Progesterone Exerts a Neuromodulatory Effect on Turning Behavior of Hemiparkinsonian Male Rats: Expression of 3 α -Hydroxysteroid Oxidoreductase and Allopregnanolone as Suggestive of GABAA Receptors Involvement

Roberto Yunes, Sebastián Casas, Eliana Gaglio, Ricardo Cabrera, Roberto Yunes, Sebastián Casas, Eliana Gaglio, Ricardo Cabrera

Abstract

There is a growing amount of evidence for a neuroprotective role of progesterone and its neuroactive metabolite, allopregnanolone, in animal models of neurodegenerative diseases. By using a model of hemiparkinsonism in male rats, injection of the neurotoxic 6-OHDA in left striatum, we studied progesterone's effects on rotational behavior induced by amphetamine or apomorphine. Also, in order to find potential explanatory mechanisms, we studied expression and activity of nigrostriatal 3α-hydroxysteroid oxidoreductase, the enzyme that catalyzes progesterone to its active metabolite allopregnanolone. Coherently, we tested allopregnanolone for a possible neuromodulatory effect on rotational behavior. Also, since allopregnanolone is known as a GABAA modulator, we finally examined the action of GABAA antagonist bicuculline. We found that progesterone, in addition to an apparent neuroprotective effect, also increased ipsilateral expression and activity of 3α-hydroxysteroid oxidoreductase. It was interesting to note that ipsilateral administration of allopregnanolone reversed a clear sign of motor neurodegeneration, that is, contralateral rotational behavior. A possible GABAA involvement modulated by allopregnanolone was shown by the blocking effect of bicuculline. Our results suggest that early administration of progesterone possibly activates genomic mechanisms that promote neuroprotection subchronically. This, in turn, could be partially mediated by fast, nongenomic, actions of allopregnanolone acting as an acute modulator of GABAergic transmission.

Figures

Figure 1
Figure 1
Schematic representation of a brain coronary section showing the corpus striatum and the place where microinjections were performed. Coordinates: Anterior-Posterior, +1.2 mm; Mediolateral, +2.5 mm; Dorsoventral, −6.5 mm relative to bregma. CC, corpus callosum; CPu, caudate putamen (modified from Paxinos G. and Watson C, 1997; The Rat Brain in Stereotaxic Coordinates, third edition).
Figure 2
Figure 2
(a) Experimental procedure I: performed to evaluate the effects of progesterone on turning behavior and effects on nigrostriatal expression and enzymatic activity of 3α-HSOR of hemiparkinsonian rats. (b) Experimental procedure II: performed to study the effects of allopregnanolone on turning behavior of hemiparkinsonian rats. HP group (hemiparkinsonian group), P4-treated HP group (progesterone-treated hemiparkinsonian group). Time 0: surgery-day.
Figure 3
Figure 3
Effect of progesterone treatment on turning behavior induced by amphetamine (a) and apomorphine (b) at eight weeks after 6-OHDA lesion. Results are expressed as turns/hour (mean ± SEM); ∗∗P < 0.01 and ∗∗∗P < 0.001 (one-way ANOVA).
Figure 4
Figure 4
Gene expression of 3α-HSOR in left (a) and right striatum (b). Results are expressed as mean ± SEM of relative units cDNA of sham, HP, and P4-treated HP groups; ∗P < 0.05 and ∗∗∗P < 0.001 (one-way ANOVA). Ethidium bromide fluorescence photograph of the gel electrophoresis of the amplification products, of sham, HP, and P4-treated HP. The gel photographs were quantified using ImageJ software (National Institutes of Health, USA) and expressed as arbitrary units relative to cyclophilin A. HP group (hemiparkinsonian group), P4-treated HP group (progesterone-treated hemiparkinsonian group).
Figure 5
Figure 5
Enzymatic activity of 3α-HSOR in left (a) and right (b) striatum of sham, HP, and P4-treated HP groups. Results are expressed as a mean ± SEM of nmol/mg/min; ∗∗P < 0.01 (one-way ANOVA). HP group (hemiparkinsonian group), P4-treated HP group (progesterone-treated hemiparkinsonian group).
Figure 6
Figure 6
Effect of intraventricular vehicle, ALLO [2 μM], and bicuculline [4.9 μM] + ALLO on turning behavior induced by apomorphine at eight weeks after 6-OHDA lesion. Results are expressed as turns/hour; ∗∗∗P < 0.001 (two-way ANOVA). ALLO: allopregnanolone, Bic: bicuculline, HP group: hemiparkinsonian group, and P4-treated HP group: progesterone-treated hemiparkinsonian group.

