A pilot trial of human amniotic fluid for the treatment of COVID-19

Craig H Selzman, Joseph E Tonna, Jan Pierce, Camila Vargas, Chloe Skidmore, Giavonni Lewis, Nathan D Hatton, John D Phillips, Craig H Selzman, Joseph E Tonna, Jan Pierce, Camila Vargas, Chloe Skidmore, Giavonni Lewis, Nathan D Hatton, John D Phillips

Abstract

Objective: Vertical transmission from SARS CoV-2-infected women is uncommon and coronavirus has not been detected in amniotic fluid. Human amniotic products have a broad immune-mediating profile. Observing that many COVID-19 patients have a profound inflammatory response to the virus, we sought to determine the influence of human amniotic fluid (hAF) on hospitalized patients with COVID-19.

Results: A 10-patient case series was IRB-approved to study the impact of hAF on hospitalized patients with documented COVID-19. Nine of the 10 patients survived to discharge, with one patient succumbing to the disease when enrolled on maximal ventilatory support and severe hypoxia. The study design was altered by the IRB such that the last 6 patients received higher dose of intravenous hAF. In this latter group, patients that had observed reductions in C-reactive protein were associated with improved clinical outcomes. No hAF-related adverse events were noted. Acknowledging some of the inherent limitations of this case series, these results inform and catalyze a larger scaled randomized prospective trial to further investigate hAF as a therapy for COVID-19. Trial Registration ClinicalTrials.gov: NCT04319731; March 23, 2020.

Keywords: Amniotic fluid; C-reactive protein; COVID-19; Inflammation.

Conflict of interest statement

Drs. Pierce and Phillips are members of the Department of Medicine and administratively direct the Center for Translational and Regenerative Medicine (CTRM) where the human amniotic fluid is processed and subsequently delivered for clinical use. The CTRM has a number of patents with the University of Utah with regards to the utilization of human amniotic fluid for other disease processes (for example, graft versus host disease). The remaining authors have no competing interests.

References

    1. Coronavirus 2019 (COVID-19): Pregnancy and breatfeeding []
    1. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–815. doi: 10.1016/S0140-6736(20)30360-3.
    1. Hamzelou J. Coronavirus: what we know so far about risks to pregnancy and babies. New Scientist 2020.
    1. Khan S, Jun L. Nawsherwan, Siddique R, Li Y, Han G, Xue M, Nabi G, Liu J: Association of COVID-19 with pregnancy outcomes in health-care workers and general women. Clin Microbiol Infect. 2020;26(6):788–790. doi: 10.1016/j.cmi.2020.03.034.
    1. Tarca AL, Romero R, Pique-Regi R, Pacora P, Done B, Kacerovsky M, Bhatti G, Jaiman S, Hassan SS, Hsu CD, et al. Amniotic fluid cell-free transcriptome: a glimpse into fetal development and placental cellular dynamics during normal pregnancy. BMC Med Genomics. 2020;13(1):25. doi: 10.1186/s12920-020-0690-5.
    1. Cargnoni A, Di Marcello M, Campagnol M, Nassuato C, Albertini A, Parolini O. Amniotic membrane patching promotes ischemic rat heart repair. Cell Transplant. 2009;18(10):1147–1159. doi: 10.3727/096368909X12483162196764.
    1. Kim HG, Choi OH. Neovascularization in a mouse model via stem cells derived from human fetal amniotic membranes. Heart Vessels. 2011;26(2):196–205. doi: 10.1007/s00380-010-0064-6.
    1. Mao Y, Pierce J, Singh-Varma A, Boyer M, Kohn J, Reems JA. Processed human amniotic fluid retains its antibacterial activity. J Transl Med. 2019;17(1):68. doi: 10.1186/s12967-019-1812-8.
    1. Marsh KM, Ferng AS, Pilikian T, Desai AA, Avery R, Friedman M, Oliva I, Jokerst C, Schipper D, Khalpey Z. Anti-inflammatory properties of amniotic membrane patch following pericardiectomy for constrictive pericarditis. J Cardiothorac Surg. 2017;12(1):6. doi: 10.1186/s13019-017-0567-7.
    1. O'Brien D, Kia C, Beebe R, Macken C, Bell R, Cote M, McCarthy M, Williams V, Mazzocca AD. Evaluating the effects of platelet-rich plasma and amniotic viscous fluid on inflammatory markers in a human coculture model for osteoarthritis. Arthroscopy. 2019;35(8):2421–2433. doi: 10.1016/j.arthro.2019.03.021.
    1. Tahmasebi S, Tahamtan M, Tahamtan Y. Prevention by rat amniotic fluid of adhesions after laparatomy in a rat model. Int J Surg. 2012;10(1):16–19. doi: 10.1016/j.ijsu.2011.11.003.
    1. Pierce J, Jacobson P, Benedetti E, Peterson E, Phibbs J, Preslar A, Reems JA. Collection and characterization of amniotic fluid from scheduled C-section deliveries. Cell Tissue Bank. 2016;17(3):413–425. doi: 10.1007/s10561-016-9572-7.
    1. Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, Li WW, Gurtner G. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J. 2013;10(5):493–500. doi: 10.1111/iwj.12140.
    1. Liu J, Sheha H, Fu Y, Liang L, Tseng SC. Update on amniotic membrane transplantation. Expert Rev Ophthalmol. 2010;5(5):645–661. doi: 10.1586/eop.10.63.
    1. Mohammadi AA, Seyed Jafari SM, Kiasat M, Tavakkolian AR, Imani MT, Ayaz M, Tolide-ie HR. Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns. 2013;39(2):349–353. doi: 10.1016/j.burns.2012.07.010.
    1. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374. doi: 10.1038/s41577-020-0311-8.
    1. Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, Horick NK, Healy BC, Shah R, Bensaci AM, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 2020;383(24):2333–2344. doi: 10.1056/NEJMoa2028836.
    1. Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, Damiani LP, Marcadenti A, Kawano-Dourado L, Lisboa T, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med. 2020;383(21):2041–2052. doi: 10.1056/NEJMoa2019014.
    1. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840. doi: 10.1001/jamacardio.2020.1286.
    1. Tse GM, To KF, Chan PK, Lo AW, Ng KC, Wu A, Lee N, Wong HC, Mak SM, Chan KF, et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS) J Clin Pathol. 2004;57(3):260–265. doi: 10.1136/jcp.2003.013276.
    1. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700–704. doi: 10.1016/j.jtho.2020.02.010.

Source: PubMed

3
Suscribir