Study protocol and rationale of the "Cogni-action project" a cross-sectional and randomized controlled trial about physical activity, brain health, cognition, and educational achievement in schoolchildren

Patricio Solis-Urra, Jorge Olivares-Arancibia, Ernesto Suarez-Cadenas, Javier Sanchez-Martinez, Fernando Rodríguez-Rodríguez, Francisco B Ortega, Irene Esteban-Cornejo, Cristina Cadenas-Sanchez, Jose Castro-Piñero, Alejandro Veloz, Steren Chabert, Kabir P Sadarangani, Juan Pablo Zavala-Crichton, Jairo H Migueles, Jose Mora-Gonzalez, Milton Quiroz-Escobar, Diego Almonte-Espinoza, Alfonso Urzúa, Constantino D Dragicevic, Aland Astudillo, Eduardo Méndez-Gassibe, Daniel Riquelme-Uribe, Marcela Jarpa Azagra, Carlos Cristi-Montero, Patricio Solis-Urra, Jorge Olivares-Arancibia, Ernesto Suarez-Cadenas, Javier Sanchez-Martinez, Fernando Rodríguez-Rodríguez, Francisco B Ortega, Irene Esteban-Cornejo, Cristina Cadenas-Sanchez, Jose Castro-Piñero, Alejandro Veloz, Steren Chabert, Kabir P Sadarangani, Juan Pablo Zavala-Crichton, Jairo H Migueles, Jose Mora-Gonzalez, Milton Quiroz-Escobar, Diego Almonte-Espinoza, Alfonso Urzúa, Constantino D Dragicevic, Aland Astudillo, Eduardo Méndez-Gassibe, Daniel Riquelme-Uribe, Marcela Jarpa Azagra, Carlos Cristi-Montero

Abstract

Background: Education and health are crucial topics for public policies as both largely determine the future wellbeing of the society. Currently, several studies recognize that physical activity (PA) benefits brain health in children. However, most of these studies have not been carried out in developing countries or lack the transference into the education field. The Cogni-Action Project is divided into two stages, a cross-sectional study and a crossover-randomized trial. The aim of the first part is to establish the associations of PA, sedentarism, and physical fitness with brain structure and function, cognitive performance and academic achievement in Chilean schoolchildren (10-13 years-old). The aim of the second part is to determinate the acute effects of three PA protocols on neuroelectric indices during a working memory and a reading task.

Methods: PA and sedentarism will be self-reported and objectively-assessed with accelerometers in a representative subsample, whilst physical fitness will be evaluated through the ALPHA fitness test battery. Brain structure and function will be assessed by magnetic resonance imaging (MRI) in a randomized subsample. Cognitive performance will be assessed through the NeuroCognitive Performance Test, and academic achievement by school grades. In the second part 32 adolescents (12-13 year-old) will be cross-over randomized to these condition (i) "Moderate-Intensity Continuous Training" (MICT), (ii) "Cooperative High-Intensity Interval Training" (C-HIIT), and (iii) Sedentary condition. Neuroelectric indices will be measures by electroencephalogram (EEG) and eye-tracking, working memory by n-back task and reading comprehension by a reading task.

Discussion: The main strength of this project is that, to our knowledge, this is the first study analysing the potential association of PA, sedentarism, and physical fitness on brain structure and function, cognitive performance, and academic achievement in a developing country, which presents an important sociocultural gap. For this purpose, this project will use advanced technologies in neuroimaging (MRI), electrophysiology (EEG), and eye-tracking, as well as objective and quality measurements of several physical and cognitive health outcomes.

Trial registration: ClinicalTrials.gov identifier: NCT03894241 Date of register: March 28, 2019. Retrospectively Registered.

Keywords: Academic performance; Cognition; Fitness; Magnetic resonance imaging; Physical activity; Sedentary lifestyle.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Cross-sectional and cross-over RCT study design
Fig. 2
Fig. 2
Eight cognitive tasks that conform the neurocognitive performance test

References

    1. Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138–146. doi: 10.1123/pes.2013-0125.
