The effect of extracorporeal shock wave therapy in acute traumatic spinal cord injury on motor and sensory function within 6 months post-injury: a study protocol for a two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled clinical trial

Iris Leister, Rainer Mittermayr, Georg Mattiassich, Ludwig Aigner, Thomas Haider, Lukas Machegger, Harald Kindermann, Anja Grazer-Horacek, Johannes Holfeld, Wolfgang Schaden, Iris Leister, Rainer Mittermayr, Georg Mattiassich, Ludwig Aigner, Thomas Haider, Lukas Machegger, Harald Kindermann, Anja Grazer-Horacek, Johannes Holfeld, Wolfgang Schaden

Abstract

Background: The pathological mechanism in acute spinal cord injury (SCI) is dual sequential: the primary mechanical lesion and the secondary injury due to a cascade of biochemical and pathological changes initiated by the primary lesion. Therapeutic approaches have focused on modulating the mechanisms of secondary injury. Despite extensive efforts in the treatment of SCI, there is yet no causal, curative treatment approach available. Extracorporeal shock wave therapy (ESWT) has been successfully implemented in clinical use. Biological responses to therapeutic shock waves include altered metabolic activity of various cell types due to direct and indirect mechanotransduction leading to improved migration, proliferation, chemotaxis, modulation of the inflammatory response, angiogenesis, and neovascularization, thus inducing rather a regeneration than repair. The aim of this clinical study is to investigate the effect of ESWT in humans within the first 48 h after an acute traumatic SCI, with the objective to intervene in the secondary injury phase in order to reduce the extent of neuronal loss.

Methods: This two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled study has been initiated in July 2020, and a total of 82 patients with acute traumatic SCI will be recruited for the first stage in 15 participating hospitals as part of a two-armed three-stage adaptive trial design. The focused ESWT (energy flux density: 0.1-0.19 mJ/mm2, frequency: 2-5 Hz) is applied once at the level of the lesion, five segments above/below, and on the plantar surface of both feet within the first 48 h after trauma. The degree of improvement in motor and sensory function after 6 months post-injury is the primary endpoint of the study. Secondary endpoints include routine blood chemistry parameters, the degree of spasticity, the ability to walk, urological function, quality of life, and the independence in everyday life.

Discussion: The application of ESWT activates the nervous tissue regeneration involving a multitude of various biochemical and cellular events and leads to a decreased neuronal loss. ESWT might contribute to an improvement in the treatment of acute traumatic SCI in future clinical use.

Trial registration: ClinicalTrials.gov NCT04474106.

Keywords: Extracorporeal shock wave therapy; Off-label use; Spinal cord injuries; Treatment outcome.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

