye Hailu, Carmen Cañavate

Abstract

Background: In northern Ethiopia the prevalence of visceral leishmaniasis is steadily rising posing an increasing public health concern. In order to develop effective control strategies on the transmission of the disease it is important to generate knowledge on the epidemiological determinants of the infection.

Methodology/principal findings: We conducted a cross-sectional survey on children 4-15 years of age using a multi staged stratified cluster sampling on high incidence sub-districts of Amhara regional state, Ethiopia. The survey included a socio-demographic, health and dietary questionnaire, and anthropometric measurements. We performed rK39-ICT and DAT serological tests in order to detect anti-Leishmania antibodies and carried out Leishmanin Skin Test (LST) using L.major antigen. Logistic regression models were used. Of the 565 children surveyed 56 children were positive to infection (9.9%). The individual variables that showed a positive association with infection were increasing age, being male and sleeping outside [adjusted odds ratios (95% CI): 1.15 (1.03, 1.29), 2.56 (1.19, 5.48) and 2.21 (1.03, 4.71) respectively] and in relation to the household: past history of VL in the family, living in a straw roofed house and if the family owned sheep [adjusted OR (95% CI): 2.92 (1.25, 6.81), 2.71 (1.21, 6.07) and 4.16 (1.41, 12.31) respectively].

Conclusions/significance: A behavioural pattern like sleeping outside is determinant in the transmission of the infection in this area. Protective measures should be implemented against this identified risk activity. Results also suggest a geographical clustering and a household focalization of the infection. The behaviour of the vector in the area needs to be clarified in order to establish the role of domestic animals and house materials in the transmission of the infection.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Location of the study area.
Figure 1. Location of the study area.
Figure 2. Location of the sub-districts on…
Figure 2. Location of the sub-districts on which the study was performed (grey background).
Figures were adapted from Alvar et al. Am. J. Trop. Med. Hyg., 77(2), 2007, pp. 275–282.