    1. Chaddock L, Voss MW, Kramer AF. Physical activity and fitness effects on cognition and brain health in children and older adults. Kinesiology Rev. 2012;1(1):37–45. doi: 10.1123/krj.1.1.37.
    1. Correa-Burrows P, Burrows R, Blanco E, Reyes M, Gahagan S. Nutritional quality of diet and academic performance in Chilean students. Bull World Health Organ. 2016;94(3):185–192. doi: 10.2471/BLT.15.161315.
    1. Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):1197–1222. doi: 10.1249/MSS.0000000000000901.
    1. Committee PAGA . Physical activity guidelines advisory committee scientific report. Washington: US Department of Health and Human Services; 2018.
    1. Tremblay MS, Warburton DE, Janssen I, Paterson DH, Latimer AE, Rhodes RE, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):36–46. doi: 10.1139/H11-009.
    1. Organization WH . Global recommendations on physical activity for health: World Health Organization. 2010.
    1. Cecchini M, Sassi F, Lauer JA, Lee YY, Guajardo-Barron V, Chisholm D. Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. Lancet. 2010;376(9754):1775–1784. doi: 10.1016/S0140-6736(10)61514-0.
    1. Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry. 2005;18(2):189–193. doi: 10.1097/00001504-200503000-00013.
    1. Tomkinson GR, Leger LA, Olds TS, Cazorla G. Secular trends in the performance of children and adolescents (1980-2000): an analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Med. 2003;33(4):285–300. doi: 10.2165/00007256-200333040-00003.
    1. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children's cognition: the role of exercise characteristics and a place for metacognition. J Sport Health Sci. 2015;4(1):47–55. doi: 10.1016/j.jshs.2014.09.003.
    1. Santos-Lozano A, Pareja-Galeano H, Sanchis-Gomar F, Quindos-Rubial M, Fiuza-Luces C, Cristi-Montero C, et al. Physical activity and Alzheimer disease: a protective association. Mayo Clin Proc. 2016;91(8):999–1020. doi: 10.1016/j.mayocp.2016.04.024.
    1. Esteban-Cornejo I, Martinez-Gomez D, Garcia-Cervantes L, Ortega FB, Delgado-Alfonso A, Castro-Pinero J, et al. Objectively measured physical activity during physical education and school recess and their associations with academic performance in youth: the UP&DOWN study. J Phys Act Health. 2017;14(4):275–282. doi: 10.1123/jpah.2016-0192.
    1. Ardoy D, Fernández-Rodríguez J, Jiménez-Pavón D, Castillo R, Ruiz J, Ortega F. A physical education trial improves adolescents' cognitive performance and academic achievement: the EDUFIT study. Scand J Med Sci Sports. 2014;24(1):e52–e61. doi: 10.1111/sms.12093.
    1. Ruiz-Ariza A, Grao-Cruces A, de Loureiro NEM, Martínez-López EJ. Influence of physical fitness on cognitive and academic performance in adolescents: a systematic review from 2005–2015. Int Rev Sport Exerc Psychol. 2017;10(1):108–133. doi: 10.1080/1750984X.2016.1184699.
    1. Ortega FB, Campos D, Cadenas-Sanchez C, Altmäe S, Martínez-Zaldívar C, Martín-Matillas M, et al. Physical fitness and shapes of subcortical brain structures in children. Br J Nutr. 2017;27:1–10.
    1. Esteban-Cornejo I, Cadenas-Sanchez C, Contreras-Rodriguez O, Verdejo-Roman J, Mora-Gonzalez J, Migueles JH, et al. A whole brain volumetric approach in overweight/obese children: examining the association with different physical fitness components and academic performance. The ActiveBrains project. NeuroImage. 2017;159:346–354. doi: 10.1016/j.neuroimage.2017.08.011.
    1. Esteban-Cornejo I, Mora-Gonzalez J, Cadenas-Sanchez C, Contreras-Rodriguez O, Verdejo-Roman J, Henriksson P, et al. Fitness, cortical thickness and surface area in overweight/obese children: the mediating role of body composition and relationship with intelligence. Neuroimage. 2019;186:771–781. doi: 10.1016/j.neuroimage.2018.11.047.
