Vitamin D and Phenylbutyrate Supplementation Does Not Modulate Gut Derived Immune Activation in HIV-1

Catharina Missailidis, Nikolaj Sørensen, Senait Ashenafi, Wondwossen Amogne, Endale Kassa, Amsalu Bekele, Meron Getachew, Nebiat Gebreselassie, Abraham Aseffa, Getachew Aderaye, Jan Andersson, Susanna Brighenti, Peter Bergman, Catharina Missailidis, Nikolaj Sørensen, Senait Ashenafi, Wondwossen Amogne, Endale Kassa, Amsalu Bekele, Meron Getachew, Nebiat Gebreselassie, Abraham Aseffa, Getachew Aderaye, Jan Andersson, Susanna Brighenti, Peter Bergman

Abstract

Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.

Keywords: HIV-1; LL-37; TMAO; clinical trial; kynurenine/tryptophan ratio; microbiota; phenylbutyrate; vitamin D.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Vitamin D status assessed at baseline and at weeks 16 after daily supplementation with 5000 IU vitamin D and 500 mg phenylbutyrate (n = 81), or placebo (n = 86). P values are generated by Wilcoxon signed-rank and Mann-Whitney U test.
Figure 2
Figure 2
No significant treatment effects on microbiota was found in colonic biopsies from baseline and week 16 (treatment n = 7, placebo n = 16) in analyzes of number of operational taxonomic units (OTUs) (a), Shannon microbial diversity index (b).
Figure 3
Figure 3
No significant treatment effects on microbiota was found in colonic biopsies (treatment n = 7, placebo n = 16) in principal component analyses at baseline (a) and week 16 (b).

