Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions

Emily Shorter, Anthony J Sannicandro, Blandine Poulet, Katarzyna Goljanek-Whysall, Emily Shorter, Anthony J Sannicandro, Blandine Poulet, Katarzyna Goljanek-Whysall

Abstract

Purpose of review: Osteoarthritis (OA) is a subset of joint disorders resulting in degeneration of synovial joints. This leads to pain, disability and loss of independence. Knee and hip OA are extremely prevalent, and their occurrence increases with ageing. Similarly, loss of muscle mass and function, sarcopenia, occurs during ageing.

Recent findings: Little is known about the impact of muscle wasting on OA progression; nevertheless, it has been suggested that muscle wasting directly affects the stability of the joints and loss of mobility leads to gradual degeneration of articular cartilage. The molecular mechanisms underlying muscle wasting in OA are not well understood; however, these are probably related to changes in gene expression, as well as epigenetic modifications. It is becoming clear that skeletal muscle wasting plays an important role in OA development and/or progression. Here, we discuss mechanisms, current interventions, such as exercise, and potentially novel approaches, such as modulation of microRNAs, aiming at ameliorating OA symptoms through maintaining muscle mass and function.

Keywords: Ageing; Exercise; Muscle; Osteoarthritis; microRNAs.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

    1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–1707. doi: 10.1002/art.34453.
    1. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19(1):18. doi: 10.1186/s13075-017-1229-9.
    1. Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR, Jr, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:928301. doi: 10.1155/2015/928301.
    1. Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology. Curr Opin Pharmacol. 2016;28:8–13. doi: 10.1016/j.coph.2016.02.009.
    1. Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull. 2010;95:139–159. doi: 10.1093/bmb/ldq008.
    1. Silva JMS, Alabarse PVG, Teixeira VON, Freitas EC, de Oliveira FH, Chakr R, et al. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection. PLoS One. 2018;13(4):e0196682. doi: 10.1371/journal.pone.0196682.
    1. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427–511. doi: 10.1152/physrev.00061.2017.
    1. Brown DM, Goljanek-Whysall K. microRNAs: Modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev. 2015;24(Pt B):263–273. doi: 10.1016/j.arr.2015.08.007.
    1. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–743. doi: 10.1016/j.devcel.2009.04.013.
    1. Fisher NM, White SC, Yack HJ, Smolinski RJ, Pendergast DR. Muscle function and gait in patients with knee osteoarthritis before and after muscle rehabilitation. Disabil Rehabil. 1997;19(2):47–55. doi: 10.3109/09638289709166827.
    1. Toda Y, Kobayashi T. The usefulness of walking for preventing sarcopenia in dieting postmenopausal women complaining of knee pain. Ann N Y Acad Sci. 2000;904:610–613. doi: 10.1111/j.1749-6632.2000.tb06524.x.
    1. O’Reilly SC, Jones A, Muir KR, Doherty M. Quadriceps weakness in knee osteoarthritis: the effect on pain and disability. Ann Rheum Dis. 1998;57(10):588–594. doi: 10.1136/ard.57.10.588.
    1. Segal NA, Glass NA, Torner J, Yang M, Felson DT, Sharma L, et al. Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthritis Cartilage. 2010;18(6):769–775. doi: 10.1016/j.joca.2010.02.002.
    1. Conroy MB, Kwoh CK, Krishnan E, Nevitt MC, Boudreau R, Carbone LD, et al. Muscle strength, mass, and quality in older men and women with knee osteoarthritis. Arthritis Care Res. 2012;64(1):15–21. doi: 10.1002/acr.20588.
