Machine-learning based feature selection for a non-invasive breathing change detection

Juliana Alves Pegoraro, Sophie Lavault, Nicolas Wattiez, Thomas Similowski, Jésus Gonzalez-Bermejo, Etienne Birmelé, Juliana Alves Pegoraro, Sophie Lavault, Nicolas Wattiez, Thomas Similowski, Jésus Gonzalez-Bermejo, Etienne Birmelé

Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is one of the top 10 causes of death worldwide, representing a major public health problem. Researchers have been looking for new technologies and methods for patient monitoring with the intention of an early identification of acute exacerbation events. Many of these works have been focusing in breathing rate variation, while achieving unsatisfactory sensitivity and/or specificity. This study aims to identify breathing features that better describe respiratory pattern changes in a short-term adjustment of the load-capacity-drive balance, using exercising data.

Results: Under any tested circumstances, breathing rate alone leads to poor capability of classifying rest and effort periods. The best performances were achieved when using Fourier coefficients or when combining breathing rate with the signal amplitude and/or ARIMA coefficients.

Conclusions: Breathing rate alone is a quite poor feature in terms of prediction of breathing change and the addition of any of the other proposed features improves the classification power. Thus, the combination of features may be considered for enhancing exacerbation prediction methods based in the breathing signal.

Trial registration: ClinicalTrials NCT03753386. Registered 27 November 2018, https://ichgcp.net/clinical-trials-registry/NCT03753386.

Keywords: Chronic obstructive pulmonary disease (COPD); Classification; Novelty detection; Respiratory pattern; Telemonitoring.

Conflict of interest statement

JAP is employed by SRETT. JAP, TS, JG-B and EB are inventors of the patent EP20315396.0 (pending application), in which a respiration monitoring system combining breathing rate and signal amplitude measures is covered.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Example of pressure signal recorded with TeleOx. Window of 45 seconds of nasal pressure signal from a healthy subject recording
Fig. 2
Fig. 2
Full pressure signal TeleOx recordings for two healthy subjects. Dark gray areas correspond to the 3 minutes of exercising while the light gray areas correspond to breathing while drinking, coughing, speaking and oral breathing. Subjects were at rest in other areas
Fig. 3
Fig. 3
Pressure signal and oxygen flow for 8-hours recording from COPD patient. Gray areas correspond to estimated exercise times
Fig. 4
Fig. 4
Extracted features example from a healthy subject recording. a Raw pressure signal, b breathing rate, signal amplitude and ARIMA coefficients and c Fourier transform. In a and b, dark gray areas correspond to the 3 minutes of exercising while the light gray areas correspond to breathing while drinking, coughing, speaking and mouth breathing
Fig. 5
Fig. 5
Extracted features example from a COPD patient recording. a Raw pressure signal, b breathing rate, signal amplitude and ARIMA coefficients and c. Fourier transform. In a and b, dark gray areas correspond to estimated exercise times
Fig. 6
Fig. 6
ROC curves for the detection of exercise periods in the supervised context using combinations of the proposed features. a Healthy subjects and b Patients with COPD
Fig. 7
Fig. 7
ROC curves for the detection of exercise periods in the one-class context using combinations of the proposed features a Healthy subjects and b Patients with COPD
Fig. 8
Fig. 8
Example of Mahalanobis distances from reference points. In the one-class context, distances between each new measure x and the all reference points are given by the Mahalanobis distance, considering the reference’s mean and variance-covariance matrix

