Effects of Elastic Resistance Exercise on Postoperative Outcomes Linked to the ICF Core Sets for Osteoarthritis after Total Knee Replacement in Overweight and Obese Older Women with Sarcopenia Risk: A Randomized Controlled Trial

Chun-De Liao, Yen-Shuo Chiu, Jan-Wen Ku, Shih-Wei Huang, Tsan-Hon Liou, Chun-De Liao, Yen-Shuo Chiu, Jan-Wen Ku, Shih-Wei Huang, Tsan-Hon Liou

Abstract

(1) Background: Knee osteoarthritis (KOA) and aging are associated with high sarcopenia risk; sarcopenia may further affect outcomes after total knee replacement (TKR). Elastic resistance exercise training (RET) limits muscle attenuation in older adults. We aimed to identify the effects of post-TKR elastic RET on lean mass (LM) and functional outcomes in overweight and obese older women with KOA by using the brief International Classification of Functioning, Disability and Health Core Set for osteoarthritis (Brief-ICF-OA). (2) Methods: Eligible women aged ≥60 years who had received unilateral primary TKR were randomly divided into an experimental group (EG), which received postoperative RET twice weekly for 12 weeks, and a control group (CG), which received standard care. The primary and secondary outcome measures were LM and physical capacity, respectively, and were linked to the Brief-ICF-OA. The assessment time points were 2 weeks prior to surgery (T0) and postoperative at 1 month (T1; before RET) and 4 months (T2; upon completion of RET) of follow-up. An independent t test with an intention-to-treat analysis was conducted to determine the between-group differences in changes of outcome measures at T1 and T2 from T0. (3) Results: Forty patients (age: 70.9 ± 7.3 years) were randomly assigned to the EG (n = 20) or CG (n = 20). At T2, the EG exhibited significantly greater improvements in leg LM (mean difference (MD) = 0.86 kg, p = 0.004) and gait speed (MD = 0.26 m/s, p = 0.005) compared with the CG. Furthermore, the EG generally obtained significantly higher odds ratios than the CG for treatment success for most Brief-ICF-OA categories (all p < 0.001). Conclusions: Early intervention of elastic RET after TKR yielded positive postoperative outcomes based on the Brief-ICF-OA. The findings of this study may facilitate clinical decision-making regarding the optimal post-TKR rehabilitation strategy for older women with KOA.

Keywords: ICF; elastic resistance training; knee arthroplasty; obesity; osteoarthritis; sarcopenia.

Conflict of interest statement

The authors declare that they have no conflict of interest regarding the publication of this article.

Figures

Figure 1
Figure 1
Consolidated Standards of Reporting Trials flowchart for patient enrollment and allocation in the present study. LOCF, last-observation-carried-forward; RET, resistance exercise training; TKR, total knee replacement.
Figure 2
Figure 2
Effect on treatment success rate in all categories of the brief International Classification of Functioning, Disability and Health (ICF) Core Set for osteoarthritis. Each comparison result is represented as a point estimate (square box) with a 95% confidence interval (CI, horizontal line). Results plotted on the right side indicate positive effects of elastic resistance exercise training (RET).

