Renal and Cardiovascular Morbidities Associated with APOL1 Status among African-American and Non-African-American Children with Focal Segmental Glomerulosclerosis

Robert P Woroniecki, Derek K Ng, Sophie Limou, Cheryl A Winkler, Kimberly J Reidy, Mark Mitsnefes, Matthew G Sampson, Craig S Wong, Bradley A Warady, Susan L Furth, Jeffrey B Kopp, Frederick J Kaskel, Robert P Woroniecki, Derek K Ng, Sophie Limou, Cheryl A Winkler, Kimberly J Reidy, Mark Mitsnefes, Matthew G Sampson, Craig S Wong, Bradley A Warady, Susan L Furth, Jeffrey B Kopp, Frederick J Kaskel

Abstract

Background and objectives: African-American (AA) children with focal segmental glomerulosclerosis (FSGS) have later onset disease that progresses more rapidly than in non-AA children. It is unclear how APOL1 genotypes contribute to kidney disease risk, progression, and cardiovascular morbidity in children.

Design setting participants and measurements: We examined the prevalence of APOL1 genotypes and associated cardiovascular phenotypes among children with FSGS in the Chronic Kidney Disease in Children (CKiD) study; an ongoing multicenter prospective cohort study of children aged 1-16 years with mild to moderate kidney disease.

Results: A total of 140 AA children in the CKiD study were genotyped. High risk (HR) APOL1 genotypes were present in 24% of AA children (33/140) and were associated with FSGS, p < 0.001. FSGS was the most common cause of glomerular disease in children with HR APOL1 (89%; 25/28). Of 32 AA children with FSGS, 25 (78%) had HR APOL1. Compared to children with low risk APOL1 and FSGS (comprising 36 non-AA and 7 AA), children with HR APOL1 developed FSGS at a later age, 12.0 (IQR: 9.5, 12.5) vs. 5.5 (2.5, 11.5) years, p = 0.004, had a higher prevalence of uncontrolled hypertension (52 vs. 33%, p = 0.13), left ventricular hypertrophy (LVH) (53 vs. 12%, p < 0.01), C-reactive protein > 3 mg/l (33 vs. 15%, p = 0.12), and obesity (48 vs. 19%, p = 0.01). There were no differences in glomerular filtration rate, hemoglobin, iPTH, or calcium-phosphate product.

Conclusion: AA children with HR APOL1 genotype and FSGS have increase prevalence of obesity and LVH despite a later age of FSGS onset, while adjusting for socioeconomic status. Treatment of obesity may be an important component of chronic kidney disease and LVH management in this population.

Keywords: FSGS; cardiovascular; children; chronic renal disease; left ventricular hypertrophy.

Figures

Figure 1
Figure 1
Distribution of CKiD children by race [African-American (AA) vs. non-African-American (non-AA)], APOL1 genotypes, and CKD diagnoses [glomerular disease (Glom), non-glomerular disease (Non-Glom), focal segmental glomerulosclerosis (FSGS)] All genotyped non-AA (N = 37) were found to have LR APOL1 status, providing a justification for classifying non-AA children as low risk.
Figure 2
Figure 2
Percentile boxplots of longitudinal GFR changes based on individual regression equations, expressed as percent change per year, by APOL1 risk and race. A total of six non-AA LR participants, two AA LR participants, and two AA HR participants only contributed one GFR measurement and were not included in this analysis.