References

    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Abdulhak AB, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, De Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FGR, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano JE, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KMV, Nasseri K, Norman P, O’Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJL. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2095–128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Global Initiative for Chronic Obstructive Lung Disease Global Initiative for Chronic Obstructive Lung Disease. Pocket Guide to COPD Diagnosis, Management, and Prevention. 2017.
    1. Laurendeau C, Chouaid C, Roche N, Terrioux P, Gourmelen J, Detournay B. Prise en charge et coûts de la bronchopneumopathie chronique obstructive en France en 2011. Revue des Maladies Respiratoires. 2015. 10.1016/j.rmr.2014.10.731.
    1. Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax. 2012;67(11):957–63. doi: 10.1136/thoraxjnl-2011-201518.
    1. Wilkinson TMA, Donaldson GC, Hurst JR, Seemungal TAR, Wedzicha JA. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;169(12):1298–303. doi: 10.1164/rccm.200310-1443OC.
    1. Orchard P, Agakova A, Pinnock H, Burton CD, Sarran C, Agakov F, McKinstry B. Improving prediction of risk of hospital admission in chronic obstructive pulmonary disease : application of machine learning to telemonitoring data. J Med Internet Res. 2018;20(9):263. doi: 10.2196/jmir.9227.
    1. Fernández-Granero MA, Sánchez-Morillo D, León-Jiménez A, Crespo LF. Automatic prediction of chronic obstructive pulmonary disease exacerbations through home telemonitoring of symptoms. Bio-Med Mater Eng. 2014;24(6):3825–32. doi: 10.3233/BME-141212.
    1. Burton C, Pinnock H, McKinstry B. Changes in telemonitored physiological variables and symptoms prior to exacerbations of chronic obstructive pulmonary disease. J Telemed Telecare. 2015;21(1):29–36. doi: 10.1177/1357633X14562733.
    1. Mohktar MS, Redmond SJ, Antoniades NC, Rochford PD, Pretto JJ, Basilakis J, Lovell NH, McDonald CF. Predicting the risk of exacerbation in patients with chronic obstructive pulmonary disease using home telehealth measurement data. Artif Intell Med. 2015;63(1):51–9. doi: 10.1016/j.artmed.2014.12.003.
    1. Miłkowska-Dymanowska J, Białas AJ, Obrȩbski W, Górski P, Piotrowski WJ. A pilot study of daily telemonitoring to predict acute exacerbation in chronic obstructive pulmonary disease. Int J Med Inform. 2018;116(February):46–51. doi: 10.1016/j.ijmedinf.2018.04.013.
    1. Blouet S, Sutter J, Fresnel E, Kerfourn A, Cuvelier A, Patout M. Prediction of severe acute exacerbation using changes in breathing pattern of COPD patients on home noninvasive ventilation. 2018:2577–86. 10.2147/COPD.S170242.
    1. Ballal T, Heneghan C, Zaffaroni A, Boyle P, de Chazal P, Shouldice R, McNicholas WT, Donnelly SC. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor. Physiol Meas. 2014;35:2513–27. doi: 10.1088/0967-3334/35/12/2513.
    1. Yañez AM, Garcia-Rio F, de Molina RM, Sauleda J, Gay MF. Monitoring Breathing Rate at Home Allows Early Identification of COPD Exacerbations. Chest. 2012;142(6):1524–9. doi: 10.1378/chest.11-2728.
    1. Borel JC, Pelletier J, Taleux N, Briault A, Arnol N, Pison C, Tamisier R, Timsit JF, Pepin JL. Parameters recorded by software of non-invasive ventilators predict COPD exacerbation: a proof-of-concept study. Thorax. 2015;70(3):284–6. doi: 10.1136/thoraxjnl-2014-206569.
    1. Wu R, Liaqat D, de Lara E, Son T, Rudzicz F, Alshaer H, Abed-Esfahani P, Gershon AS. Feasibility of Using a Smartwatch to Intensively Monitor Patients With Chronic Obstructive Pulmonary Disease: Prospective Cohort Study. JMIR mHealth uHealth. 2018;6(6):10046. doi: 10.2196/10046.
    1. Jiang W, Chao Y, Wang X, Chen C, Zhou J, Song Y. Day-to-Day Variability of Parameters Recorded by Home Noninvasive Positive Pressure Ventilation for Detection of Severe Acute Exacerbations in. Int J Chronic Obstructive Pulmonary Disease. 2021;16:727–37. doi: 10.2147/COPD.S299819.
    1. Pimentel MAF, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Signal Process. 2014;99:215–49. doi: 10.1016/j.sigpro.2013.12.026.
    1. Aggarwal CC. Outlier Analysis, 2nd ed. Cham: Springer; 2017.
    1. ANTADIR. Observatoire des patients de l’ANTADIR, Données au 31 décembre 2015. 2015. .
    1. Soler J, Alves Pegoraro J, Le XL, Nguyen DPG, Grassion L, Antoine R, Guerder A, Gonzalez-Bermejo J. Validation of respiratory rate measurements from remote monitoring device in COPD patients. Respir Med Res. 2019;76:1–3.
    1. Murphy PB, Kumar A, Reilly C, Jolley C, Walterspacher S, Fedele F, Hopkinson NS, Man WDC, Polkey MI, Moxham J, Hart N. Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011;66(7):602–8. doi: 10.1136/thx.2010.151332.
    1. Box G, Jenkins GM, Reinsel G. Time Series Analysis; Forecasting and Control, 3rd ed. Englewood Cliff: Prentice Hall; 1994.
    1. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01.
    1. McLachlan GJ. Mahalanobis distance. Resonance. 1999;4(6):20–6. doi: 10.1007/BF02834632.

Source: PubMed

3
Suscribir