References

    1. Bennell K.L., Wrigley T.V., Hunt M.A., Lim B.W., Hinman R.S. Update on the role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin. N. Am. 2013;39:145–176. doi: 10.1016/j.rdc.2012.11.003.
    1. Masiero S., Vittadini F., Ferroni C., Bosco A., Serra R., Frigo A.C., Frizziero A. The role of thermal balneotherapy in the treatment of obese patient with knee osteoarthritis. Int. J. Biometeorol. 2018;62:243–252. doi: 10.1007/s00484-017-1445-7.
    1. Hsu H., Siwiec R.M. In: Knee Osteoarthritis. StatPearls, editor. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2019.
    1. Lee S., Kim T.N., Kim S.H. Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: A cross-sectional study. Arthritis. Rheum. 2012;64:3947–3954. doi: 10.1002/art.37696.
    1. Papalia R., Zampogna B., Torre G., Lanotte A., Vasta S., Albo E., Tecame A., Denaro V. Sarcopenia and its relationship with osteoarthritis: Risk factor or direct consequence? Musculoskelet Surg. 2014;98:9–14. doi: 10.1007/s12306-014-0311-6.
    1. Toda Y., Segal N., Toda T., Kato A., Toda F. A decline in lower extremity lean body mass per body weight is characteristic of women with early phase osteoarthritis of the knee. J. Rheumatol. 2000;27:2449–2454.
    1. Lee S.Y., Ro H.J., Chung S.G., Kang S.H., Seo K.M., Kim D.K. Low Skeletal Muscle Mass in the Lower Limbs Is Independently Associated to Knee Osteoarthritis. PLoS ONE. 2016;11:e0166385. doi: 10.1371/journal.pone.0166385.
    1. Welch C., Hassan-Smith Z.K., Greig C.A., Lord J.M., Jackson T.A. Acute Sarcopenia Secondary to Hospitalisation—An Emerging Condition Affecting Older Adults. Aging Dis. 2018;9:151–164. doi: 10.14336/AD.2017.0315.
    1. Verdijk L.B., Gleeson B.G., Jonkers R.A., Meijer K., Savelberg H.H., Dendale P., van Loon L.J. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:332–339. doi: 10.1093/gerona/gln050.
    1. Dent E., Morley J.E., Cruz-Jentoft A.J., Arai H., Kritchevsky S.B., Guralnik J., Bauer J.M., Pahor M., Clark B.C., Cesari M., et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging. 2018;22:1148–1161. doi: 10.1007/s12603-018-1139-9.
    1. Waller B., Munukka M., Rantalainen T., Lammentausta E., Nieminen M.T., Kiviranta I., Kautiainen H., Häkkinen A., Kujala U.M., Heinonen A. Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: A 4-month RCT with 12-month follow-up. Osteoarthr. Cartil. 2017;25:1238–1246. doi: 10.1016/j.joca.2017.02.800.
    1. Lim J.Y., Tchai E., Jang S.N. Effectiveness of aquatic exercise for obese patients with knee osteoarthritis: A randomized controlled trial. PM R. 2010;2:723–731. doi: 10.1016/j.pmrj.2010.04.004.
    1. Toda Y. The effect of energy restriction, walking, and exercise on lower extremity lean body mass in obese women with osteoarthritis of the knee. J. Orthop. Sci. 2001;6:148–154. doi: 10.1007/s007760100063.
    1. Franzke B., Halper B., Hofmann M., Oesen S., Pierson B., Cremer A., Bacher E., Fuchs B., Baierl A., Tosevska A., et al. The effect of six months of elastic band resistance training, nutritional supplementation or cognitive training on chromosomal damage in institutionalized elderly. Exp. Gerontol. 2015;65:16–22. doi: 10.1016/j.exger.2015.03.001.
    1. Liao C.D., Tsauo J.Y., Huang S.W., Ku J.W., Hsiao D.J., Liou T.H. Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: A randomized controlled trial. Sci. Rep. 2018;8:2317. doi: 10.1038/s41598-018-20677-7.