References

    1. Deeks S.G., Tracy R., Douek D.C. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39:633–645. doi: 10.1016/j.immuni.2013.10.001.
    1. Brenchley J.M., Douek D.C. The mucosal barrier and immune activation in HIV pathogenesis. Curr. Opin. HIV AIDS. 2008;3:356–361. doi: 10.1097/COH.0b013e3282f9ae9c.
    1. Vujkovic-Cvijin I., Dunham R.M., Iwai S., Maher M.C., Albright R.G., Broadhurst M.J., Hernandez R.D., Lederman M.M., Huang Y., Somsouk M., et al. Dysbiosis of the gut microbiota is associated with hiv disease progression and tryptophan catabolism. Sci. Trans. Med. 2013;5:193ra191. doi: 10.1126/scitranslmed.3006438.
    1. Vazquez-Castellanos J.F., Serrano-Villar S., Latorre A., Artacho A., Ferrus M.L., Madrid N., Vallejo A., Sainz T., Martinez-Botas J., Ferrando-Martinez S., et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015;8:760–772. doi: 10.1038/mi.2014.107.
    1. Qi Q., Hua S., Clish C.B., Scott J.M., Hanna D.B., Wang T., Haberlen S.A., Shah S.J., Glesby M.J., Lazar J.M., et al. Plasma tryptophan-kynurenine metabolites are altered in HIV infection and associated with progression of carotid artery atherosclerosis. Clin. Infect. Dis. 2018;67:235–242. doi: 10.1093/cid/ciy053.
    1. Sandler N.G., Wand H., Roque A., Law M., Nason M.C., Nixon D.E., Pedersen C., Ruxrungtham K., Lewin S.R., Emery S., et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J. Infect. Dis. 2011;203:780–790. doi: 10.1093/infdis/jiq118.
    1. Schouten J., Wit F.W., Stolte I.G., Kootstra N., van der Valk M., Geerlings S.G., Prins M., Reiss P. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals. the AGEhIV Cohort Study. Clin. Infect. Dis. 2014;59:1787–1797. doi: 10.1093/cid/ciu701.
    1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi: 10.1038/nm.3145.
    1. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011.
    1. Shan Z., Clish C.B., Hua S., Scott J.M., Hanna D.B., Burk R.D., Haberlen S.A., Shah S.J., Margolick J.B., Sears C.L., et al. Gut Microbial-Related Choline Metabolite Trimethylamine-N-Oxide Is Associated With Progression of Carotid Artery Atherosclerosis in HIV Infection. J. Infect. Dis. 2018;218:1474–1479. doi: 10.1093/infdis/jiy356.
    1. Mutlu E.A., Keshavarzian A., Losurdo J., Swanson G., Siewe B., Forsyth C., French A., Demarais P., Sun Y., Koenig L., et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:e1003829. doi: 10.1371/journal.ppat.1003829.
    1. Nowak P., Troseid M., Avershina E., Barqasho B., Neogi U., Holm K., Hov J.R., Noyan K., Vesterbacka J., Svard J., et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS. 2015;29:2409–2418. doi: 10.1097/QAD.0000000000000869.
    1. Chen J., Waddell A., Lin Y.D., Cantorna M.T. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 2015;8:618–626. doi: 10.1038/mi.2014.94.
    1. Assa A., Vong L., Pinnell L.J., Avitzur N., Johnson-Henry K.C., Sherman P.M. Vitamin D Deficiency Promotes Epithelial Barrier Dysfunction and Intestinal Inflammation. J. Infect. Dis. 2014;210:1296–1305. doi: 10.1093/infdis/jiu235.
    1. Liu W., Chen Y., Golan M.A., Annunziata M.L., Du J., Dougherty U., Kong J., Musch M., Huang Y., Pekow J., et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J. Clin. Investig. 2013;123:3983–3996. doi: 10.1172/JCI65842.
    1. Zhao H., Zhang H., Wu H., Li H., Liu L., Guo J., Li C., Shih D.Q., Zhang X. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol. 2012;12:57. doi: 10.1186/1471-230X-12-57.
    1. Lagishetty V., Misharin A.V., Liu N.Q., Lisse T.S., Chun R.F., Ouyang Y., McLachlan S.M., Adams J.S., Hewison M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology. 2010;151:2423–2432. doi: 10.1210/en.2010-0089.
    1. Del Pinto R., Ferri C., Cominelli F. Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int. J. Mol. Sci. 2017;18:2360. doi: 10.3390/ijms18112360.
    1. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Wang T.T., Nestel F.P., Bourdeau V., Nagai Y., Wang Q., Liao J., Tavera-Mendoza L., Lin R., Hanrahan J.W., Mader S., et al. Cutting edge. 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004;173:2909–2912. doi: 10.4049/jimmunol.173.5.2909.
    1. Vandamme D., Landuyt B., Luyten W., Schoofs L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol. 2012;280:22–35. doi: 10.1016/j.cellimm.2012.11.009.
    1. Campbell G.R., Spector S.A. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy. 2012;8:1523–1525. doi: 10.4161/auto.21154.
    1. Wang G., Watson K.M., Buckheit R.W., Jr. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother. 2008;52:3438–3440. doi: 10.1128/AAC.00452-08.
    1. Aguilar-Jimenez W., Zapata W., Rugeles M.T. Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect. 2016;18:510–516. doi: 10.1016/j.micinf.2016.03.015.