References

    1. Dauer W., Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889–909. doi: 10.1016/s0896-6273(03)00568-3.
    1. Hayes M. W., Fung V. S., Kimber T. E., O'Sullivan J. D. Current concepts in the management of Parkinson disease. Medical Journal of Australia. 2010;192(3):144–149.
    1. Deumens R., Blokland A., Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology. 2002;175(2):303–317. doi: 10.1006/exnr.2002.7891.
    1. Galvan A., Wichmann T. Pathophysiology of Parkinsonism. Clinical Neurophysiology. 2008;119(7):1459–1474. doi: 10.1016/j.clinph.2008.03.017.
    1. Shulman L. M., Bhat V. Gender disparities in Parkinson's disease. Expert Review of Neurotherapeutics. 2006;6(3):407–416. doi: 10.1586/14737175.6.3.407.
    1. Bourque M., Dluzen D. E., Di Paolo T. Neuroprotective actions of sex steroids in Parkinson's disease. Frontiers in Neuroendocrinology. 2009;30(2):142–157. doi: 10.1016/j.yfrne.2009.04.014.
    1. Chen S., Nilsen J., Brinton R. D. Dose and temporal pattern of estrogen exposure determines neuroprotective outcome in hippocampal neurons: therapeutic implications. Endocrinology. 2006;147(11):5303–5313. doi: 10.1210/en.2006-0495.
    1. Brinton R. D., Thompson R. F., Foy M. R., et al. Progesterone receptors: form and function in brain. Frontiers in Neuroendocrinology. 2008;29(2):313–339. doi: 10.1016/j.yfrne.2008.02.001.
    1. Frye C. A. Progestins influence motivation, reward, conditioning, stress, and/or response to drugs of abuse. Pharmacology Biochemistry and Behavior. 2007;86(2):209–219. doi: 10.1016/j.pbb.2006.07.033.
    1. Wang J. M., Liu L., Irwin R. W., Chen S., Brinton R. D. Regenerative potential of allopregnanolone. Brain Research Reviews. 2008;57(2):398–409. doi: 10.1016/j.brainresrev.2007.08.010.
    1. Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Progress in Neurobiology. 2009;89(2):134–152. doi: 10.1016/j.pneurobio.2009.07.001.
    1. Giuliani F. A., Yunes R., Mohn C. E., Laconi M., Rettori V., Cabrera R. Allopregnanolone induces LHRH and glutamate release through NMDA receptor modulation. Endocrine. 2011;40(1):21–26. doi: 10.1007/s12020-011-9451-8.
    1. Guennoun R., Labombarda F., Deniselle M. C. G., Liere P., De Nicola A. F., Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. The Journal of Steroid Biochemistry and Molecular Biology. 2015;146:48–61. doi: 10.1016/j.jsbmb.2014.09.001.
    1. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232(4753):1004–1007. doi: 10.1126/science.2422758.
    1. Morrow A. L., Suzdak P. D., Paul S. M. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. European Journal of Pharmacology. 1987;142(3):483–485. doi: 10.1016/0014-2999(87)90094-x.
    1. Corpéchot C., Young J., Calvel M., et al. Neurosteroids: 3α-hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993;133(3):1003–1009. doi: 10.1210/en.133.3.1003.
    1. Jez J. M., Penning T. M. The aldo-keto reductase (AKR) superfamily: an update. Chemico-Biological Interactions. 2001;130-132:499–525. doi: 10.1016/s0009-2797(00)00295-7.
    1. Agís-Balboa R. C., Pinna G., Zhubi A., et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(39):14602–14607. doi: 10.1073/pnas.0606544103.