    1. Thiebaud R.S., Funk M.D., Abe T. Home-based resistance training for older adults: A systematic review. Geriatr. Gerontol. Int. 2014;14:750–757. doi: 10.1111/ggi.12326.
    1. Chou L.N., Chen M.L. Effects of Elastic Band Exercise on Lower Limb Rehabilitation of Elderly Patients Undergoing Total Knee Arthroplasty. Rehabil. Nurs. 2019;44:60–66. doi: 10.1097/rnj.0000000000000109.
    1. Bade M.J., Stevens-Lapsley J.E. Restoration of physical function in patients following total knee arthroplasty: An update on rehabilitation practices. Curr. Opin. Rheumatol. 2012;24:208–214. doi: 10.1097/BOR.0b013e32834ff26d.
    1. Barrois B., Ribinik P., Gougeon F., Rannou F., Revel M. What is the role of the physical medicine and rehabilitation unit after total knee arthroplasty? Clinical practice recommendations. Ann. Readapt. Med. Phys. 2007;50:724–728, 729–733. doi: 10.1016/j.annrmp.2007.08.005.
    1. World Health Organization . How to Use the ICF: A Practical Manual for Using the International Classification of Functioning, Disability and Health (ICF). Exposure Draft for Comment. WHO; Geneva, Switzerland: 2013.
    1. Dreinhofer K., Stucki G., Ewert T., Huber E., Ebenbichler G., Gutenbrunner C., Kostanjsek N., Cieza A. ICF Core Sets for osteoarthritis. J. Rehabil. Med. 2004:75–80. doi: 10.1080/16501960410015498.
    1. Pisoni C., Giardini A., Majani G., Maini M. International Classification of Functioning, Disability and Health (ICF) core sets for osteoarthritis. A useful tool in the follow-up of patients after joint arthroplasty. Eur. J. Phys. Rehabil. Med. 2008;44:377–385.
    1. Visser A.W., de Mutsert R., Loef M., Le Cessie S., den Heijer M., Bloem J.L., Reijnierse M., Rosendaal F.R., Kloppenburg M., NEO Study Group The role of fat mass and skeletal muscle mass in knee osteoarthritis is different for men and women: The NEO study. Osteoarthr. Cartil. 2014;22:197–202. doi: 10.1016/j.joca.2013.12.002.
    1. Tolk J.J., Janssen R.P.A., Haanstra T.M., van der Steen M.M.C., Bierma Zeinstra S.M.A., Reijman M. Outcome Expectations of Total Knee Arthroplasty Patients: The Influence of Demographic Factors, Pain, Personality Traits, Physical and Psychological Status. J. Knee Surg. 2019 doi: 10.1055/s-0039-1692632.
    1. Liao C.D., Huang Y.C., Chiu Y.S., Liou T.H. Effect of body mass index on knee function outcome following continuous passive motion in patients with osteoarthritis after total knee replacement. Physiotherapy. 2017;103:266–275. doi: 10.1016/j.physio.2016.04.003.
    1. Abizanda Soler P., Paterna Mellinas G., Martinez Sanchez E., Lopez Jimenez E. Comorbidity in the elderly: Utility and validity of assessment tools. Rev. Esp. Geriatr. Gerontol. 2010;45:219–228. doi: 10.1016/j.regg.2009.10.009.
    1. Cieza A., Fayed N., Bickenbach J., Prodinger B. Refinements of the ICF Linking Rules to strengthen their potential for establishing comparability of health information. Disabil. Rehabil. 2019;41:574–583. doi: 10.3109/09638288.2016.1145258.
    1. Huang S.W., Chi W.C., Chang K.H., Yen C.F., Liao H.F., Escorpizo R., Liou T.H. World health organization disability assessment schedule 2.0 as an objective assessment tool for predicting return to work after a stroke. Disabil Rehabil. 2018;40:2592–2597. doi: 10.1080/09638288.2017.1342280.
    1. Chen L.K., Liu L.K., Woo J., Assantachai P., Auyeung T.W., Bahyah K.S., Chou M.Y., Chen L.Y., Hsu P.S., Krairit O., et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J Am. Med. Dir. Assoc. 2014;15:95–101. doi: 10.1016/j.jamda.2013.11.025.