    1. Chaddock L, Erickson KI, Prakash RS, Voss MW, VanPatter M, Pontifex MB, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89(1):260–268. doi: 10.1016/j.biopsycho.2011.10.017.
    1. Kantomaa MT, Stamatakis E, Kankaanpää A, Kajantie E, Taanila A, Tammelin T. Associations of physical activity and sedentary behavior with adolescent academic achievement. J Res Adolesc. 2016;26(3):432–442. doi: 10.1111/jora.12203.
    1. Ruiz JR, Ortega FB, Castillo R, Martín-Matillas M, Kwak L, Vicente-Rodríguez G, et al. Physical activity, fitness, weight status, and cognitive performance in adolescents. J Pediatr. 2010;157(6):917–922. doi: 10.1016/j.jpeds.2010.06.026.
    1. Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. International Children's Accelerometry database C: moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–712. doi: 10.1001/jama.2012.156.
    1. Aguilar-Farias N, Cortinez-O'Ryan A, Sadarangani KP, Von Oetinger A, Leppe J, Valladares M, et al. Results from Chile's 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(11 Suppl 2):S117–s123. doi: 10.1123/jpah.2016-0314.
    1. Burrows R, Correa-Burrows P, Orellana Y, Almagia A, Lizana P, Ivanovic D. Scheduled physical activity is associated with better academic performance in Chilean school-age children. J Phys Act Health. 2014;11(8):1600–1606. doi: 10.1123/jpah.2013-0125.
    1. Correa-Burrows P, Burrows R, Orellana Y, Ivanovic D. Achievement in mathematics and language is linked to regular physical activity: a population study in Chilean youth. J Sports Sci. 2014;32(17):1631–1638. doi: 10.1080/02640414.2014.910606.
    1. Correa-Burrows P, Burrows R, Ibaceta C, Orellana Y, Ivanovic D. Physically active Chilean school kids perform better in language and mathematics. Health Promot Int. 2017;32(2):241–249. doi: 10.1093/heapro/dau010.
    1. Marques A, Santos DA, Hillman CH, Sardinha LB. How does academic achievement relate to cardiorespiratory fitness, self-reported physical activity and objectively reported physical activity: a systematic review in children and adolescents aged 6-18 years. Br J Sports Med. 2018;52(16):1039. doi: 10.1136/bjsports-2016-097361.
    1. Garcia-Hermoso A, Esteban-Cornejo I, Olloquequi J, Ramirez-Velez R. Cardiorespiratory fitness and muscular strength as mediators of the influence of fatness on academic achievement. J Pediatr. 2017;187:127–133. doi: 10.1016/j.jpeds.2017.04.037.
    1. Garcia-Hermoso A, Marina R. Relationship of weight status, physical activity and screen time with academic achievement in adolescents. Obes Res Clin Pract. 2017;11(1):44–50. doi: 10.1016/j.orcp.2015.07.006.
    1. Correa-Burrows Paulina, Rodriguez Yanina, Blanco Estela, Gahagan Sheila, Burrows Raquel. Increased Adiposity as a Potential Risk Factor for Lower Academic Performance: A Cross-Sectional Study in Chilean Adolescents from Low-to-Middle Socioeconomic Background. Nutrients. 2018;10(9):1133. doi: 10.3390/nu10091133.
    1. Correa-Burrows Paulina, Rodríguez Yanina, Blanco Estela, Gahagan Sheila, Burrows Raquel. Snacking Quality Is Associated with Secondary School Academic Achievement and the Intention to Enroll in Higher Education: A Cross-Sectional Study in Adolescents from Santiago, Chile. Nutrients. 2017;9(5):433. doi: 10.3390/nu9050433.
    1. Stillman CM, Cohen J, Lehman ME, Erickson KI. Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front Hum Neurosci. 2016;10:626. doi: 10.3389/fnhum.2016.00626.
    1. Organization WH . Global Health Observatory data repository. 2018. 2018.
    1. Cristi-Montero C, Munizaga C, Tejos C, Ayala R, Henriquez R, Solis-Urra P, et al. Variations of body composition, physical activity and caloric intake in schoolchildren during national holidays. Eat Weight Disord. 2016;21(2):251–255. doi: 10.1007/s40519-015-0229-5.
