Prospect of stem cell conditioned medium in regenerative medicine

Jeanne Adiwinata Pawitan, Jeanne Adiwinata Pawitan

Abstract

Background: Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine.

Objective: To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases.

Methods: Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed.

Results: Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed.

Conclusion: Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

Figures

Figure 1
Figure 1
Various possible applications of CM for various conditions.

References

    1. Yang D., Wang W., Li L., Peng Y., Chen P., Huang H., Guo Y., Xia X., Wang Y., Wang H., Wang W. E., Zeng C. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0059020.e59020
    1. Kim H. O., Choi S. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine. 2013;10(3):93–101. doi: 10.1007/s13770-013-0010-7.
    1. Fukuoka H., Suga H., Narita K., Watanabe R., Shintani S. The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells. American Journal of Cosmetic Surgery. 2012;29(4):273–282.
    1. Zhou B. R., Xu Y., Guo S. L., Wang Y., Zhu F., Permatasari F., Wu D., Yin Z. Q., Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Research International. 2013;2013 doi: 10.1155/2013/519126.519126
    1. Park B. S., Kim W. S., Choi J. S., Kim H. K., Won J. H., Ohkubo F., Fukuoka H. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomedical Research. 2010;31(1):27–34. doi: 10.2220/biomedres.31.27.
    1. Bhang S. H., Lee S., Shin J. Y., Lee T. J., Jang H. K., Kim B. S. Efficacious and clinically relevant conditioned-medium of human adipose-derived stem cells for therapeutic angiogenesis. Molecular Therapy. 2014;22(4):862.
    1. Ho J. C. Y., Lai W., Li M., Au K., Yip M., Wong N. L. Y., Ng E. S. K., Lam F. F. Y., Siu C., Tse H. Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells. Diabetes/Metabolism Research and Reviews. 2012;28(5):462–473. doi: 10.1002/dmrr.2304.
    1. di Santo S., Yang Z., von Ballmoos M. W., Voelzmann J., Diehm N., Baumgartner I., Kalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE. 2009;4(5) doi: 10.1371/journal.pone.0005643.e5643
    1. Mirabella T., Cilli M., Carlone S., Cancedda R., Gentili C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 2011;32(15):3689–3699. doi: 10.1016/j.biomaterials.2011.01.071.
    1. Kim J., Lee J. H., Yeo S. M., Chung H. M., Chae J. I. Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing. In Vitro Cellular & Developmental Biology: Animal. 2014;50(2):146–154. doi: 10.1007/s11626-013-9687-0.
    1. Kim J. Y., Song S. H., Kim K. L., Ko J. L., Im J. J., Yie S. W., Ahn Y. K., Kim D. K., Suh W. Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplantation. 2010;19(12):1635–1644. doi: 10.3727/096368910X516637.
    1. Shrestha C., Zhao L., Chen K., He H., Mo Z. Enhanced healing of diabetic wounds by subcutaneous administration of human umbilical cord derived stem cells and their conditioned media. International Journal of Endocrinology. 2013;2013 doi: 10.1155/2013/592454.592454
    1. Lee M. J., Kim J., Lee K. I., Shin J. M., Chae J. I., Chung H. M. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy. 2011;13(2):165–178. doi: 10.3109/14653249.2010.512632.
    1. Mishra P. J., Banerjee D. Cell-free derivatives from mesenchymal stem cells are effective in wound therapy. World Journal of Stem Cells. 2012;4(5):35–43.
    1. Hynes B., Kumar A. H. S., O'Sullivan J., Klein Buneker C., Leblond A., Weiss S., Schmeckpeper J., Martin K., Caplice N. M. Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. European Heart Journal. 2013;34(10):782–789. doi: 10.1093/eurheartj/ehr435.
    1. Timmers L., Lim S. K., Hoefer I. E., Arslan F., Lai R. C., van Oorschot A. A. M., Goumans M. J., Strijder C., Sze S. K., Choo A., Piek J. J., Doevendans P. A., Pasterkamp G., de Kleijn D. P. V. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research. 2011;6(3):206–214. doi: 10.1016/j.scr.2011.01.001.