    1. Hazra A., Gogtay N. Biostatistics Series Module 5: Determining Sample Size. Indian J. Dermatol. 2016;61:496–504. doi: 10.4103/0019-5154.190119.
    1. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Morishita S., Yamauchi S., Fujisawa C., Domen K. Rating of perceived exertion for quantification of the intensity of resistance exercise. Int. J. Phys. Med. Rehabil. 2013;1:172.
    1. Row B.S., Knutzen K.M., Skogsberg N.J. Regulating explosive resistance training intensity using the rating of perceived exertion. J. Strength Cond. Res. 2012;26:664–671. doi: 10.1519/JSC.0b013e31822ac367.
    1. Hopkins S.J., Toms A.D., Brown M., Welsman J.R., Ukoumunne O.C., Knapp K.M. A study investigating short- and medium-term effects on function, bone mineral density and lean tissue mass post-total knee replacement in a Caucasian female post-menopausal population: Implications for hip fracture risk. Osteoporos. Int. 2016;27:2567–2576. doi: 10.1007/s00198-016-3546-2.
    1. Rothney M.P., Brychta R.J., Schaefer E.V., Chen K.Y., Skarulis M.C. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring) 2009;17:1281–1286. doi: 10.1038/oby.2009.14.
    1. Wimmer M.A., Nechtow W., Schwenke T., Moisio K.C. Knee Flexion and Daily Activities in Patients following Total Knee Replacement: A Comparison with ISO Standard 14243. Biomed. Res. Int. 2015;2015:157541. doi: 10.1155/2015/157541.
    1. Bade M.J., Kittelson J.M., Kohrt W.M., Stevens-Lapsley J.E. Predicting Functional Performance and Range of Motion Outcomes After Total Knee Arthroplasty. Am. J. Phys. Med. Rehabil. 2014;93:579–585. doi: 10.1097/PHM.0000000000000065.
    1. Kornuijt A., de Kort G.J.L., Das D., Lenssen A.F., van der Weegen W. Recovery of knee range of motion after total knee arthroplasty in the first postoperative weeks: Poor recovery can be detected early. Musculoskelet. Surg. 2019;103:289–297. doi: 10.1007/s12306-019-00588-0.
    1. Liao C.D., Lin L.F., Huang Y.C., Huang S.W., Chou L.C., Liou T.H. Functional outcomes of outpatient balance training following total knee replacement in patients with knee osteoarthritis: A randomized controlled trial. Clin. Rehabil. 2015;29:855–867. doi: 10.1177/0269215514564086.
    1. Xie F., Li S.C., Goeree R., Tarride J.E., O’Reilly D., Lo N.N., Yeo S.J., Yang K.Y., Thumboo J. Validation of Chinese Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in patients scheduled for total knee replacement. Qual. Life Res. 2008;17:595–601. doi: 10.1007/s11136-008-9340-7.
    1. White I.R., Horton N.J., Carpenter J., Pocock S.J. Strategy for intention to treat analysis in randomised trials with missing outcome data. BMJ. 2011;342:d40. doi: 10.1136/bmj.d40.
    1. Gallagher D., Visser M., De Meersman R.E., Sepúlveda D., Baumgartner R.N., Pierson R.N., Harris T., Heymsfield S.B. Appendicular skeletal muscle mass: Effects of age, gender, and ethnicity. J. Appl. Physiol. (1985) 1997;83:229–239. doi: 10.1152/jappl.1997.83.1.229.
    1. Roach K.E., Miles T.P. Normal hip and knee active range of motion: The relationship to age. Phys. Ther. 1991;71:656–665. doi: 10.1093/ptj/71.9.656.
    1. Bohannon R.W., Williams Andrews A. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–189. doi: 10.1016/j.physio.2010.12.004.
    1. Rikli R.E., Jones C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53:255–267. doi: 10.1093/geront/gns071.