    1. Chile G, Agencia de la Calidad de la Educación . PISA 2015, Programa Para la Evaluación Internacional de Estudiantes OCDE 2016. 2016.
    1. Valenzuela JP, Bellei C, DdL R. Socioeconomic school segregation in a market-oriented educational system. The case of Chile. J Educ Policy. 2014;29(2):217–241. doi: 10.1080/02680939.2013.806995.
    1. Treviño E, Valenzuela JP, Villalobos C. Within-school segregation in the Chilean school system: what factors explain it? How efficient is this practice for fostering student achievement and equity? Learn Individ Differ. 2016;51:367–375. doi: 10.1016/j.lindif.2016.08.021.
    1. Lopez V, Oyanedel JC, Bilbao M, Torres J, Oyarzun D, Morales M, et al. School achievement and performance in Chilean high schools: the mediating role of subjective wellbeing in school-related evaluations. Front Psychol. 2017;8:1189. doi: 10.3389/fpsyg.2017.01189.
    1. Flotts M, Manzi J, Jiménez D, Abarzúa A, Cayuman C, García M. Informe de resultados TERCE. Santiago: UNESCO; 2015. Tercer estudio regional comparativo y explicativo.
    1. Ortega L, Malmberg L-E, Sammons P. School effects on Chilean children’s achievement growth in language and mathematics: an accelerated growth curve model. Sch Eff Sch Improv. 2018;29(2):308–337. doi: 10.1080/09243453.2018.1443945.
    1. de Greeff JW, Hartman E, Mullender-Wijnsma MJ, Bosker RJ, Doolaard S, Visscher C. Long-term effects of physically active academic lessons on physical fitness and executive functions in primary school children. Health Educ Res. 2016;31(2):185–194. doi: 10.1093/her/cyv102.
    1. de Bruijn AGM, Hartman E, Kostons D, Visscher C, Bosker RJ. Exploring the relations among physical fitness, executive functioning, and low academic achievement. J Exp Child Psychol. 2018;167:204–221. doi: 10.1016/j.jecp.2017.10.010.
    1. Gutmann B, Mierau A, Hulsdunker T, Hildebrand C, Przyklenk A, Hollmann W, et al. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural Plast. 2015;2015:717312. doi: 10.1155/2015/717312.
    1. Gutmann B, Zimmer P, Hulsdunker T, Lefebvre J, Binnebossel S, Oberste M, et al. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neurosci Lett. 2018;668:159–163. doi: 10.1016/j.neulet.2018.01.007.
    1. Drollette ES, Scudder MR, Raine LB, Moore RD, Saliba BJ, Pontifex MB, et al. Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Dev Cogn Neurosci. 2014;7:53–64. doi: 10.1016/j.dcn.2013.11.001.
    1. O'Leary KC, Pontifex MB, Scudder MR, Brown ML, Hillman CH. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clin Neurophysiol. 2011;122(8):1518–1525. doi: 10.1016/j.clinph.2011.01.049.
    1. Singh Amika S, Saliasi Emi, van den Berg Vera, Uijtdewilligen Léonie, de Groot Renate H M, Jolles Jelle, Andersen Lars B, Bailey Richard, Chang Yu-Kai, Diamond Adele, Ericsson Ingegerd, Etnier Jennifer L, Fedewa Alicia L, Hillman Charles H, McMorris Terry, Pesce Caterina, Pühse Uwe, Tomporowski Phillip D, Chinapaw Mai J M. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. British Journal of Sports Medicine. 2018;53(10):640–647. doi: 10.1136/bjsports-2017-098136.
    1. Pontifex Matthew B., McGowan Amanda L., Chandler Madison C., Gwizdala Kathryn L., Parks Andrew C., Fenn Kimberly, Kamijo Keita. A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise. 2019;40:1–22. doi: 10.1016/j.psychsport.2018.08.015.
    1. De Ribaupierre A, Lecerf T. Relationships between working memory and intelligence from a developmental perspective: convergent evidence from a neo-Piagetian and a psychometric approach. Eur J Cogn Psychol. 2006;18(1):109–137. doi: 10.1080/09541440500216127.