    1. Wong J.H., Legowska A., Rolka K., Ng T.B., Hui M., Cho C.H., Lam W.W., Au S.W., Gu O.W., Wan D.C. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides. 2011;32:1117–1122. doi: 10.1016/j.peptides.2011.04.017.
    1. Kong J., Zhang Z., Musch M.W., Ning G., Sun J., Hart J., Bissonnette M., Li Y.C. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G208–G216. doi: 10.1152/ajpgi.00398.2007.
    1. Kanhere M., He J., Chassaing B., Ziegler T.R., Alvarez J.A., Ivie E.A., Hao L., Hanfelt J., Gewirtz A.T., Tangpricha V. Bolus Weekly Vitamin D3 Supplementation Impacts Gut and Airway Microbiota in Adults With Cystic Fibrosis. A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2018;103:564–574. doi: 10.1210/jc.2017-01983.
    1. Bashir M., Prietl B., Tauschmann M., Mautner S.I., Kump P.K., Treiber G., Wurm P., Gorkiewicz G., Hogenauer C., Pieber T.R. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J. Nutr. 2016;55:1479–1489. doi: 10.1007/s00394-015-0966-2.
    1. Mansueto P., Seidita A., Vitale G., Gangemi S., Iaria C., Cascio A. Vitamin D Deficiency in HIV Infection. Not Only a Bone Disorder. Biomed. Res. Int. 2015;2015:735615. doi: 10.1155/2015/735615.
    1. Ansemant T., Mahy S., Piroth C., Ornetti P., Ewing S., Guilland J.C., Croisier D., Duvillard L., Chavanet P., Maillefert J.F., et al. Severe hypovitaminosis D correlates with increased inflammatory markers in HIV infected patients. BMC Infect. Dis. 2013;13:7. doi: 10.1186/1471-2334-13-7.
    1. Legeai C., Vigouroux C., Souberbielle J.C., Bouchaud O., Boufassa F., Bastard J.P., Carlier R., Capeau J., Goujard C., Meyer L., et al. Associations between 25-hydroxyvitamin D and immunologic, metabolic, inflammatory markers in treatment-naive HIV-infected persons. the ANRS CO9 cohort study. PLoS ONE. 2013;8:e74868. doi: 10.1371/journal.pone.0074868.
    1. Ashenafi S., Amogne W., Kassa E., Gebreselassie N., Bekele A., Aseffa G., Getachew M., Aseffa A., Worku A., Hammar U., et al. Daily Nutritional Supplementation with Vitamin D3 and Phenylbutyrate to Treatment-Naive HIV Patients Tested in a Randomized Placebo-Controlled Trial. Nutrients. 2019;11:133. doi: 10.3390/nu11010133.
    1. Mily A., Rekha R.S., Kamal S.M., Akhtar E., Sarker P., Rahim Z., Gudmundsson G.H., Agerberth B., Raqib R. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages. a dose finding study for treatment of tuberculosis. BMC Pulm. Med. 2013;13:23. doi: 10.1186/1471-2466-13-23.
    1. Missailidis C., Hallqvist J., Qureshi A.R., Barany P., Heimburger O., Lindholm B., Stenvinkel P., Bergman P. Serum Trimethylamine-N-Oxide Is Strongly Related to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS ONE. 2016;11:e0141738. doi: 10.1371/journal.pone.0141738.
    1. Edgar R.C., Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–3482. doi: 10.1093/bioinformatics/btv401.
    1. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing mothur. open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09.
    1. Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. Ribosomal Database Project. data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244.
    1. Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381.
    1. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Salter S.J., Cox M.J., Turek E.M., Calus S.T., Cookson W.O., Moffatt M.F., Turner P., Parkhill J., Loman N.J., Walker A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
    1. Stevens D.A., Hamilton J.R., Johnson N., Kim K.K., Lee J.S. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center. three new species. Medicine (Baltimore) 2009;88:244–249. doi: 10.1097/MD.0b013e3181aede29.
    1. Chen J., Bittinger K., Charlson E.S., Hoffmann C., Lewis J., Wu G.D., Collman R.G., Bushman F.D., Li H. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012;28:2106–2113. doi: 10.1093/bioinformatics/bts342.
    1. Institute of Medicine Committee . Dietary Reference Intakes for Calcium and Vitamin D. The National Academies Press; Washington, DC, USA: 2011.
    1. Raftery T., Martineau A.R., Greiller C.L., Ghosh S., McNamara D., Bennett K., Meddings J., O’Sullivan M. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease. Results from a randomised double-blind placebo-controlled study. United Eur. Gastroenterol. J. 2015;3:294–302. doi: 10.1177/2050640615572176.
    1. Jorgensen S.P., Agnholt J., Glerup H., Lyhne S., Villadsen G.E., Hvas C.L., Bartels L.E., Kelsen J., Christensen L.A., Dahlerup J.F. Clinical trial. vitamin D3 treatment in Crohn’s disease—A randomized double-blind placebo-controlled study. Aliment. Pharmacol. Ther. 2010;32:377–383. doi: 10.1111/j.1365-2036.2010.04355.x.
    1. Ponda M.P., Breslow J.L. Vitamin D3 Repletion in Chronic Kidney Disease Stage 3. Effects on Blood Endotoxin Activity, Inflammatory Cytokines, and Intestinal Permeability. Renal. Fail. 2013;35:497–503. doi: 10.3109/0886022X.2013.775696.