    1. Gelman A., Hill J., Yajima M. Why we (usually) don’t have to worry about multiple comparisons. J. Res. Educ. Eff. 2012;5:189–211. doi: 10.1080/19345747.2011.618213.
    1. Wada O., Kurita N., Kamitani T., Nakano N., Mizuno K. Influence of the severity of knee osteoarthritis on the association between leg muscle mass and quadriceps strength: The SPSS-OK study. Clin. Rheumatol. 2019;38:719–725. doi: 10.1007/s10067-018-4337-2.
    1. Chen H.T., Wu H.J., Chen Y.J., Ho S.Y., Chung Y.C. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp. Gerontol. 2018;112:112–118. doi: 10.1016/j.exger.2018.09.015.
    1. Chiu S.C., Yang R.S., Yang R.J., Chang S.F. Effects of resistance training on body composition and functional capacity among sarcopenic obese residents in long-term care facilities: A preliminary study. BMC Geriatr. 2018;18:21. doi: 10.1186/s12877-018-0714-6.
    1. Gadelha A.B., Paiva F.M.L., Gauche R., de Oliveira R.J., Lima R.M. Effects of resistance training on sarcopenic obesity index in older women: A randomized controlled trial. Arch. Gerontol. Geriatr. 2016;65:168–173. doi: 10.1016/j.archger.2016.03.017.
    1. Torres M., Trexler E.T., Smith-Ryan A.E., Reynolds A. A mathematical model of the effects of resistance exercise-induced muscle hypertrophy on body composition. Eur. J. Appl. Physiol. 2018;118:449–460. doi: 10.1007/s00421-017-3787-6.
    1. Borjesson M., Weidenhielm L., Elfving B., Olsson E. Tests of walking ability at different speeds in patients with knee osteoarthritis. Physiother. Res. Int. 2007;12:115–121. doi: 10.1002/pri.360.
    1. Wright A.A., Cook C.E., Baxter G.D., Dockerty J.D., Abbott J.H. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J. Orthop. Sports Phys. Ther. 2011;41:319–327. doi: 10.2519/jospt.2011.3515.
    1. Liao C.D., Chen H.C., Huang S.W., Liou T.H. The Role of Muscle Mass Gain Following Protein Supplementation Plus Exercise Therapy in Older Adults with Sarcopenia and Frailty Risks: A Systematic Review and Meta-Regression Analysis of Randomized Trials. Nutrients. 2019;11:1713. doi: 10.3390/nu11081713.
    1. Joshi R.N., White P.B., Murray-Weir M., Alexiades M.M., Sculco T.P., Ranawat A.S. Prospective Randomized Trial of the Efficacy of Continuous Passive Motion Post Total Knee Arthroplasty: Experience of the Hospital for Special Surgery. J. Arthroplast. 2015;30:2364–2369. doi: 10.1016/j.arth.2015.06.006.
    1. Liao C.D., Tsauo J.Y., Huang S.W., Chen H.C., Chiu Y.S., Liou T.H. Preoperative range of motion and applications of continuous passive motion predict outcomes after knee arthroplasty in patients with arthritis. Knee Surg. Sports Traumatol. Arthrosc. 2019;27:1259–1269. doi: 10.1007/s00167-018-5257-z.
    1. Reid K.F., Naumova E.N., Carabello R.J., Phillips E.M., Fielding R.A. Lower extremity muscle mass predicts functional performance in mobility-limited elders. J. Nutr. Health Aging. 2008;12:493–498. doi: 10.1007/BF02982711.
    1. Rastogi R., Chesworth B.M., Davis A.M. Change in patient concerns following total knee arthroplasty described with the International Classification of Functioning, Disability and Health: A repeated measures design. Health Qual. Life Outcomes. 2008;6:112. doi: 10.1186/1477-7525-6-112.
    1. Oesen S., Halper B., Hofmann M., Jandrasits W., Franzke B., Strasser E.M., Graf A., Tschan H., Bachl N., Quittan M., et al. Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly—A randomized controlled trial. Exp. Gerontol. 2015;72:99–108. doi: 10.1016/j.exger.2015.08.013.

Source: PubMed

3
Suscribir