    1. Cabrera R. J., Bregonzio C., Laconi M., Mampel A. Allopregnanolone increase in striatal N-methyl-D-aspartic acid evoked [3H]dopamine release is estrogen and progesterone dependent. Cellular and Molecular Neurobiology. 2002;22(4):445–454. doi: 10.1023/a:1021015705597.
    1. Laconi M. R., Chavez C., Cavicchia J. C., et al. Allopregnanolone alters the luteinizing hormone, prolactin, and progesterone serum levels interfering with the regression and apoptosis in rat corpus luteum. Hormone and Metabolic Research. 2012;44(8):632–638. doi: 10.1055/s-0032-1314834.
    1. Casas S., García S., Cabrera R., Nanfaro F., Escudero C., Yunes R. Progesterone prevents depression-like behavior in a model of Parkinson's disease induced by 6-hydroxydopamine in male rats. Pharmacology Biochemistry and Behavior. 2011;99(4):614–618. doi: 10.1016/j.pbb.2011.06.012.
    1. Larramendy C., Taravini I. R. E., Saborido M. D., Ferrario J. E., Murer M. G., Gershanik O. S. Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behavioural Brain Research. 2008;194(1):44–51. doi: 10.1016/j.bbr.2008.06.021.
    1. Nanfaro F., Cabrera R., Bazzocchini V., Laconi M., Yunes R. Pregnenolone sulfate infused in lateral septum of male rats impairs novel object recognition memory. Pharmacological Reports. 2010;62(2):265–272. doi: 10.1016/s1734-1140(10)70265-6.
    1. González S. L., Labombarda F., González Deniselle M. C., Guennoun R., Schumacher M., De Nicola A. F. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience. 2004;125(3):605–614. doi: 10.1016/j.neuroscience.2004.02.024.
    1. Frankel J. P., Lees A. J., Kempster P. A., Stern G. M. Subcutaneous apomorphine in the treatment of Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry. 1990;53(2):96–101. doi: 10.1136/jnnp.53.2.96.
    1. Estrella C. R., Bregonzio C., Cabrera R. J. Differential responses in central dopaminergic activity induced by apomorphine in IPL nude rat. Behavioural Brain Research. 2002;133(2):143–148. doi: 10.1016/S0166-4328(01)00467-3.
    1. Escudero C., Casas S., Giuliani F., et al. Allopregnanolone prevents memory impairment: effect on mRNA expression and enzymatic activity of hippocampal 3-α hydroxysteroid oxide-reductase. Brain Research Bulletin. 2012;87(2-3):280–285. doi: 10.1016/j.brainresbull.2011.11.019.
    1. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry. 1951;193(1):265–275.
    1. Blandini F., Armentero M.-T., Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism and Related Disorders. 2008;14(2):S124–S129. doi: 10.1016/j.parkreldis.2008.04.015.
    1. Schumacher M., Guennoun R., Stein D. G., de Nicola A. F. Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacology & Therapeutics. 2007;116(1):77–106. doi: 10.1016/j.pharmthera.2007.06.001.
    1. Guennoun R., Meffre D., Labombarda F., et al. The membrane-associated progesterone-binding protein 25-Dx: expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Research Reviews. 2008;57(2):493–505. doi: 10.1016/j.brainresrev.2007.05.009.
    1. Labombarda F., Gonzalez S., Deniselle M. C. G., et al. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. Journal of Neurotrauma. 2006;23(2):181–192. doi: 10.1089/neu.2006.23.181.

Source: PubMed

3
Suscribir