    1. Frey A, Lemaire B, Vercueil L, Guerin-Dugue A. An eye fixation-related potential study in two Reading tasks: Reading to memorize and Reading to make a decision. Brain Topogr. 2018;31(4):640–660. doi: 10.1007/s10548-018-0629-8.
    1. Cadenas-Sanchez C, Mora-Gonzalez J, Migueles JH, Martin-Matillas M, Gomez-Vida J, Escolano-Margarit MV, et al. An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): rationale, design and methods. Contemp Clin Trials. 2016;47:315–324. doi: 10.1016/j.cct.2016.02.007.
    1. Monti JM, Hillman CH, Cohen NJ. Aerobic fitness enhances relational memory in preadolescent children: the FITKids randomized control trial. Hippocampus. 2012;22(9):1876–1882. doi: 10.1002/hipo.22023.
    1. Hillman CH, Biggan JR. A review of childhood physical activity, brain, and cognition: perspectives on the future. Pediatr Exerc Sci. 2017;29(2):170–176. doi: 10.1123/pes.2016-0125.
    1. Guadalupe T, Willems RM, Zwiers MP, Arias Vasquez A, Hoogman M, Hagoort P, et al. Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol. 2014;5:261. doi: 10.3389/fpsyg.2014.00261.
    1. Tanner JM. Growth at adolescence; with a general consideration of the effects of hereditary and environmental factors upon growth and maturation from birth to maturity. Oxford: Blackwell Scientific Publications; 1962.
    1. Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc. 2014;15(6):627–636. doi: 10.1016/j.psychsport.2014.06.004.
    1. Godard MC, del Pilar RNM, Diaz N, Lera ML, Salazar RG, Burrows AR. Value of a clinical test for assessing physical activity in children. Revista Medica De Chile. 2008;136(9):1155–1162.
    1. Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–1845. doi: 10.1007/s40279-017-0716-0.
    1. Alhassan S, Lyden K, Howe C, Keadle SK, Nwaokelemeh O, Freedson PS. Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth. Pediatr Exerc Sci. 2012;24(4):519–536. doi: 10.1123/pes.24.4.519.
    1. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003;26(3):342–392. doi: 10.1093/sleep/26.3.342.
    1. Gracia-Marco L, Rey-López JP, Santaliestra-Pasías AM, Jiménez-Pavón D, Díaz LE, Moreno LA, et al. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health. 2012;12(1):971. doi: 10.1186/1471-2458-12-971.
    1. Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518–524. doi: 10.1136/bjsm.2010.075341.
    1. Ortega FB, Ruiz JR, Espana-Romero V, Vicente-Rodriguez G, Martínez-Gómez D, Manios Y, et al. The international fitness scale (IFIS): usefulness of self-reported fitness in youth. Int J Epidemiol. 2011;40(3):701–711. doi: 10.1093/ije/dyr039.
    1. Sánchez-López M, Martínez-Vizcaíno V, García-Hermoso A, Jiménez-Pavón D, Ortega F. Construct validity and test–retest reliability of the I nternational F itness S cale (IFIS) in S panish children aged 9–12 years. Scand J Med Sci Sports. 2015;25(4):543–551. doi: 10.1111/sms.12267.
    1. Mathot S, Schreij D, Theeuwes J. OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods. 2012;44(2):314–324. doi: 10.3758/s13428-011-0168-7.
    1. Ragland JD, Turetsky BI, Gur RC, Gunning-Dixon F, Turner T, Schroeder L, et al. Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology. 2002;16(3):370–379. doi: 10.1037/0894-4105.16.3.370.
    1. Friedman L, Kenny JT, Wise AL, Wu D, Stuve TA, Miller DA, et al. Brain activation during silent word generation evaluated with functional MRI. Brain Lang. 1998;64(2):231–256. doi: 10.1006/brln.1998.1953.
    1. Morrison GE, Simone CM, Ng NF, Hardy JL. Reliability and validity of the NeuroCognitive performance test, a web-based neuropsychological assessment. Front Psychol. 2015;6:1652. doi: 10.3389/fpsyg.2015.01652.