References

    1. Chan CWL, Eng JJ, Tator CH, Krassioukov A. Epidemiology of sport-related spinal cord injuries: a systematic review. J Spinal Cord Med. 2016;39(3):255–264. doi: 10.1080/10790268.2016.1138601.
    1. Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–116. doi: 10.1038/sc.2012.158.
    1. Chen Y, He Y, DeVivo MJ. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972–2014. Arch Phys Med Rehabil. 2016;97(10):1610–1619. doi: 10.1016/j.apmr.2016.03.017.
    1. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523–529. doi: 10.1038/sj.sc.3101893.
    1. World Health Organization . International perspectives on spinal cord injury. 2003.
    1. Patel SA, Vaccaro AR, Rihn JA. Epidemiology of spinal injuries in sports. Oper Tech Sports Med. 2013;21(3):146–151. doi: 10.1053/j.otsm.2013.10.003.
    1. Carll KE, Park AE, Tortolani PJ. Epidemiology of catastrophic spine injuries in high school, college, and professional sports. Semin Spine Surg. 2010;22(4):168–172. doi: 10.1053/j.semss.2010.06.007.
    1. MJ DV. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012;50(5):365–372. doi: 10.1038/sc.2011.178.
    1. Mattiassich G, Gollwitzer M, Gaderer F, Blocher M, Osti M, Lill M, Ortmaier R, Haider T, Hitzl W, Resch H, Aschauer-Wallner S. Functional outcomes in individuals undergoing very early (< 5 h) and early (5–24 h) surgical decompression in traumatic cervical spinal cord injury: analysis of neurological improvement from the Austrian Spinal Cord Injury Study. J Neurotrauma. 2017;34(24):3362–3371. doi: 10.1089/neu.2017.5132.
    1. Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57. doi: 10.1016/j.pneurobio.2013.11.002.
    1. Fehlings MG, Perrin RG. The role and timing of early decompression for cervical spinal cord injury: update with a review of recent clinical evidence. Injury. 2005;36(SUPPL. 2):13–26. doi: 10.1016/j.injury.2005.06.011.
    1. Hausner T, Nógrádi A. The use of shock waves in peripheral nerve regeneration: new perspectives? Int Rev Neurobiol. 2013;109:85–98. doi: 10.1016/B978-0-12-420045-6.00003-1.
    1. Buss A, Pech K, Merkler D, Kakulas BA, Martin D, Schoenen J, et al. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain. 2005;128(2):356–364. doi: 10.1093/brain/awh355.
    1. Zhang Z, Guth L. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Exp Neurol. 1997;147(1):159–171. doi: 10.1006/exnr.1997.6590.
    1. Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep. 2011;15(3):215–222. doi: 10.1007/s11916-011-0186-2.
    1. Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res. 2003;970(1–2):238–241. doi: 10.1016/S0006-8993(03)02347-3.
    1. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012;20(4):456–465. 10.1111/j.1524-475X.2012.00796e.x. [cited 2018 Apr 8]
    1. Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15(12):825–833. doi: 10.1038/nrm3903.
    1. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT) - first choice treatment of fracture non-unions? Int J Surg. 2015;24:179–183. doi: 10.1016/j.ijsu.2015.10.003.
    1. Pastor D, Valera H, Olmo JA, Estirado A, Martínez S. Shock wave and mesenchymal stem cells as treatment in the acute phase of spinal cord injury: a pilot study. Rehabilitacion. 2021; Available from: . [cited 2021 Aug 13].
    1. D’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015;24:147–153. doi: 10.1016/j.ijsu.2015.11.030.
    1. AG SM. STORZ MEDICAL’s NEUROLITH® receives CE approval – Transcranial Pulse Stimulation (TPS) on the central nervous system of patients with Alzheimer’s disease. 2019 [cited 2019 Jan 26]. Available from:
    1. Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, Nógrádi A. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol. 2012;236(2):363–370. doi: 10.1016/j.expneurol.2012.04.019.
    1. Lobenwein D, Tepeköylü C, Kozaryn R, Pechriggl EJ, Bitsche M, Graber M, et al. Shock wave treatment protects from neuronal degeneration via a Toll-like receptor 3 dependent mechanism: implications of a first-ever causal treatment for ischemic spinal cord injury. J Am Heart Assoc. 2015:1–13 Available from: . [cited 2018 Mar 8].
    1. Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg. 2014;121(6):1514–1525. 10.3171/2014.8.JNS132562. [cited 2018 Mar 9]