References

    1. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5 11: 873–882.
    1. World Health Organization (2010)Control of the leishmaniases: Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22–26 March 2010. 949 Geneva, World Health Organization. WHO technical report series.
    1. Schaefer KU, Kurtzhals JA, Gachihi GS, Muller AS, Kager PA (1995) A prospective sero-epidemiological study of visceral leishmaniasis in Baringo District, Rift Valley Province, Kenya. Trans R Soc Trop Med Hyg 89 5: 471–475.
    1. Moral L, Rubio EM, Moya M (2002) A leishmanin skin test survey in the human population of l'Alacanti region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe. Trans R Soc Trop Med Hyg 96 2: 129–132.
    1. Khalil EA, Ayed NB, Musa AM, Ibrahim ME, Mukhtar MM, et al. (2005) Dichotomy of protective cellular immune responses to human visceral leishmaniasis. Clin Exp Immunol 140 2: 349–353.
    1. Zijlstra EE, el-Hassan AM, Ismael A, Ghalib HW (1994) Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 51 6: 826–836.
    1. Riera C, Fisa R, Lopez-Chejade P, Serra T, Girona E, et al. (2008) Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 48 7: 1383–1389.
    1. Michel G, Pomares C, Ferrua B, Marty P (2011) Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop 119 2–3: 69–75.
    1. Alvar J, Bashaye S, Argaw D, Cruz I, Aparicio P, et al. (2007) Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg 77 2: 275–282.
    1. Bashaye S, Nombela N, Argaw D, Mulugeta A, Herrero M, et al. (2009) Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg 81 1: 34–39.
    1. Bern C, Courtenay O, Alvar J (2010) Of cattle, sand flies and men: a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination. PLoS Negl Trop Dis 4 2: e599.
    1. Elnaiem DA, Hassan HK, Ward RD (1999) Associations of Phlebotomus orientalis and other sandflies with vegetation types in the eastern Sudan focus of kala-azar. Med Vet Entomol 13 2: 198–203.
    1. Gebre-Michael T, Balkew M, Alamirew T, Gudeta N, Reta M (2007) Preliminary entomological observations in a highland area of Amhara region, northern Ethiopia, with epidemic visceral leishmaniasis. Ann Trop Med Parasitol 101 4: 367–370.
    1. WHO Working Group (1986) Use and interpretation of anthropometric indicators of nutritional status. Bull World Health Organ 64 6: 929–941.
    1. de Onis M, Garza C, Onyango AW, Martorell R (2006) WHO Child Growth Standards. Acta Paediatr Supplementum 450: 1–101.
    1. Schenkel K, Rijal S, Koirala S, Koirala S, Vanlerberghe V, et al. (2006) Visceral leishmaniasis in southeastern Nepal: a cross-sectional survey on Leishmania donovani infection and its risk factors. Trop Med Int Health 11 12: 1792–1799.
    1. Hailu A, Gramiccia M, Kager PA (2009) Visceral leishmaniasis in Aba-Roba, south-western Ethiopia: prevalence and incidence of active and subclinical infections. Ann Trop Med Parasitol 103 8: 659–670.
    1. Gadisa E, Custodio E, Canavate C, Sordo L, Abebe Z, et al. (2012) Usefulness of the rK39-immunochromatographic test, direct agglutination test, and leishmanin skin test for detecting asymptomatic Leishmania infection in children in a new visceral leishmaniasis focus in Amhara State, Ethiopia. Am J Trop Med Hyg 86 5: 792–798.
    1. Singh SP, Picado A, Boelaert M, Gidwani K, Andersen EW, et al. (2010) The epidemiology of Leishmania donovani infection in high transmission foci in India. Trop Med Int Health 15 Suppl 2: 12–20.
    1. Evans TG, Teixeira MJ, McAuliffe IT, Vasconcelos I, Vasconcelos AW, et al. (1992) Epidemiology of visceral leishmaniasis in northeast Brazil. J Infect Dis 166 5: 1124–1132.
    1. Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, et al. (2005) Risk factors for kala-azar in Bangladesh. Emerg Infect Dis 11 5: 655–662.
    1. Ryan JR, Mbui J, Rashid JR, Wasunna MK, Kirigi G, et al. (2006) Spatial clustering and epidemiological aspects of visceral leishmaniasis in two endemic villages, Baringo District, Kenya. Am J Trop Med Hyg 74 2: 308–317.
    1. Herrero M, Orfanos G, Argaw D, Mulugeta A, Aparicio P, et al. (2009) Natural history of a visceral leishmaniasis outbreak in highland Ethiopia. Am J Trop Med Hyg 81 3: 373–377.
    1. Sordo L, Gadisa E, Custodio E, Cruz I, Simon F, et al. (2012) Low prevalence of leishmania infection in post-epidemic areas of libo kemkem, ethiopia. Am J Trop Med Hyg 86 6: 955–958.
    1. Weigle KA, Valderrama L, Arias AL, Santrich C, Saravia NG (1991) Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. Am J Trop Med Hyg 44 3: 260–271.
    1. Ali A, Ashford RW (1993) Visceral leishmaniasis in Ethiopia. I. Cross-sectional leishmanin skin test in an endemic locality. Ann Trop Med Parasitol 87 2: 157–161.
    1. Ali A (1997) Visceral leishmaniasis in southern Ethiopia: I. Environmental and behavioral risk factors. Ethiop J Health Dev 11: 131–137.
    1. Wijers DJ (1963) Studies on the vector of kala-azar in Kenya. II. Epidemiological evidence. Ann Trop Med Parasitol 57: 7–18.
    1. Elnaiem DE (2011) Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis. J Vector Ecol 36 Suppl 1: S23–S31.
    1. Hoogstraal H, n Peenen PF, eid TP, ietlein DR (1963) Leishmaniasis in the Sudan Republic. 10. Natural infections in rodents. Am J Trop Med Hyg 12: 175–178.
    1. Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, et al. (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154 4: 639–649.
    1. Cerf BJ, Jones TC, Badaro R, Sampaio D, Teixeira R, et al. (1987) Malnutrition as a risk factor for severe visceral leishmaniasis. J Infect Dis 156 6: 1030–1033.
    1. Ali A (1997) Visceral leishmaniasis in southern Ethiopia: II. Nutritional risk factors. Ethiop J Health Dev 11: 139–144.
    1. Kolaczinski JH, Reithinger R, Worku DT, Ocheng A, Kasimiro J, et al. (2008) Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda. Int J Epidemiol 37 2: 344–352.
    1. Bern C, Haque R, Chowdhury R, Ali M, Kurkjian KM, et al. (2007) The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg 76 5: 909–914.
    1. Picado A, Singh SP, Rijal S, Sundar S, Ostyn B, et al. (2010) Longlasting insecticidal nets for prevention of Leishmania donovani infection in India and Nepal: paired cluster randomised trial. BMJ 341: c6760.
    1. Barnett PG, Singh SP, Bern C, Hightower AW, Sundar S (2005) Virgin soil: the spread of visceral leishmaniasis into Uttar Pradesh, India. Am J Trop Med Hyg 73 4: 720–725.
    1. Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, et al. (2005) Risk factors for Indian kala-azar. Am J Trop Med Hyg 73 1: 74–78.
    1. Ho M, Siongok TK, Lyerly WH, Smith DH (1982) Prevalence and disease spectrum in a new focus of visceral leishmaniasis in Kenya. Trans R Soc Trop Med Hyg 76 6: 741–746.
    1. Schaefer KU, Kurtzhals JA, Kager PA, Gachihi GS, Gramiccia M, et al. (1994) Studies on the prevalence of leishmanin skin test positivity in the Baringo District, Rift Valley, Kenya. Am J Trop Med Hyg 50 1: 78–84.
    1. Gebre-Michael T, Balkew M, Berhe N, Hailu A, Mekonnen Y (2010) Further studies on the phlebotomine sandflies of the kala-azar endemic lowlands of Humera-Metema (north-west Ethiopia) with observations on their natural blood meal sources. Parasit Vectors 3 1: 6.
    1. Elnaiem DA, Hassan HK, Ward RD (1997) Phlebotomine sandflies in a focus of visceral leishmaniasis in a border area of eastern Sudan. Ann Trop Med Parasitol 91 3: 307–318.
    1. Lambert M, Dereure J, El-Safi SH, Bucheton B, Dessein A, et al. (2002) The sandfly fauna in the visceral-leishmaniasis focus of Gedaref, in the Atbara-River area of eastern Sudan. Ann Trop Med Parasitol 96 6: 631–636.
    1. Saha S, Ramachandran R, Hutin YJ, Gupte MD (2009) Visceral leishmaniasis is preventable in a highly endemic village in West Bengal, India. Trans R Soc Trop Med Hyg 103 7: 737–742.
    1. Wickens GE (1995)Role of Acacia Species in the rural economy of dry Africa and the Near East. Conservation Guide Rome, FAO.

Source: PubMed

3
Suscribir