    1. Isaac C, Wright A, Usas A, Li H, Tang Y, Mu X, et al. Dystrophin and utrophin "double knockout" dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities. J Orthop Res. 2013;31(3):343–349. doi: 10.1002/jor.22236.
    1. Wang Y, Wluka AE, Berry PA, Siew T, Teichtahl AJ, Urquhart DM, et al. Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis. Arthritis Rheum. 2012;64(12):3917–3925. doi: 10.1002/art.34681.
    1. Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, et al. Risk of knee osteoarthritis with obesity, sarcopenic obesity, and sarcopenia. Arthritis Rheum. 2019;71(2):232–237. doi: 10.1002/art.40692.
    1. Lee SY, Ro HJ, Chung SG, Kang SH, Seo KM, Kim DK. Low skeletal muscle mass in the lower limbs is independently associated to knee osteoarthritis. PLoS One. 2016;11(11):e0166385. doi: 10.1371/journal.pone.0166385.
    1. Scott D, Blizzard L, Fell J, Jones G. Prospective study of self-reported pain, radiographic osteoarthritis, sarcopenia progression, and falls risk in community-dwelling older adults. Arthritis Care Res. 2012;64(1):30–37. doi: 10.1002/acr.20545.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Papalia R, Zampogna B, Torre G, Lanotte A, Vasta S, Albo E, et al. Sarcopenia and its relationship with osteoarthritis: risk factor or direct consequence? Musculoskelet Surg. 2014;98(1):9–14. doi: 10.1007/s12306-014-0311-6.
    1. Krishnasamy P, Hall M, Robbins SR. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis. Rheumatology. 2018;57(suppl_4):iv124. doi: 10.1093/rheumatology/key039.
    1. Levinger P, Caldow MK, Feller JA, Bartlett JR, Bergman NR, McKenna MJ, et al. Association between skeletal muscle inflammatory markers and walking pattern in people with knee osteoarthritis. Arthritis Care Res. 2011;63(12):1715–1721. doi: 10.1002/acr.20625.
    1. Noehren B, Kosmac K, Walton RG, Murach KA, Lyles MF, Loeser RF, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis. Osteoarthritis and cartilage / OARS. Osteoarthritis Res Soc. 2018;26(10):1359–1368. doi: 10.1016/j.joca.2018.05.011.
    1. Poulet B, Westerhof TA, Hamilton RW, Shefelbine SJ, Pitsillides AA. Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma. Osteoarthritis Cartilage. 2013;21(5):756–763. doi: 10.1016/j.joca.2013.02.652.
    1. Toda Y, Segal N, Toda T, Kato A, Toda F. A decline in lower extremity lean body mass per body weight is characteristic of women with early phase osteoarthritis of the knee. J Rheumatol. 2000;27(10):2449–2454.
    1. Pisters MF, Veenhof C, van Dijk GM, Dekker J, Group CS Avoidance of activity and limitations in activities in patients with osteoarthritis of the hip or knee: a 5 year follow-up study on the mediating role of reduced muscle strength. Osteoarthritis Cartilage. 2014;22(2):171–177. doi: 10.1016/j.joca.2013.12.007.
    1. Bryk FF, Dos Reis AC, Fingerhut D, Araujo T, Schutzer M, Cury Rde P, et al. Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1580–1586. doi: 10.1007/s00167-016-4064-7.
    1. Alkatan M, Baker JR, Machin DR, Park W, Akkari AS, Pasha EP, et al. Improved function and reduced pain after swimming and cycling training in patients with osteoarthritis. J Rheumatol. 2016;43(3):666–672. doi: 10.3899/jrheum.151110.
    1. Al-Khlaifat L, Herrington LC, Hammond A, Tyson SF, Jones RK. The effectiveness of an exercise programme on knee loading, muscle co-contraction, and pain in patients with medial knee osteoarthritis: a pilot study. Knee. 2016;23(1):63–69. doi: 10.1016/j.knee.2015.03.014.
    1. Laurentino G., Ugrinowitsch C., Aihara A., Fernandes A., Parcell A., Ricard M., Tricoli V. Effects of Strength Training and Vascular Occlusion. International Journal of Sports Medicine. 2008;29(08):664–667. doi: 10.1055/s-2007-989405.