    1. See F., Seki T., Psaltis P. J., Sondermeijer H. P., Gronthos S., Zannettino A. C. W., Govaert K. M., Schuster M. D., Kurlansky P. A., Kelly D. J., Krum H., Itescu S. Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. Journal of Cellular and Molecular Medicine. 2011;15(10):2117–2129. doi: 10.1111/j.1582-4934.2010.01241.x.
    1. Timmers L., Lim S. K., Arslan F., Armstrong J. S., Hoefer I. E., Doevendans P. A., Piek J. J., El Oakley R. M., Choo A., Lee C. N., Pasterkamp G., de Kleijn D. P. V. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research. 2008;1(2):129–137. doi: 10.1016/j.scr.2008.02.002.
    1. Du Z., Wei C., Cheng K., Han B., Yan J., Zhang M., Peng C., Liu Y. Mesenchymal stem cell-conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. Journal of Surgical Research. 2013;183(2):907–915. doi: 10.1016/j.jss.2013.02.009.
    1. Zagoura D. S., Roubelakis M. G., Bitsika V., Trohatou O., Pappa K. I., Kapelouzou A., Antsaklis A., Anagnou N. P. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut. 2012;61(6):894–906. doi: 10.1136/gutjnl-2011-300908.
    1. van Poll D., Parekkadan B., Cho C. H., Berthiaume F., Nahmias Y., Tilles A. W., Yarmush M. L. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo . Hepatology. 2008;47(5):1634–1643. doi: 10.1002/hep.22236.
    1. Parekkadan B., Van Poll D., Suganuma K., Carter E. A., Berthiaume F., Tilles A. W., Yarmush M. L. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE. 2007;2(9, article e941) doi: 10.1371/journal.pone.0000941.
    1. Inoue T., Sugiyama M., Hattori H., Wakita H., Wakabayashi T., Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Engineering A. 2013;19(1-2):24–29. doi: 10.1089/ten.tea.2011.0385.
    1. Cho Y. J., Song H. S., Bhang S., Lee S., Kang B. G., Lee J. C., An J., Cha C. I., Nam D., Kim B. S., Joo K. M. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. Journal of Neuroscience Research. 2012;90(9):1794–1802. doi: 10.1002/jnr.23063.
    1. Bakondi B., Shimada I. S., Perry A., Munoz J. R., Ylostalo J., Howard A. B., Gregory C. A., Spees J. L. CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Molecular Therapy. 2009;17(11):1938–1947. doi: 10.1038/mt.2009.185.
    1. Chuang T. J., Lin K. C., Chio C. C., Wang C. C., Chang C. P., Kuo J. R. Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. Journal of Trauma and Acute Care Surgery. 2012;73(5):1161–1167. doi: 10.1097/TA.0b013e318265d128.
    1. Chang C., Chio C., Cheong C., Chao C., Cheng B., Lin M. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clinical Science. 2013;124(3):165–176. doi: 10.1042/CS20120226.
    1. Cantinieaux D., Quertainmont R., Blacher S., Rossi L., Wanet T., Noël A., Brook G., Schoenen J., Franzen R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS ONE. 2013;8(8) doi: 10.1371/journal.pone.0069515.e69515
    1. van Koppen A., Joles J. A., van Balkom B. W. M., Lim S. K., de Kleijn D., Giles R. H., Verhaar M. C. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE. 2012;7(6) doi: 10.1371/journal.pone.0038746.e38746
    1. Gheisari Y., Ahmadbeigi N., Naderi M., Nassiri S. M., Nadri S., Soleimani M. Stem cell-conditioned medium does not protect against kidney failure. Cell Biology International. 2011;35(3):209–213. doi: 10.1042/CBI20100183.
    1. Zhu W., Huang L., Li Y., Qian H., Shan X., Yan Y., Mao F., Wu X., Xu W. Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle. 2011;10(18):3198–3207. doi: 10.4161/cc.10.18.17638.
    1. Li L., Liu Y., Yang C., Chien Y., Twu N., Wang M., Wang C., Huang C., Kao K., Hsu H., Wu C., Chiou S. Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials. 2013;34(1):78–91. doi: 10.1016/j.biomaterials.2012.09.042.
    1. Inukai T., Katagiri W., Yoshimi R., Osugi M., Kawai T., Hibi H., Ueda M. Novel application of stem cell-derived factors for periodontal regeneration. Biochemical and Biophysical Research Communications. 2013;430(2):763–768. doi: 10.1016/j.bbrc.2012.11.074.