    1. Battery AIT. Manual of directions and scoring. Washington: War Department, Adjutant General’s Office; 1944.
    1. Reed JC, Reed HB. The Halstead—Reitan neuropsychological Battery. In: Contemporary approaches to neuropsychological assessment: Springer; 1997. p. 93–129.
    1. MILNER BRENDA. INTERHEMISPHERIC DIFFERENCES IN THE LOCALIZATION OF PSYCHOLOGICAL PROCESSES IN MAN. British Medical Bulletin. 1971;27(3):272–277. doi: 10.1093/oxfordjournals.bmb.a070866.
    1. Kaufman AS, Flanagan DP, Alfonso VC, Mascolo JT. Test review: Wechsler intelligence scale for children, (WISC-IV) J Psychoeduc Assess. 2006;24(3):278–295. doi: 10.1177/0734282906288389.
    1. Royer FL. Spatial orientational and figural information in free recall of visual figures. J Exp Psychol. 1971;91(2):326. doi: 10.1037/h0031846.
    1. Raven J. The Raven's progressive matrices: change and stability over culture and time. Cogn Psychol. 2000;41(1):1–48. doi: 10.1006/cogp.1999.0735.
    1. Moore SA, McKay HA, Macdonald H, Nettlefold L, Baxter-Jones AD, Cameron N, et al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):1755–1764. doi: 10.1249/MSS.0000000000000588.
    1. Manning J, Kilduff L, Cook C, Crewther B, Fink B. Digit ratio (2D:4D): a biomarker for prenatal sex steroids and adult sex steroids in challenge situations. Front Endocrinol (Lausanne) 2014;5:9. doi: 10.3389/fendo.2014.00009.
    1. Darnai G, Plozer E, Perlaki G, Orsi G, Nagy SA, Horvath R, et al. 2D:4D finger ratio positively correlates with total cerebral cortex in males. Neurosci Lett. 2016;615:33–36. doi: 10.1016/j.neulet.2015.12.056.
    1. Gorka AX, Norman RE, Radtke SR, Carre JM, Hariri AR. Anterior cingulate cortex gray matter volume mediates an association between 2D:4D ratio and trait aggression in women but not men. Psychoneuroendocrinology. 2015;56:148–156. doi: 10.1016/j.psyneuen.2015.03.004.
    1. Neyse L, Brañas-Garza P. Kiel working paper. 2014. Digit ratio measurement guide.
    1. Mikac U, Buško V, Sommer W, Hildebrandt A. Analysis of different sources of measurement error in determining second-to-fourth digit ratio, a potential indicator of perinatal sex hormones exposure. Rev Psychol. 2016;23(1–2):39–49. doi: 10.21465/rp0023.0004.
    1. Encina Agurto YJ, Ávila Muñoz MV. Validación de una escala de estrés cotidiano en escolares chilenos. Revista de Psicología (PUCP) 2015;33(2):363–385.
    1. Stroth S, Kubesch S, Dieterle K, Ruchsow M, Heim R, Kiefer M. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res. 2009;1269:114–124. doi: 10.1016/j.brainres.2009.02.073.
    1. Owens JA, Maxim R, Nobile C, McGuinn M, Msall M. Parental and self-report of sleep in children with attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med. 2000;154(6):549–555. doi: 10.1001/archpedi.154.6.549.
    1. Orgilés M, Owens J, Espada J, Piqueras J, Carballo J. Spanish version of the sleep self-report (SSR): factorial structure and psychometric properties. Child Care Health Dev. 2013;39(2):288–295. doi: 10.1111/j.1365-2214.2012.01389.x.