References

    1. Bibbins-Domingo K, Pletcher MJ, Lin F, Vittinghoff E, Gardin JM, Arynchyn A, et al. Racial differences in incident heart failure among young adults. N Engl J Med (2009) 360:1179–90.10.1056/NEJMoa0807265
    1. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic APOL1 variants with kidney disease in African Americans. Science (2010) 329(5993):841–5.10.1126/science.1193032
    1. Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW, et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol (2010) 21:1422–6.10.1681/ASN.2010070730
    1. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet (2010) 128(3):345–50.10.1007/s00439-010-0861-0
    1. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol (2011) 22:2129–37.10.1681/ASN.2011040388
    1. Ito K, Bick AG, Flannick J, Friedman DJ, Genovese G, Parfenov MG, et al. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ Res (2014) 114:845–50.10.1161/CIRCRESAHA.114.302347
    1. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med (2013) 369(23):2183–96.10.1056/NEJMoa1310345
    1. Kopp JB, Winkler CA, Zhao X, Radeva MK, Gassman JJ, D’Agati VD, et al. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J Am Soc Nephrol (2015) 26:1443–8.10.1681/ASN.2013111242
    1. Hadtstein C, Schaefer F. Hypertension in children with chronic kidney disease: pathophysiology and management. Pediatr Nephrol (2008) 23:363–71.10.1007/s00467-007-0643-7
    1. Mitsnefes M, Ho PL, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol (2003) 14:2618–22.10.1097/01.ASN.0000089565.04535.4B
    1. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, et al. Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children Study. Hypertension (2008) 52:631–7.10.1161/HYPERTENSIONAHA.108.110635
    1. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, et al. Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr (2006) 149:671–5.10.1016/j.jpeds.2006.08.017
    1. Kizer JR, Arnett DK, Bella JN, Paranicas M, Rao DC, Province MA, et al. Differences in left ventricular structure between black and white hypertensive adults: the Hypertension Genetic Epidemiology Network study. Hypertension (2004) 43(6):1182–8.10.1161/01.HYP.0000128738.94190.9f
    1. Kupferman JC, Aronson Friedman L, Cox C, Flynn J, Furth S, Warady B, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol (2014) 25(1):167–74.10.1681/ASN.2012121197
    1. Ng DK, Robertson CC, Woroniecki RP, Limou S, Gillies CE, Reidy KJ, et al. APOL1-associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrol Dial Transplant (2016).10.1093/ndt/gfw061
    1. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, et al. Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol (2006) 1(5):1006–15.10.2215/CJN.01941205
    1. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics (2004) 114(2 Suppl 4th Report):555–76.10.1542/peds.114.2.S2.555
    1. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr (2009) 22(6):709–14.10.1016/j.echo.2009.03.003
    1. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, et al. Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol (2011) 6(9):2132–40.10.2215/CJN.07100810
    1. Hidalgo G, Ng DK, Moxey-Mims M, Minnick ML, Blydt-Hansen T, Warady BA, et al. Association of income level with kidney disease severity and progression among children and adolescents with CKD: a report from the Chronic Kidney Disease in Children (CKiD) Study. Am J Kidney Dis (2013) 62(6):1087–94.10.1053/j.ajkd.2013.06.013
    1. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology (2000) 11(5):550–60.10.1097/00001648-200009000-00011
    1. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol (2008) 168(6):656–64.10.1093/aje/kwn164
    1. Sorof JM, Hawkins EP, Brewer ED, Boydstun II, Kale AS, Powell DR. Age and ethnicity affect the risk and outcome of focal segmental glomerulosclerosis. Pediatr Nephrol (1998) 12(9):764–8.10.1007/s004670050542
    1. Bonilla-Felix M, Parra C, Dajani T, Ferris M, Swinford RD, Portman RJ, et al. Changing patterns in the histopathology of idiopathic nephrotic syndrome in children. Kidney Int (1999) 55(5):1885–90.10.1046/j.1523-1755.1999.00408.x
    1. Thomson R, Genovese G, Canon C, Kovacsics D, Higgins MK, Carrington M, et al. Evolution of the primate trypanolytic factor APOL1. Proc Natl Acad Sci U S A (2014) 111(20):E2130–9.10.1073/pnas.1400699111
    1. Langefeld CD, Divers J, Pajewski NM, Hawfield AT, Reboussin DM, Bild DE, et al. Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial (SPRINT). Kidney Int (2015) 87(1):169–75.10.1038/ki.2014.254
    1. Chartier-Harlin MC, Parfitt M, Legrain S, Pérez-Tur J, Brousseau T, Evans A, et al. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet (1994) 3(4):569–74.10.1093/hmg/3.4.569
    1. Skorecki KL, Wasser WG. Hypertension-misattributed kidney disease in African Americans. Kidney Int (2013) 83:6–9.10.1038/ki.2012.369

Source: PubMed

3
Suscribir