Wearable Technology To Reduce Sedentary Behavior And CVD Risk In Older Adults: A Pilot Randomized Clinical Trial

Lisa M Roberts, Byron C Jaeger, Liliana C Baptista, Sara A Harper, Anna K Gardner, Elizabeth A Jackson, Dorothy Pekmezi, Bhanuprasad Sandesara, Todd M Manini, Stephen D Anton, Thomas W Buford, Lisa M Roberts, Byron C Jaeger, Liliana C Baptista, Sara A Harper, Anna K Gardner, Elizabeth A Jackson, Dorothy Pekmezi, Bhanuprasad Sandesara, Todd M Manini, Stephen D Anton, Thomas W Buford

Abstract

Background: Physical exercise is associated with decreased cardiovascular disease (CVD) risk, but recent large-scale trials suggest that exercise alone is insufficient to reduce CVD events in high-risk older adults.

Purpose: This pilot randomized clinical trial aimed to collect critical data on feasibility, safety, and protocol integrity necessary to design a fully powered randomized controlled trial (RCT) and evaluate the impact of combining structured exercise with an intervention designed to enhance non-exercise physical activity (EX+NEPA) compared to EX alone.

Methods: Forty participants aged ≥60 years with moderate-to-high risk of coronary heart disease events were randomly assigned to either the EX+NEPA or EX groups and followed for 20 weeks. Both groups underwent a twice-weekly, 8-week center-based exercise intervention with aerobic and resistance exercises. EX+NEPA group also received a wearable activity tracking device along with behavioral monitoring and feedback throughout the study. Study outcomes were evaluated at 8 and 20 weeks.

Results: Data are presented as adjusted mean change of the differences over time with 95% confidence intervals at 20 weeks. Relative to EX, the change in steps/day at 20 weeks was 1994 (-40.27, 4028) higher for EX+NEPA. For sedentary time at close-out, the EX+NEPA group was -6.8 (-45.2, 31.6) min/day relative to EX. The between-group differences for systolic and diastolic blood pressure were -9.9 (-19.6, -0.3) and -1.8 (-6.9, 3.3) mmHg, respectively.

Conclusion: The addition of wearable technology intervention appeared to positively influence daily activity patterns and changes in blood pressure - potentially improving risk factors for CVD. A fully powered randomized trial is needed to ultimately test this hypothesis.

Keywords: activity monitor; aging; cardiovascular; exercise; physical activity.

Conflict of interest statement

Dr Elizabeth Jackson is a paid consultant for McKesson as well as for UpToDate, Inc. and has served as an expert witness for DeBlase Brown Everly LLP, all relationships are modest. Dr Jackson also received research funding from NIH, Amgen for epidemiology, medication utilization. She also served at the editorial board for American Heart Association (AHA) and served as editor/consultant for American College of Cardiology. Dr Todd M Manini reports grants from NIH and AHA, during the conduct of the study and grants from NIH and Regeneron, outside the submitted work. The authors report no other conflicts of interest in this work.

© 2019 Roberts et al.

Figures

Figure 1
Figure 1
Intervention design characteristics. Exercise intensity was monitored with Borg’s category ration (CR) 10 subjective physical exertion scale and with a heart rate monitor (Polar Ft2, Lake Success, NY). Participants were instructed to walk at a 5–6 (CR10) with periods of 7–8 (CR10). Participants in the EX + NEPA group were instructed to remove Fitbit Zip® prior to exercise session during the intervention phase.
Figure 2
Figure 2
Flow diagram of study progress in the Consolidated Standards of Reporting Trials (CONSORT) Group.
Figure 3
Figure 3
Adjusted mean values from baseline to 20-week follow-up for measures of daily activity (A, B), blood pressure (C, D), aerobic capacity (E), and waist circumference (F). Data are expressed as adjusted mean±standard error. Steps per day and sedentary time are adjusted for wear time of the accelerometer. Mean values were adjusted for: age, sex, and baseline measures.
Figure 4
Figure 4
Adjusted mean values from baseline to 20-week follow-up for lipid (A–D) and fasting glucose (E, F). Data are expressed as adjusted mean change ± standard error. Mean values were adjusted for: age, sex, and baseline measures. Abbreviations: LDL cholesterol, low-density lipoprotein cholesterol; HDL cholesterol, high-density lipoprotein cholesterol.
Figure 5
Figure 5
Adjusted mean values from baseline to 20-week follow-up for biomarkers of inflammatory (A-D) and oxidative stress (E, F). Data are expressed as adjusted mean change±standard error. Log-transformation was used to normalize data distribution. Mean values were adjusted for: age, sex, and baseline measures. Abbreviations: TNF-α, tumor necrosis factor α; E-selectin, endothelium selectin; VCAM-1, vascular cell adhesion molecule-1; MPO, myeloperoxidase; oxLDL, oxidized low-density lipoprotein.

