Ventilatory Efficiency in Children and Adolescents Born Extremely Preterm

Julie Hestnes, Hedda Hoel, Ole J Risa, Hanna O Romstøl, Ola Røksund, Bente Frisk, Einar Thorsen, Thomas Halvorsen, Hege H Clemm, Julie Hestnes, Hedda Hoel, Ole J Risa, Hanna O Romstøl, Ola Røksund, Bente Frisk, Einar Thorsen, Thomas Halvorsen, Hege H Clemm

Abstract

Purpose: Children and adolescents born extremely preterm (EP) have lower dynamic lung volumes and gas transfer capacity than subjects born at term. Most studies also report lower aerobic capacity. We hypothesized that ventilatory efficiency was poorer and that breathing patterns differed in EP-born compared to term-born individuals. Methods: Two area-based cohorts of participants born with gestational age ≤28 weeks or birth weight ≤1000 g in 1982-85 (n = 46) and 1991-92 (n = 35) were compared with individually matched controls born at term. Mean ages were 18 and 10 years, respectively. The participants performed an incremental treadmill exercise test to peak oxygen uptake with data averaged over 20 s intervals. For each participant, the relationship between exhaled minute ventilation ([Formula: see text]E) and carbon dioxide output ([Formula: see text]CO2) was described by a linear model, and the relationship between tidal volume (VT) and [Formula: see text]E by a quadratic model. Multivariate regression analyses were done with curve parameters as dependent variables, and the categories EP vs. term-born, sex, age, height, weight and forced expiratory volume in 1 s (FEV1) as independent variables. Results: In adjusted analyses, the slope of the [Formula: see text]E-[Formula: see text]CO2 relationship was significantly steeper in the EP than the term-born group, whereas no group difference was observed for the breathing pattern, which was related to FEV1 only. Conclusion: EP-born participants breathed with higher [Formula: see text]E for any given CO2 output, indicating lower ventilatory efficiency, possibly contributing to lower aerobic capacity. The breathing patterns did not differ between the EP and term-born groups when adjusted for FEV1.

Keywords: breathing pattern; bronchopulmonary dysplasia; exercise; extremely preterm born; pulmonary gas exchange; respiratory mechanics.

Figures

Figure 1
Figure 1
The relationships between ventilation and carbon dioxide output, heart rate and oxygen uptake, and tidal volume and ventilation. Two randomly selected participants, one from the 1991–1992 cohort at 10 years of age (left column A–C), and one from the 1982–1985 cohort at 18 years of age (right column D–F).