    1. Yahata K, Kanno H, Ozawa H, Yamaya S, Tateda S, Ito K, Shimokawa H, Itoi E. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J Neurosurg Spine. 2016;25(6):745–755. doi: 10.3171/2016.4.SPINE15923.
    1. Matsuda M, Kanno H, Sugaya T, Yamaya S, Yahata K, Handa K, et al. Low-energy extracorporeal shock wave therapy promotes BDNF expression and improves functional recovery after spinal cord injury in rats. Exp Neurol. 2020;328 Available from: . [cited 2021 Aug 13].
    1. Lohse-Busch H, Reime U, Falland R. Symptomatic treatment of unresponsive wakefulness syndrome with transcranially focused extracorporeal shock waves. NeuroRehabilitation. 2014;35(2):235–244. doi: 10.3233/NRE-141115.
    1. Davis T, Stojadinovic A, Anam K, Amare M, Naik S, Peoples G, et al. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J. 2009;6:11–21. doi: 10.1111/j.1742-481X.2008.00540.x.
    1. Holfeld J, Tepeköylü C, Kozaryn R, Urbschat A, Zacharowski K, Grimm M, Paulus P. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via Toll-like receptor 3. Inflammation. 2013;37(1):65–70. doi: 10.1007/s10753-013-9712-1.
    1. Sukubo NG, Respizzi S, Locati M, Tibalt E, D’Agostino MC. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg. 2015:124–30. 10.1016/j.ijsu.2015.07.719.
    1. Holfeld J, Tepeköylü C, Reissig C, Lobenwein D, Scheller B, Kirchmair E, et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res. 2016;109(2):331–343. doi: 10.1093/cvr/cvv272.
    1. Holfeld J, Tepeköylü C, Blunder S, Lobenwein D, Kirchmair E, Dietl M, Kozaryn R, Lener D, Theurl M, Paulus P, Kirchmair R, Grimm M. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation. PLoS One. 2014;9(8):1–7. doi: 10.1371/journal.pone.0103982.
    1. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP) J Med Life. 2014;7(3):127–132.
    1. Brouwers E, Van De Meent H, Curt A, Starremans B, Hosman A, Bartels R. Definitions of traumatic conus medullaris and cauda equina syndrome: a systematic literature review. Spinal Cord. 2017;55(10):886–890. doi: 10.1038/sc.2017.54.
    1. Bracken M. Steroids for acute spinal cord injury. Cochrane Database Syst Rev. 2012;1:CD001046. doi: 10.1002/14651858.CD001046.pub2.
    1. Chmelizek F, Jonas HP, Kathrein A, Knop C. Hochdosiertes Methylprednisolon beim spinalen Trauma - Konsensus Stetement. Int Zeitung für ärztliche Fortbildung. 2006;16(2):1–8.
    1. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg Spine. 2000;168(9):1–7. doi: 10.3171/spi.2000.93.1.0001.
    1. Chen A, Xu XM, Kleitman N, Bunge MB. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol. 1996;138(2):261–276. doi: 10.1006/exnr.1996.0065.
    1. American Spinal Injury Association . International standards for neurological classification of SCI (ISNCSCI) Exam. 2002. pp. 4–5.
    1. American Spinal Injury Association. International standards for the classification of spinal cord injury: motor exam guide. 2008;(June):1–16.
    1. American Spinal Injury Association. International standards for the classification of spinal cord injury: key sensory points. 2009;(June):1–6. Available from: papers2://publication/uuid/738676A2-C12D-46C0-A122-7A34A766144E
    1. Högel F, Vastmans J, Vogel M, Bühren V. Verletzungen des Rückenmarks – Akutbehandlung. Orthop Unfallchirurgie up2date. 2016;11(06):451–479. 10.1055/s-0042-101455
    1. Hsieh JTC, Wolfe DL, Miller WC, Curt A, SCIRE Research Team Spasticity outcome measures in spinal cord injury: psychometric properties and clinical utility. Spinal Cord. 2008;46(2):86–95. doi: 10.1038/sj.sc.3102125.
    1. Hornby TG, Rymer WZ, Benz EN, Schmit BD. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? J Neurophysiol. 2003;89(1):416–426. Available from: , [cited 2019 Sep 18]
    1. Adams MM, Ginis KAM, Hicks AL. The spinal cord injury spasticity evaluation tool: development and evaluation. Arch Phys Med Rehabil. 2007;88(9):1185–1192. doi: 10.1016/j.apmr.2007.06.012.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. doi: 10.1093/ptj/67.2.206.