References

    1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e66. doi:10.1161/CIR.0000000000000659
    1. Pescatello LS, Franklin BA, Fagard R, et al. American college of sports medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–553. doi:10.1249/01.mss.0000115224.88514.3a
    1. Pollock ML, Franklin BA, Balady GJ, et al. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation. 2000;101(7):828–833. doi:10.1161/01.cir.101.7.828
    1. Look ARG, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–154. doi:10.1056/NEJMoa1212914
    1. Pahor M, Guralnik JM, Ambrosius WT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387–2396. doi:10.1001/jama.2014.5616
    1. Da Silva Coqueiro R, de Queiroz BM, Oliveira DS, et al. Cross-sectional relationships between sedentary behavior and frailty in older adults. J Sports Med Phys Fitness. 2017;57(6):825–830. doi:10.23736/S0022-4707.16.06289-7
    1. Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570. doi:10.1136/bmj.l4570
    1. Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–445. doi:10.3945/ajcn.111.019620
    1. Owari Y, Miyatake N. Long-term relationship between psychological distress and continuous sedentary behavior in healthy older adults: a three panel study. Medicina (Kaunas). 2019;55(9):324.
    1. Thorp AA, Healy GN, Owen N, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian diabetes, obesity and lifestyle (ausdiab) study 2004-2005. Diabetes Care. 2010;33(2):327–334. doi:10.2337/dc09-0493
    1. Sisson SB, Camhi SM, Church TS, et al. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women. Metab Syndr Relat Disord. 2009;7(6):529–536. doi:10.1089/met.2009.0023
    1. Stamatakis E, Hamer M, Dunstan DW. Screen-based entertainment time, all-cause mortality, and cardiovascular events: population-based study with ongoing mortality and hospital events follow-up. J Am Coll Cardiol. 2011;57(3):292–299. doi:10.1016/j.jacc.2010.05.065
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi:10.1249/MSS.0b013e3181930355
    1. Schlaff RA, Baruth M, Boggs A, Hutto B. Patterns of sedentary behavior in older adults. Am J Health Behav. 2017;41(4):411–418. doi:10.5993/AJHB.41.4.5
    1. Mankowski RT, Aubertin-Leheudre M, Beavers DP, et al. Sedentary time is associated with the metabolic syndrome in older adults with mobility limitations–the LIFE study. Exp Gerontol. 2015;70:32–36. doi:10.1016/j.exger.2015.06.018
    1. Fitzgerald JD, Johnson L, Hire DG, et al. Association of objectively measured physical activity with cardiovascular risk in mobility-limited older adults. J Am Heart Assoc. 2015;4(2). doi:10.1161/JAHA.114.001288
    1. Saunders TJ, Larouche R, Colley RC, Tremblay MS. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies. J Nutr Metab. 2012;2012:712435. doi:10.1155/2012/712435
    1. Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358–366. doi:10.3945/ajcn.112.051763
    1. Krehbiel LM, Layne AS, Sandesara B, Manini TM, Anton SD, Buford TW. Wearable technology to reduce sedentary behavior and CVD risk in older adults: design of a randomized controlled trial. Contemp Clin Trials Commun. 2017;6:122–126. doi:10.1016/j.conctc.2017.04.003
    1. Aunger JA, Doody P, Greig CA. Interventions targeting sedentary behavior in non-working older adults: a systematic review. Maturitas. 2018;116:89–99. doi:10.1016/j.maturitas.2018.08.002
    1. Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–2304. doi:10.1001/jama.298.19.2296
    1. Gualtieri L, Rosenbluth S, Phillips J. Can a free wearable activity tracker change behavior? the impact of trackers on adults in a physician-led wellness group. JMIR Res Protoc. 2016;5(4):e237. doi:10.2196/resprot.6534