References

    1. Abman S. H., Collaco J. M., Shepherd E. G., Keszler M., Cuevas-Guaman M., Welty S. E., et al. . (2017). Interdisciplinary care of children with severe Bronchopulmonary Dysplasia. J. Pediatr. 181, 12-28.e1. 10.1016/j.jpeds.2016.10.082
    1. American Thoracic S., American College of Chest P. (2003). ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 167, 211–277. 10.1164/rccm.167.2.211
    1. Armstrong N., Welsman J. R. (2007). Aerobic fitness: what are we measuring? Med. Sport Sci. 50, 5–25. 10.1159/000101073
    1. Aukland S. M., Halvorsen T., Fosse K. R., Daltveit A. K., Rosendahl K. (2006). High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. AJR Am. J. Roentgenol. 187, 1012–1018. 10.2214/AJR.05.0383
    1. Bader D., Ramos A. D., Lew C. D., Platzker A. C., Stabile M. W., Keens T. G. (1987). Childhood sequelae of infant lung disease: exercise and pulmonary function abnormalities after bronchopulmonary dysplasia. J. Pediatr. 110, 693–699. 10.1016/S0022-3476(87)80004-5
    1. Burns Y. R., Danks M., O'Callaghan M. J., Gray P. H., Cooper D., Poulsen L., et al. . (2009). Motor coordination difficulties and physical fitness of extremely-low-birthweight children. Dev. Med. Child Neurol. 51, 136–142. 10.1111/j.1469-8749.2008.03118.x
    1. Chang D. V., Assaf S. J., Tiller C. J., Kisling J. A., Tepper R. S. (2016). Membrane and capillary components of lung diffusion in infants with Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med. 193, 767–771. 10.1164/rccm.201506-1219OC
    1. Clemm H. H., Vollsaeter M., Roksund O. D., Eide G. E., Markestad T., Halvorsen T. (2014). Exercise capacity after extremely preterm birth: development from adolescence to adulthood. Ann. Am. Thorac. Soc. 11, 537–545. 10.1513/AnnalsATS.201309-311OC
    1. Clemm H. H., Vollsaeter M., Roksund O. D., Markestad T., Halvorsen T. (2015). Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr. 104, 1174–1181. 10.1111/apa.13080
    1. Clemm H., Roksund O., Thorsen E., Eide G. E., Markestad T., Halvorsen T. (2012). Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics 129, e97–e105. 10.1542/peds.2011-0326
    1. Coalson J. J. (2006). Pathology of bronchopulmonary dysplasia. Semin. Perinatol. 30, 179–184. 10.1053/j.semperi.2006.05.004
    1. Cutz E., Chiasson D. (2008). Chronic lung disease after premature birth. New Eng. J. Med. 358, 743–745. 10.1056/NEJMc073362
    1. De Paepe M. E., Mao Q., Powell J., Rubin S. E., DeKoninck P., Appel N., et al. . (2006). Growth of pulmonary microvasculature in ventilated preterm infants. Am. J. Respir. Crit. Care Med. 173, 204–211. 10.1164/rccm.200506-927OC
    1. Duke J. W., Elliott J. E., Laurie S. S., Beasley K. M., Mangum T. S., Hawn J. A., et al. . (2014). Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity. J. Appl. Physiol. 117, 473–481. 10.1152/japplphysiol.00307.2014
    1. Frisk B., Espehaug B., Hardie J. A., Strand L. I., Moe-Nilssen R., Eagan T. M., et al. . (2014). Airway obstruction, dynamic hyperinflation, and breathing pattern during incremental exercise in COPD patients. Physiol. Rep. 2:e00222. 10.1002/phy2.222
    1. Group T. O. C. (1992). Early versus delayed neonatal administration of a synthetic surfactant–the judgment of OSIRIS (open study of infants at high risk of or with respiratory insufficiency–the role of surfactant). Lancet 340, 1363–1369. 10.1016/0140-6736(92)92557-V
    1. Halvorsen T., Skadberg B. T., Eide G. E., Roksund O. D., Markestad T. (2006). Better care of immature infants; has it influenced long-term pulmonary outcome? Acta Paediatr. 95, 547–554. 10.1080/08035250500477529
    1. Jacob S. V., Lands L. C., Coates A. L., Davis G. M., MacNeish C. F., Hornby L., et al. . (1997). Exercise ability in survivors of severe bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 155, 1925–1929. 10.1164/ajrccm.155.6.9196097
    1. Jobe A. H., Bancalari E. (2001). Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729. 10.1164/ajrccm.163.7.2011060
    1. Joshi S., Powell T., Watkins W. J., Drayton M., Williams E. M., Kotecha S. (2013). Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J. Pediatr. 162, 813–818e1. 10.1016/j.jpeds.2012.09.040
    1. Kilbride H. W., Gelatt M. C., Sabath R. J. (2003). Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J. Pediatr. 143, 488–493. 10.1067/S0022-3476(03)00413-X
    1. Kjelkenes I., Thorsen E. (2010). Anticipating maximal or submaximal exercise: no differences in cardiopulmonary responses. Clin. Physiol. Funct. Imaging. 30, 333–337. 10.1111/j.1475-097X.2010.00948.x
    1. Kotecha S. J., Edwards M. O., Watkins W. J., Henderson A. J., Paranjothy S., Dunstan F. D., et al. . (2013). Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax 68, 760–766. 10.1136/thoraxjnl-2012-203079
    1. Kriemler S., Keller H., Saigal S., Bar-Or O. (2005). Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. Clin. J. Sport Med. 15, 349–355. 10.1097/01.jsm.0000180023.44889.dd
    1. MacLean J. E., DeHaan K., Fuhr D., Hariharan S., Kamstra B., Hendson L., et al. . (2016). Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm. Thorax 71, 1012–1019. 10.1136/thoraxjnl-2015-207736
    1. Markestad T., Kaaresen P. I., Ronnestad A., Reigstad H., Lossius K., Medbo S., et al. . (2005). Early death, morbidity, and need of treatment among extremely premature infants. Pediatrics 115, 1289–1298. 10.1542/peds.2004-1482
    1. Narayanan M., Beardsmore C. S., Owers-Bradley J., Dogaru C. M., Mada M., Ball I., et al. . (2013). Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am. J. Respir. Crit. Care Med. 187, 1104–1109. 10.1164/rccm.201210-1850OC
    1. Santuz P., Baraldi E., Zaramella P., Filippone M., Zacchello F. (1995). Factors limiting exercise performance in long-term survivors of bronchopulmonary dysplasia. American journal of respiratory and critical care medicine. 152(4 Pt. 1), 1284–1289. 10.1164/ajrccm.152.4.7551383
    1. Satrell E., Roksund O., Thorsen E., Halvorsen T. (2013). Pulmonary gas transfer in children and adolescents born extremely preterm. Eur. Respir. J. 42, 1536–1544. 10.1183/09031936.00027112
    1. Schwaiblmair M., Faul C., von Scheidt W., Berghaus T. M. (2012). Ventilatory efficiency testing as prognostic value in patients with pulmonary hypertension. BMC Pulm. Med. 12:23. 10.1186/1471-2466-12-23
    1. Simpson S. J., Logie K. M., O'Dea C. A., Banton G. L., Murray C., Wilson A. C., et al. . (2017). Altered lung structure and function in mid–childhood survivors of very preterm birth. Thorax. [Epub ahead of print]. 10.1136/thoraxjnl-2016-208985
    1. Smith L. J., van Asperen P. P., McKay K. O., Selvadurai H., Fitzgerald D. A. (2008). Reduced exercise capacity in children born very preterm. Pediatrics 122, e287-e293. 10.1542/peds.2007-3657
    1. Vollsaeter M., Skromme K., Satrell E., Clemm H., Roksund O., Oymar K., et al. . (2015). Children born preterm at the turn of the millennium had better lung function than children born similarly preterm in the early 1990s. PLoS ONE 10:e0144243. 10.1371/journal.pone.0144243
    1. Weibel E. R. (2008). How to make an alveolus. Eur. Respir. J. 31, 483–485. 10.1183/09031936.00003308
    1. Welsh L., Kirkby J., Lum S., Odendaal D., Marlow N., Derrick G., et al. . (2010). The EPICure study: maximal exercise and physical activity in school children born extremely preterm. Thorax 65, 165–172. 10.1136/thx.2008.107474
    1. Wong P. M., Lees A. N., Louw J., Lee F. Y., French N., Gain K., et al. . (2008). Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur. Respir. J. 32, 321–328. 10.1183/09031936.00127107

Source: PubMed

3
Suscribir