Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: a systematic review and meta-analysis

Shengliang Xin, Qiao Zhan, Xiaofan Chen, Jinghang Xu, Yanyan Yu, Shengliang Xin, Qiao Zhan, Xiaofan Chen, Jinghang Xu, Yanyan Yu

Abstract

Background: Nonalcoholic steatohepatitis (NASH) is a key turning point during the progression of nonalcoholic fatty liver disease (NAFLD). Recent studies have shown that serum miRNA tests may be effective in the diagnosis of NAFLD. We conducted a meta-analysis to assess the evidence for the diagnostic efficacy of serum miRNAs in patients with NAFLD and its subtype, NASH, in particular.

Methods: After a systematic review, sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) were pooled to determine the efficacy of serum miRNA test for the diagnosis of NAFLD and NASH. Clinical utility was evaluated by Fagan's nomogram and likelihood ratio scattergram. Heterogeneity was evaluated by subgroup analysis and meta-regression. Publication bias was detected by Deeks' funnel plot.

Results: We included 27 trials containing 1775 NAFLD patients (including simple steatosis and NASH) and 586 NASH patients. For NAFLD vs NASH, the pooled sensitivity, specificity, and AUROC were (0.71 vs. 0.74), (0.76 vs. 0.85) and (0.80 vs. 0.86), respectively. Serum miRNA had high accuracy for distinguishing NASH from simple steatosis, with an AUROC of 0.91. Among the most commonly studied serum miRNAs, miRNA-34a showed moderate diagnostic accuracy for NAFLD and the lowest heterogeneity (sensitivity I2 = 5.73%, specificity I2 = 33.16%, AUROC = 0.85). According to subgroup analysis and meta-regression, a lower BMI (< 30 kg/m2) might be a crucial source of heterogeneity.

Conclusions: As a novel non-invasive method, serum miRNA test exhibited robust diagnostic efficacy for NASH. Among these well-studied miRNAs, miRNA-34a was more available for diagnosis. Diagnosis of NAFLD by serum miRNA is more likely to be accurate in patients with BMI ≥ 30 kg/m2.

Keywords: Body mass index; MicroRNA; Nonalcoholic steatohepatitis; Obesity.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Article selection process
Fig. 2
Fig. 2
a: Total sample size in NAFLD trials and NASH trials. b: Total sample size of each target serum miRNA
Fig. 3
Fig. 3
Forest plots and meta-analysis of trials showing pooled sensitivity and specificity (a), PLR and NLR (b) and DOR (c) of serum miRNA for diagnosis of total NAFLD (case vs. control). d: SROC curve of serum miRNA for diagnosis of total NAFLD (case vs. control)
Fig. 4
Fig. 4
Meta-regression analysis of serum miRNA for diagnosis of total NAFLD (case vs. control). The assignment was made as follows: disease (Yes = NASH, No = NAFLD), regulation mode (Yes = upregulation, No = downregulation), geographic region (Yes = Asian, No = Non-Asian), and miRNA profiling (Yes = single miRNA, No = miRNA panel)
Fig. 5
Fig. 5
a: Fagan’s nomogram of serum miRNA for diagnosis of NASH (NAS ≥ 5 vs. < 5). Pre-test probability = 50% (patients with moderate suspicion for NASH), the post-test positive and negative probability of NASH were 83 and 24%, respectively. b: Fagan’s nomogram of serum miRNA for diagnosis of NAFLD (NAFLD vs. healthy control). Pre-test probability = 50% (patients with the moderate suspicion for NAFLD), the post-test positive and negative probability of NAFLD were 75 and 27%, respectively. c: The likelihood ratio scattergram of serum miRNA for diagnosis of NASH (NAS ≥ 5 vs. < 5). LRP: positive likelihood ratio; LRN: negative likelihood ratio; LUQ: left upper quadrant; RUQ: right upper quadrant; LLQ: left lower quadrant; RLQ: right lower quadrant
Fig. 6
Fig. 6
Estimation of the publication bias by Deeks’ funnel plots for all involved trials (a), NAFLD trials (b), NASH trials (c) and miRNA-34a trials (d)