    1. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, Group C. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148(4):295–309. doi:10.7326/0003-4819-148-4-200802190-00008
    1. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, Group C. Methods and processes of the CONSORT group: example of an extension for trials assessing nonpharmacologic treatments. Ann Intern Med. 2008;148(4):W60–W66. doi:10.7326/0003-4819-148-4-200802190-00008-w1
    1. Stewart AL, Mills KM, King AC, Haskell WL, Gillis D, Ritter PL. CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc. 2001;33(7):1126–1141. doi:10.1097/00005768-200107000-00010
    1. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation. 2004;110(2):227–239. doi:10.1161/01.CIR.0000133317.49796.0E
    1. Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins; 2013.
    1. Chodzko-Zajko WJ, Proctor DN, et al.; American College of Sports M. American college of sports medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530. doi:10.1249/MSS.0b013e3181a0c95c
    1. Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human kinetics; 1998.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi:10.1097/00005768-199805000-00021
    1. Lumley T, Kronmal RA, Cushman M, Manolio TA, Goldstein S. A stroke prediction score in the elderly: validation and web-based application. J Clin Epidemiol. 2002;55(2):129–136. doi:10.1016/s0895-4356(01)00434-6
    1. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94. doi:10.1093/geronj/49.2.m85
    1. Horne E, Lancaster GA, Matson R, Cooper A, Ness A, Leary S. Pilot trials in physical activity journals: a review of reporting and editorial policy. Pilot Feasibility Stud. 2018;4:125. doi:10.1186/s40814-018-0317-1
    1. Eldridge SM, Chan CL, Campbell MJ, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016;2:64. doi:10.1186/s40814-016-0105-8
    1. Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis. 2nd ed. Hoboken (NJ): Wiley; 2011.
    1. Fitting Linear Mixed-Effects Models Using lme4 [computer program]. arXiv: arXiv:1406.5823; 2014.
    1. Thabane L, Ma J, Chu R, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10:1. doi:10.1186/1471-2288-10-1
    1. Rajadhyaksha V. Conducting feasibilities in clinical trials: an investment to ensure a good study. Perspect Clin Res. 2010;1(3):106–109.
    1. El-Kotob R, Giangregorio LM. Pilot and feasibility studies in exercise, physical activity, or rehabilitation research. Pilot Feasibility Stud. 2018;4:137. doi:10.1186/s40814-018-0326-0
    1. McMahon SK, Lewis B, Oakes M, Guan W, Wyman JF, Rothman AJ. Older adults’ experiences using a commercially available monitor to self-track their physical activity. JMIR Mhealth Uhealth. 2016;4(2):e35. doi:10.2196/mhealth.5120
    1. Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR Mhealth Uhealth. 2016;4(1):e7. doi:10.2196/mhealth.4225
    1. Turnbull F, Blood Pressure Lowering Treatment Trialists C. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–1535. doi:10.1016/s0140-6736(03)14739-3
    1. Cochrane SK, Chen SH, Fitzgerald JD, et al. Association of accelerometry-measured physical activity and cardiovascular events in mobility-limited older adults: the LIFE (Lifestyle Interventions and Independence for Elders) study. J Am Heart Assoc. 2017;6(12). doi:10.1161/JAHA.117.007215
    1. LaCroix AZ, Bellettiere J, Rillamas-Sun E, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2(3):e190419. doi:10.1001/jamanetworkopen.2019.5313
    1. Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–881. doi:10.1093/aje/kwm390

Source: PubMed

3
Suscribir