    1. Chillón Palma, Herrador-Colmenero Manuel, Migueles Jairo H., Cabanas-Sánchez Verónica, Fernández-Santos Jorge R., Veiga Óscar L., Castro-Piñero Jose, Marcos Ascensión, Marcos Ascensión, Veiga Oscar L., Castro-Piñero José, Bandrés Fernando, Martínez-Gómez David, Ruiz Jonatan R., Carbonell-Baeza Ana, Gomez-Martinez Sonia, Santiago Catalina, Marcos Ascensión, Gómez-Martínez Sonia, Nova Esther, Díaz Esperanza L., Zapatera Belén, Veses Ana M., Mujico Jorge R., Gheorghe Alina, Veiga Oscar L., Villagra H. Ariel, del-Campo Juan, Cordente Carlos, Díaz Mario, Tejero Carlos M., Acha Aitor, Moya Jose M., Sanz Alberto, Martínez-Gómez David, Cabanas-Sánchez Verónica, Rodríguez-Romo Gabriel, Izquierdo-Gómez Rocío, Garcia-Cervantes Laura, Esteban-Cornejo. Irene, Castro-Piñero José, Mora-Vicente Jesús, Montesinos José L. González, Conde-Caveda Julio, Ortega Francisco B., Ruiz Jonatan R., Padilla Moledo Carmen, Carbonell Baeza Ana, Chillón Palma, del Rosario Fernández Jorge, González Galo Ana, Bellvís Guerra Gonzalo, Alfonso Álvaro Delgado, Parrilla Fernando, Gómez Roque, Gavala Juan, Bandrés Fernando, Lucia Alejandro, Santiago Catalina, Gómez-Gallego Félix. Convergent validation of a questionnaire to assess the mode and frequency of commuting to and from school. Scandinavian Journal of Public Health. 2017;45(6):612–620. doi: 10.1177/1403494817718905.
    1. Herrador-Colmenero M, Perez-Garcia M, Ruiz JR, Chillon P. Assessing modes and frequency of commuting to school in youngsters: a systematic review. Pediatr Exerc Sci. 2014;26(3):291–341. doi: 10.1123/pes.2013-0120.
    1. Rodríguez-Rodríguez FJ, Gatica CC, de la Rosa FJB, Flores AAA. Evaluación de la educación física escolar en Enseñanza Secundaria (evaluation of physical education in secondary school). Retos. 2017;31:76–81.
    1. Serra-Majem L, Ribas L, Ngo J, Ortega RM, García A, Pérez-Rodrigo C, et al. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean diet quality index in children and adolescents. Public Health Nutr. 2004;7(7):931–935. doi: 10.1079/PHN2004556.
    1. Pinheiro AC, Atalah E. Propuesta de una metodología de análisis de la calidad global de la alimentación. Rev Med Chil. 2005;133(2):175–182. doi: 10.4067/S0034-98872005000200004.
    1. Ravens-Sieberer U, Auquier P, Erhart M, Gosch A, Rajmil L, Bruil J, et al. The KIDSCREEN-27 quality of life measure for children and adolescents: psychometric results from a cross-cultural survey in 13 European countries. Qual Life Res. 2007;16(8):1347–1356. doi: 10.1007/s11136-007-9240-2.
    1. Urzúa A, Cortés E, Vega S, Prieto L, Tapia K. Propiedades psicométricas del cuestionario de auto reporte de la calidad de Vida KIDSCREEN-27 en adolescentes chilenos. Terapia psicológica. 2009;27(1):83–92. doi: 10.4067/S0718-48082009000100008.
    1. Ruiz-Ariza Alberto, Suárez-Manzano Sara, López-Serrano Sebastián, Martínez-López Emilio J. The effect of cooperative high-intensity interval training on creativity and emotional intelligence in secondary school: A randomised controlled trial. European Physical Education Review. 2017;25(2):355–373. doi: 10.1177/1356336X17739271.
    1. Cristi-Montero C. Considerations regarding the use of metabolic equivalents when prescribing exercise for health: preventive medicine in practice. Phys Sportsmed. 2016;44(2):109–111. doi: 10.1080/00913847.2016.1158624.
    1. Schofield WN, Schofield C, James WPT. Basal metabolic rate: review and prediction, together with an annotated bibliography of source material. 1985.
    1. Butte NF, Watson KB, Ridley K, Zakeri IF, Mcmurray RG, Pfeiffer KA, et al. A youth compendium of physical activities: activity codes and metabolic intensities. Med Sci Sports Exerc. 2018;50(2):246. doi: 10.1249/MSS.0000000000001430.
    1. Santana CCA, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. Scand J Med Sci Sports. 2017;27(6):579–603. doi: 10.1111/sms.12773.