    1. Bricca A, Struglics A, Larsson S, Steultjens M, Juhl CB, Roos EM. Impact of exercise therapy on molecular biomarkers related to cartilage and inflammation in people at risk of, or with established, knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Arthritis Care Res. 2018. 10.1002/acr.23786.
    1. Bennell KL, Kyriakides M, Metcalf B, Egerton T, Wrigley TV, Hodges PW, et al. Neuromuscular versus quadriceps strengthening exercise in patients with medial knee osteoarthritis and varus malalignment: a randomized controlled trial. Arthritis Rheum. 2014;66(4):950–959. doi: 10.1002/art.38317.
    1. Clausen B, Holsgaard-Larsen A, Roos EM. An 8-week neuromuscular exercise program for patients with mild to moderate knee osteoarthritis: a case series drawn from a registered clinical trial. J Athl Train. 2017;52(6):592–605. doi: 10.4085/1062-6050-52.5.06.
    1. Miller MS, Callahan DM, Tourville TW, Slauterbeck JR, Kaplan A, Fiske BR, et al. Moderate-intensity resistance exercise alters skeletal muscle molecular and cellular structure and function in inactive older adults with knee osteoarthritis. J Appl Physiol. 2017;122(4):775–787. doi: 10.1152/japplphysiol.00830.2016.
    1. Bartholdy C, Juhl C, Christensen R, Lund H, Zhang W, Henriksen M. The role of muscle strengthening in exercise therapy for knee osteoarthritis: a systematic review and meta-regression analysis of randomized trials. Semin Arthritis Rheum. 2017;47(1):9–21. doi: 10.1016/j.semarthrit.2017.03.007.
    1. Koli J, Multanen J, Kujala UM, Hakkinen A, Nieminen MT, Kautiainen H, et al. Effects of exercise on patellar cartilage in women with mild knee osteoarthritis. Med Sci Sports Exerc. 2015;47(9):1767–1774. doi: 10.1249/MSS.0000000000000629.
    1. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108.
    1. Williams J, Smith F, Kumar S, Vijayan M, Reddy PH. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev. 2017;35:350–363. doi: 10.1016/j.arr.2016.11.008.
    1. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi: 10.1038/nrd.2016.246.
    1. Hermann W, Lambova S, Muller-Ladner U. Current treatment options for osteoarthritis. Curr Rheumatol Rev. 2018;14(2):108–116. doi: 10.2174/1573397113666170829155149.
    1. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580(17):4214–4217. doi: 10.1016/j.febslet.2006.06.080.
    1. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics. 2011;43(10):595–603. doi: 10.1152/physiolgenomics.00148.2010.
    1. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 2007;102(1):306–313. doi: 10.1152/japplphysiol.00932.2006.
    1. Soares Ricardo José, Cagnin Stefano, Chemello Francesco, Silvestrin Matteo, Musaro Antonio, De Pitta Cristiano, Lanfranchi Gerolamo, Sandri Marco. Involvement of MicroRNAs in the Regulation of Muscle Wasting during Catabolic Conditions. Journal of Biological Chemistry. 2014;289(32):21909–21925. doi: 10.1074/jbc.M114.561845.
    1. Soriano-Arroquia A, House L, Tregilgas L, Canty-Laird E, Goljanek-Whysall K. The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology. 2016;17(3):641–654. doi: 10.1007/s10522-016-9638-8.
    1. Soriano-Arroquia A, McCormick R, Molloy AP, McArdle A, Goljanek-Whysall K. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration. Aging Cell. 2016;15(2):361–369. doi: 10.1111/acel.12442.
    1. Philipot D, Guerit D, Platano D, Chuchana P, Olivotto E, Espinoza F, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther. 2014;16(1):R58. doi: 10.1186/ar4494.
    1. Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis and cartilage / OARS. Osteoarthritis Res Soc. 2012;20(5):339–349. doi: 10.1016/j.joca.2011.12.012.
    1. Dakin SG. MicroRNA replacement: a new era of molecular therapy for tendon disorders? Mol Ther. 2017;25(10):2243–2244. doi: 10.1016/j.ymthe.2017.09.004.