    1. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, Ellaway PH, Fehlings MG, Guest JD, Kleitman N, Bartlett PF, Blight AR, Dietz V, Dobkin BH, Grossman R, Short D, Nakamura M, Coleman WP, Gaviria M, Privat A, International Campaign for Cures of Spinal Cord Injury Paralysis Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45(3):206–221. doi: 10.1038/sj.sc.3102008.
    1. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil. 1999;13(5):373–383. 10.1191/026921599677595404. [cited 2019 Sep 18]
    1. Craven BC, Morris AR. Modified Ashworth scale reliability for measurement of lower extremity spasticity among patients with SCI. Spinal Cord. 2010;48(3):207–213. doi: 10.1038/sc.2009.107.
    1. Haas BM, Bergström E, Jamous A, Bennie A. The inter rater reliability of the original and of the modified Ashworth scale for the assessment of spasticity in patients with spinal cord injury. Spinal Cord. 1996;34(9):560–564. doi: 10.1038/sc.1996.100.
    1. Tederko P, Krasuski M, Czech J, Dargiel A, Garwacka-Jodzis I, Wojciechowska A. Reliability of clinical spasticity measurements in patients with cervical spinal cord injury. Ortop Traumatol Rehabil. 9(5):467–83 Available from: . [cited 2019 Sep 18].
    1. Lechner HE, Frotzler A, Eser P. Relationship between self- and clinically rated spasticity in spinal cord injury. Arch Phys Med Rehabil. 2006;87(1):15–19. doi: 10.1016/j.apmr.2005.07.312.
    1. VAB S, Becher JG, Beelen A, Lankhorst GJ. Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol. 2006;48(1):64–73. doi: 10.1017/S0012162206000132.
    1. da Silva LT. Nine-hole peg test for evaluation of hand function: the advantages and shortcomings. Neurol India. 2017;65(5):1033. Available from: . [cited 2018 Dec 20]
    1. Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the Grasp and Release Test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–46. Available from: . [cited 2018 Dec 20]
    1. Schnake KJ, Schroeder GD, Vaccaro AR, Oner C. AOSpine classification systems (subaxial, thoracolumbar) J Orthop Trauma. 2017;31(9):S14–S23. doi: 10.1097/BOT.0000000000000947.
    1. AOSpine Research Team . AOSpine subaxial classification system. 2018.
    1. AOSpine Research Team . AOSpine thoracolumbar classification system. 2018.
    1. You JY, Lee JW, Lee E, Lee GY, Yeom JS, Kang HS. MR classification system based on axial images for cervical compressive myelopathy. Radiology. 2015;276(2):553–561. doi: 10.1148/radiol.2015142384.
    1. Machino M, Yukawa Y, Ito K, Kanbara S, Morita D, Kato F. Posterior ligamentous complex injuries are related to fracture severity and neurological damage in patients with acute thoracic and lumbar burst fractures. Yonsei Med J. 2013;54(4):1020–1025. doi: 10.3349/ymj.2013.54.4.1020.
    1. Vaccaro AR, Rihn JA, Saravanja D, Anderson DG, Hilibrand AS, Albert TJ, Fehlings MG, Morrison W, Flanders AE, France JC, Arnold P, Anderson PA, Friel B, Malfair D, Street J, Kwon B, Paquette S, Boyd M, Dvorak MFS, Fisher C. Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine (Phila Pa 1976) 2009;34(23):841–847. doi: 10.1097/BRS.0b013e3181bd11be.
    1. Rihn JA, Fisher C, Harrop J, Morrison W, Yang N, Vaccaro AR. Assessment of the posterior ligamentous complex following acute cervical spine trauma. J Bone Jt Surg Ser A. 2010;92(3):583–589. doi: 10.2106/JBJS.H.01596.
    1. Schulz KF, Grimes DA. Blinding in randomised trials: hiding who got what. Lancet. 2002;359(9307):696–700. doi: 10.1016/S0140-6736(02)07816-9.
    1. Whitehead J. The design and analysis of sequential clinical trials. John Wiley & Sons; 1997.
    1. Thomas DR, Zumbo BD. Difference scores from the point of view of reliability and repeated-measures ANOVA: in defense of difference scores for data analysis. Los Angeles: Educational and Psychological Measurement. SAGE PublicationsSage CA; 2012. pp. 37–43.
    1. Dalecki M, Willits FK. Examining change using regression analysis: three approaches compared. Sociol Spectr. 1991;11(2):127–145. doi: 10.1080/02732173.1991.9981960.
    1. Fehlings MG, Vaccaro A, Wilson JR, Singh A, Cadotte DW, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS) PLoS One. 2012;7(2):1–8. doi: 10.1371/journal.pone.0032037.
    1. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010;24(3):133–141. doi: 10.1097/BOT.0b013e3181b26470.

Source: PubMed

3
Suscribir