    1. Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training for cognitive and mental health in adolescents. Med Sci Sports Exerc. 2016;48(10):1985–1993. doi: 10.1249/MSS.0000000000000993.
    1. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–2148. doi: 10.1016/j.clinph.2007.04.019.
    1. Donchin E, Coles MG. Is the P300 component a manifestation of context updating? Behav Brain Sci. 1988;11(3):357–374. doi: 10.1017/S0140525X00058027.
    1. Kao SC, Westfall DR, Parks AC, Pontifex MB, Hillman CH. Muscular and aerobic fitness, working memory, and academic achievement in children. Med Sci Sports Exerc. 2017;49(3):500–508. doi: 10.1249/MSS.0000000000001132.
    1. Pergher V, Wittevrongel B, Tournoy J, Schoenmakers B, Van Hulle MM. N-back training and transfer effects revealed by behavioral responses and EEG. Brain Behav. 2018;8(11):e01136. doi: 10.1002/brb3.1136.
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Scudder MR, Federmeier KD, Raine LB, Direito A, Boyd JK, Hillman CH. The association between aerobic fitness and language processing in children: implications for academic achievement. Brain Cogn. 2014;87:140–152. doi: 10.1016/j.bandc.2014.03.016.
    1. Cheron G, Leroy A, De Saedeleer C, Bengoetxea A, Lipshits M, Cebolla A, et al. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Res. 2006;1121(1):104–116. doi: 10.1016/j.brainres.2006.08.098.
    1. Ellemberg D, St-Louis-Deschênes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11(2):122–126. doi: 10.1016/j.psychsport.2009.09.006.
    1. Freeman WJ. Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol. 2004;115(9):2077–2088. doi: 10.1016/j.clinph.2004.02.029.
    1. VanRullen R, Koch C. Is perception discrete or continuous? Trends Cogn Sci. 2003;7(5):207–213. doi: 10.1016/S1364-6613(03)00095-0.
    1. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53(1):63–88. doi: 10.1016/j.brainresrev.2006.06.003.
    1. Richard Clark C, Veltmeyer MD, Hamilton RJ, Simms E, Paul R, Hermens D, et al. Spontaneous alpha peak frequency predicts working memory performance across the age span. Int J Psychophysiol. 2004;53(1):1–9. doi: 10.1016/j.ijpsycho.2003.12.011.
    1. Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC. Inter- and intra-individual variability in alpha peak frequency. Neuroimage. 2014;92:46–55. doi: 10.1016/j.neuroimage.2014.01.049.
    1. Grandy TH, Werkle-Bergner M, Chicherio C, Lovden M, Schmiedek F, Lindenberger U. Individual alpha peak frequency is related to latent factors of general cognitive abilities. Neuroimage. 2013;79:10–18. doi: 10.1016/j.neuroimage.2013.04.059.
    1. Hanslmayr S, Sauseng P, Doppelmayr M, Schabus M, Klimesch W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl Psychophysiol Biofeedback. 2005;30(1):1–10. doi: 10.1007/s10484-005-2169-8.
    1. Gevins A, Smith ME, Leong H, McEvoy L, Whitfield S, Du R, et al. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Hum Factors. 1998;40(1):79–91. doi: 10.1518/001872098779480578.
    1. Demberg V, Sayeed A. The frequency of rapid pupil dilations as a measure of linguistic processing difficulty. PLoS One. 2016;11(1):e0146194. doi: 10.1371/journal.pone.0146194.
    1. Hedges LV. Estimation of effect size from a series of independent experiments. Psychol Bull. 1982;92(2):490. doi: 10.1037/0033-2909.92.2.490.
    1. Cohen J. A power primer. Psychol Bull. 1992;112(1):155. doi: 10.1037/0033-2909.112.1.155.
    1. Cutler DM, Lleras-Muney A. National bureau of economic research. 2006. Education and health: evaluating theories and evidence.
    1. Biddle Stuart J.H., Ciaccioni Simone, Thomas George, Vergeer Ineke. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychology of Sport and Exercise. 2019;42:146–155. doi: 10.1016/j.psychsport.2018.08.011.

Source: PubMed

3
Suscribir