    1. Benguella L., Arbault A., Fillion A., Blot M., Piroth C., Denimal D., Duvillard L., Ornetti P., Chavanet P., Maillefert J.F., et al. Vitamin D supplementation, bone turnover, and inflammation in HIV-infected patients. Med. Mal. Infect. 2018;48:449–456. doi: 10.1016/j.medmal.2018.02.011.
    1. Jorde R., Sneve M., Torjesen P.A., Figenschau Y., Goransson L.G., Omdal R. No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine. 2010;50:175–180. doi: 10.1016/j.cyto.2009.12.006.
    1. Mousa A., Naderpoor N., Johnson J., Sourris K., de Courten M.P.J., Wilson K., Scragg R., Plebanski M., de Courten B. Effect of vitamin D supplementation on inflammation and nuclear factor kappa-B activity in overweight/obese adults. a randomized placebo-controlled trial. Sci. Rep. 2017;7:15154. doi: 10.1038/s41598-017-15264-1.
    1. Maestri N.E., Brusilow S.W., Clissold D.B., Bassett S.S. Long-term treatment of girls with ornithine transcarbamylase deficiency. N. Engl. J. Med. 1996;335:855–859. doi: 10.1056/NEJM199609193351204.
    1. Camacho L.H., Olson J., Tong W.P., Young C.W., Spriggs D.R., Malkin M.G. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Investig. New Drugs. 2007;25:131–138. doi: 10.1007/s10637-006-9017-4.
    1. Steinmann J., Halldorsson S., Agerberth B., Gudmundsson G.H. Phenylbutyrate induces antimicrobial peptide expression. Antimicrob. Agents Chemother. 2009;53:5127–5133. doi: 10.1128/AAC.00818-09.
    1. Cao S.S., Zimmermann E.M., Chuang B.M., Song B., Nwokoye A., Wilkinson J.E., Eaton K.A., Kaufman R.J. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology. 2013;144:989–1000. doi: 10.1053/j.gastro.2013.01.023.
    1. Jellbauer S., Perez Lopez A., Behnsen J., Gao N., Nguyen T., Murphy C., Edwards R.A., Raffatellu M. Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium. Infect. Immun. 2016;84:2639–2652. doi: 10.1128/IAI.00132-16.
    1. Aguilar-Jimenez W., Saulle I., Trabattoni D., Vichi F., Lo Caputo S., Mazzotta F., Rugeles M.T., Clerici M., Biasin M. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front. Immunol. 2017;8:136. doi: 10.3389/fimmu.2017.00136.
    1. Chandel N., Ayasolla K.S., Lan X., Sultana-Syed M., Chawla A., Lederman R., Vethantham V., Saleem M.A., Chander P.N., Malhotra A., et al. Epigenetic Modulation of Human Podocyte Vitamin D Receptor in HIV Milieu. J. Mol. Biol. 2015;427:3201–3215. doi: 10.1016/j.jmb.2015.07.011.
    1. Gore S.D., Carducci M.A. Modifying histones to tame cancer. clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin. Investig. Drugs. 2000;9:2923–2934. doi: 10.1517/13543784.9.12.2923.
    1. Shirakawa K., Chavez L., Hakre S., Calvanese V., Verdin E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol. 2013;21:277–285. doi: 10.1016/j.tim.2013.02.005.
    1. Lachmann R., Bevan M.A., Kim S., Patel N., Hawrylowicz C., Vyakarnam A., Peters B.S. A comparative phase 1 clinical trial to identify anti-infective mechanisms of vitamin D in people with HIV infection. Aids. 2015;29:1127–1135. doi: 10.1097/QAD.0000000000000666.
    1. Bhan I., Camargo C.A., Jr., Wenger J., Ricciardi C., Ye J., Borregaard N., Thadhani R. Circulating levels of 25-hydroxyvitamin D and human cathelicidin in healthy adults. J. Allergy Clin. Immunol. 2011;127:1302–1304. doi: 10.1016/j.jaci.2010.12.1097.
    1. Ashenafi S., Mazurek J., Rehn A., Lemma B., Aderaye G., Bekele A., Assefa G., Chanyalew M., Aseffa A., Andersson J., et al. Vitamin D3 Status and the Association with Human Cathelicidin Expression in Patients with Different Clinical Forms of Active Tuberculosis. Nutrients. 2018;10:721. doi: 10.3390/nu10060721.
    1. Wirthgen E., Hoeflich A. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway. The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. J. Amino. Acids. 2015;2015:973548. doi: 10.1155/2015/973548.
    1. Gurav A., Sivaprakasam S., Bhutia Y.D., Boettger T., Singh N., Ganapathy V. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem. J. 2015;469:267–278. doi: 10.1042/BJ20150242.
    1. Obeid R., Awwad H.M., Kirsch S.H., Waldura C., Herrmann W., Graeber S., Geisel J. Plasma trimethylamine-N-oxide following supplementation with vitamin D or D plus B vitamins. Mol. Nutr. Food Res. 2017;61:1600358. doi: 10.1002/mnfr.201600358.
    1. Missailidis C., Neogi U., Stenvinkel P., Troseid M., Nowak P., Bergman P. The microbial metabolite trimethylamine-N-oxide in association with inflammation and microbial dysregulation in three HIV cohorts at various disease stages. Aids. 2018;32:1589–1598. doi: 10.1097/QAD.0000000000001813.
    1. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.

Source: PubMed

3
Suscribir