    1. Ng TK, Yang Q, Fortino VR, Lai NY, Carballosa CM, Greenberg JM, et al. MicroRNA-132 directs human periodontal ligament-derived neural crest stem cell neural differentiation. J Tissue Eng Regen Med. 2019;13(1):12–24. doi: 10.1002/term.2759.
    1. Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, et al. Role of MicroRNA-141 in the aging musculoskeletal system: a current overview. Mech Ageing Dev. 2019;178:9–15. doi: 10.1016/j.mad.2018.12.001.
    1. Balaskas P, Goljanek-Whysall K, Clegg P, Fang Y, Cremers A, Emans P, et al. MicroRNA profiling in cartilage ageing. Int J Genomics. 2017;2017:2713725. doi: 10.1155/2017/2713725.
    1. McCormick R, Goljanek-Whysall K. MicroRNA dysregulation in aging and pathologies of the skeletal muscle. Int Rev Cell Mol Biol. 2017;334:265–308. doi: 10.1016/bs.ircmb.2017.03.005.
    1. Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep. 2017;7(1):12314. doi: 10.1038/s41598-017-12538-6.
    1. Gaur T, Hussain S, Mudhasani R, Parulkar I, Colby JL, Frederick D, et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol. 2010;340(1):10–21. doi: 10.1016/j.ydbio.2010.01.008.
    1. Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature. 2012;482(7386):524–528. doi: 10.1038/nature10834.
    1. Russell AP, Lamon S, Boon H, Wada S, Guller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 2013;591(18):4637–4653. doi: 10.1113/jphysiol.2013.255695.
    1. Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, et al. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget. 2018;9(24):17220–17237. doi: 10.18632/oncotarget.24991.
    1. Widmann Manuel, Nieß Andreas M., Munz Barbara. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Medicine. 2019;49(4):509–523. doi: 10.1007/s40279-019-01070-4.
    1. Hong BK, You S, Yoo SA, Park D, Hwang D, Cho CS, et al. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp Mol Med. 2017;49(8):e363. doi: 10.1038/emm.2017.108.
    1. Nakamura A, Rampersaud YR, Nakamura S, Sharma A, Zeng F, Rossomacha E, et al. microRNA-181a- 5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. Ann Rheum Dis. 2019;78(1):111–121. doi: 10.1136/annrheumdis-2018-213629.
    1. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 2008;295(6):E1333–E1340. doi: 10.1152/ajpendo.90562.2008.
    1. Li Y, Jiang J, Liu W, Wang H, Zhao L, Liu S, et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A. 2018;115(46):E10849–E10E58. doi: 10.1073/pnas.1803377115.
    1. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci U S A. 2012;109(38):15330–15335. doi: 10.1073/pnas.1207605109.
    1. Li YH, Tavallaee G, Tokar T, Nakamura A, Sundararajan K, Weston A, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthritis Cartilage. 2016;24(9):1577–1586. doi: 10.1016/j.joca.2016.04.019.
    1. Cheng NT, Meng H, Ma LF, Zhang L, Yu HM, Wang ZZ, et al. Role of autophagy in the progression of osteoarthritis: the autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis. Int J Mol Med. 2017;39(5):1224–1232. doi: 10.3892/ijmm.2017.2934.
    1. Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y, et al. MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol (Amst) 2018;2018:8402390. doi: 10.1155/2018/8402390.
    1. Jung Hwa Jin, Lee Kwang-Pyo, Kwon Ki-Sun, Suh Yousin. MicroRNAs in Skeletal Muscle Aging: Current Issues and Perspectives. The Journals of Gerontology: Series A. 2018;74(7):1008–1014. doi: 10.1093/gerona/gly207.
    1. Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med. 2012;18(2):109–118. doi: 10.1016/j.molmed.2011.11.005.
    1. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31(7):577. doi: 10.1038/nbt0713-577.

Source: PubMed

3
Suscribir