    1. Ivanova-Todorova E., Bochev I., Dimitrov R., Belemezova K., Mourdjeva M., Kyurkchiev S., Kinov P., Altankova I., Kyurkchiev D. Conditioned medium from adipose tissue-derived mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. Journal of Biomedicine and Biotechnology. 2012;2012 doi: 10.1155/2012/295167.295167
    1. Sze S. K., de Kleijn D. P. V., Lai R. C., Tan E. K. W., Zhao H., Yeo K. S., Low T. Y., Lian Q., Lee C. N., Mitchell W., El Oakley R. M., Lim S. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular and Cellular Proteomics. 2007;6(10):1680–1689. doi: 10.1074/mcp.M600393-MCP200.
    1. Sadat S., Gehmert S., Song Y., Yen Y., Bai X., Gaiser S., Klein H., Alt E. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochemical and Biophysical Research Communications. 2007;363(3):674–679. doi: 10.1016/j.bbrc.2007.09.058.
    1. Goswami R., Kaplan M. H. A brief history of IL-9. The Journal of Immunology. 2011;186(6):3283–3288. doi: 10.4049/jimmunol.1003049.
    1. Yun Y. R., Won J. E., Jeon E., Lee S., Kang W., Jo H., Jang J. H., Shin U. S., Kim H. W. Fibroblast growth factors: biology, function, and application for tissue regeneration. Journal of Tissue Engineering. 2010;2010 doi: 10.4061/2010/218142..218142
    1. Saeki T., Tanada M., Takashima S., Saeki H., Takiyama W., Nishimoto N., Moriwaki S. Correlation between expression of platelet-derived endothelial cell growth factor (thymidine phosphorylase ) and microvessel density in early-stage human colon carcinomas. Japanese Journal of Clinical Oncology. 1997;27(4):227–230. doi: 10.1093/jjco/27.4.227.
    1. Litwack G. Growth factors and cytokines. In: Litwack G., editor. Human Biochemistry and Disease. Elsevier Academic Press; 2008. pp. 587–683.
    1. Park J. E., Chen H. H., Winer J., Houck K. A., Ferrara N. Placenta growth factor: potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. The Journal of Biological Chemistry. 1994;269(41):25646–25654.
    1. Ray P., Devaux Y., Stolz D. B., Yarlagadda M., Watkins S. C., Lu Y., Chen L., Yang X., Ray A. Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(10):6098–6103. doi: 10.1073/pnas.1031851100.
    1. Turner J. E., Morrison P. J., Wilhelm C., Wilson M., Ahlfors H., Renauld JC., Panzer U., Helmby H., Stockinger B. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth—induced lung inflammation. The Journal of Experimental Medicine. 2013;210(13):2951–2965. doi: 10.1084/jem.20130071.
    1. White G. E., Greaves D. R. Fractalkine: a survivor's guide chemokines as antiapoptotic mediators. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(3):589–594. doi: 10.1161/ATVBAHA.111.237412.
    1. Mancini A., Koch A., Whetton A. D., Tamura T. The M-CSF receptor substrate and interacting protein FMIP is governed in its subcellular localization by protein kinase C-mediated phosphorylation, and thereby potentiates M-CSF-mediated differentiation. Oncogene. 2004;23(39):6581–6589. doi: 10.1038/sj.onc.1207841.
    1. Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes and Development. 2008;22(10):1276–1312. doi: 10.1101/gad.1653708.
    1. Wuchter P., Bieback K., Schrezenmeier H., BornhΣuser M., Mɒller LP., B÷nig H., Wagner W., Meisel R., Pavel P., Tonn T., Lang P., Mɒller I., Renner M., Malcherek G., Saffrich R., Buss EC., Horn P., Rojewski M., Schmitt A., AD Ho., Sanzenbacher R. Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy. 2014 doi: 10.1016/j.jcyt.2014.04.002.
    1. Yde P., Mengel B., Jensen M. H., Krishna S., Trusina A. Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue. BMC Systems Biology. 2011;5, article 115 doi: 10.1186/1752-0509-5-115.
    1. Khosravi A., Cutler C. M., Kelly M. H., Chang R., Royal R. E., Sherry R. M., Wodajo F. M., Fedarko N. S., Collins M. T. Determination of the elimination half-life of fibroblast growth factor-23. The Journal of Clinical Endocrinology & Metabolism. 2007;92(6):2374–2377. doi: 10.1210/jc.2006-2865.

Source: PubMed

3
Suscribir