References

    1. Cotter TG, Rinella M. NAFLD 2020: the state of the disease. Gastroenterology. 2020. 10.1053/j.gastro.2020.01.052.
    1. Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Epidemiological feature of NAFLD from 1999 to 2018 in China. Hepatology. 2020. 10.1002/hep.31150.
    1. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–121.
    1. Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 2019;29(1):18–26.
    1. Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56(6):1384–1391.
    1. Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology. 2009;50(4):1072–1078.
    1. Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60(1):167–174.
    1. Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(5):1264–1281.
    1. Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci. 2018;19(12):3966.
    1. Wang L, Zhang N, Wang Z, Ai DM, Cao ZY, Pan HP. Decreased MiR-155 level in the peripheral blood of non-alcoholic fatty liver disease patients may serve as a biomarker and may influence LXR activity. Cell Physiol Biochem. 2016;39(6):2239–2248.
    1. Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G, et al. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci. 2018;208:201–207.
    1. Yu F, Wang X, Zhao H, Hao Y, Wang W. Decreased serum miR-1296 may serve as an early biomarker for the diagnosis of non-alcoholic fatty liver disease. Clin Lab. 2019. 10.7754/Clin.Lab.2019.190335.
    1. Yu Y, Zhu J, Liu J, Huang M, Wan JX. Identification of 8-miRNAs as biomarkers for nonalcoholic fatty liver disease. J Cell Physiol. 2019;234(10):17361–17369.
    1. Liu XL, Cao HX, Fan JG. MicroRNAs as biomarkers and regulators of nonalcoholic fatty liver disease. J Dig Dis. 2016;17(11):708–715.
    1. Cai C, Lin Y, Yu C. Circulating miRNAs as novel diagnostic biomarkers in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Can J Gastroenterol Hepatol. 2019. 10.1155/2019/2096161.
    1. Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology. 2017;66(5):1486–1501.
    1. Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance Elastography vs transient Elastography in detection of fibrosis and noninvasive measurement of Steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152(3):598–607.
    1. Pu K, Wang Y, Bai S, Wei H, Zhou Y, Fan J, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019;19(1):51.
    1. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–893.
    1. Auguet T, Aragonès G, Berlanga A, Guiu-Jurado E, Martí A, Martínez S, et al. miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(10):1620.
    1. Celikbilek M, Baskol M, Taheri S, Deniz K, Dogan S, Zararsiz G, et al. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol. 2014;6(8):613–620.
    1. Pirola CJ, Fernández Gianotti T, Castaño GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64(5):800–812.
    1. Hendy OM, Rabie H, El Fouly A, Abdel-Samiee M, Abdelmotelb N, Elshormilisy AA, et al. The circulating micro-RNAs (−122, −34a and -99a) as predictive biomarkers for non-alcoholic fatty liver diseases. Diabetes Metab Syndr Obes. 2019;12:2715–2723.
    1. López-Riera M, Conde I, Quintas G, Pedrola L, Zaragoza Á, Perez-Rojas J, et al. Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers. Sci Rep. 2018;8(1):10606.
    1. Salvoza NC, Klinzing DC, Gopez-Cervantes J, Baclig MO. Association of Circulating Serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One. 2016;11(4):e0153497.
    1. Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;9(8):e105192.
    1. Liu XL, Pan Q, Zhang RN, Shen F, Yan SY, Sun C, et al. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol. 2016;22(44):9844–9852.
    1. Jampoka K, Muangpaisarn P, Khongnomnan K, Treeprasertsuk S, Tangkijvanich P, Payungporn S. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD) Microrna. 2018;7(3):215–222.
    1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.
    1. Barbois S, Arvieux C, Leroy V, Reche F, Stürm N, Borel AL. Benefit-risk of intraoperative liver biopsy during bariatric surgery: review and perspectives. Surg Obes Relat Dis. 2017;13(10):1780–1786.
    1. Mathiesen UL, Franzén LE, Frydén A, Foberg U, Bodemar G. The clinical significance of slightly to moderately increased liver transaminase values in asymptomatic patients. Scand J Gastroenterol. 1999;34(1):85–91.
    1. Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther. 2014;39(3):254–269.
    1. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43(8):617–649.
    1. Tamimi TI, Elgouhari HM, Alkhouri N, Yerian LM, Berk MP, Lopez R, et al. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J Hepatol. 2011;54(6):1224–1229.
    1. Huang JF, Yeh ML, Huang CF, Huang CI, Tsai PC, Tai CM, et al. Cytokeratin-18 and uric acid predicts disease severity in Taiwanese nonalcoholic steatohepatitis patients. PLoS One. 2017. 10.1371/journal.pone.0174394.
    1. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, Williams AS, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40(1):40–50.
    1. Bril F, McPhaul MJ, Caulfield MP, Castille JM, Poynard T, Soldevila-Pico C, et al. Performance of the SteatoTest, ActiTest, NashTest and FibroTest in a multiethnic cohort of patients with type 2 diabetes mellitus. J Investig Med. 2019;67(2):303–311.
    1. Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX, et al. Lipotoxic hepatocyte-derived Exosomal miR-192-5p activates macrophages via Rictor/Akt/FoxO1 signaling in NAFLD. Hepatology. 2019. 10.1002/hep.31050.
    1. Gan M, Shen L, Fan Y, Tan Y, Zheng T, Tang G, et al. MicroRNA-451 and Genistein Ameliorate Nonalcoholic Steatohepatitis in Mice. Int J Mol Sci. 2019;20(23):6084.
    1. Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, et al. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci. 2019;20(21):5266.
    1. Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut. 2019;68(11):2065–2079.
    1. Becker PP, Rau M, Schmitt J, Malsch C, Hammer C, Bantel H, et al. Performance of serum microRNAs −122, −192 and −21 as biomarkers in patients with non-alcoholic Steatohepatitis. PLoS One. 2015. 10.1371/journal.pone.0142661.
    1. Erhartova D, Cahova M, Dankova H, Heczkova M, Mikova I, Sticova E, et al. Serum miR-33a is associated with steatosis and inflammation in patients with non-alcoholic fatty liver disease after liver transplantation. PLoS One. 2019. 10.1371/journal.pone.0224820.
    1. Liu CH, Ampuero J, Gil-Gómez A, Montero-Vallejo R, Rojas Á, Muñoz-Hernández R, et al. miRNAs in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2018;69(6):1335–1348.
    1. Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, Macías R, Laso FJ, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol. 2018;24(36):4104–4118.
    1. Ding J, Li M, Wan X, Jin X, Chen S, Yu C, et al. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep. 2015;5:13729.
    1. Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology. 2003;38(1):123–132.
    1. Castro RE, Ferreira DM, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1):119–125.
    1. Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67(4):862–873.
    1. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–1465.
    1. Li Y, Xing C, Cohen JC, Hobbs HH. Genetic variant in PNPLA3 is associated with nonalcoholic fatty liver disease in China. Hepatology. 2012;55(1):327–328.

Source: PubMed

3
Suscribir