Active lower limb prosthetics: a systematic review of design issues and solutions

Michael Windrich, Martin Grimmer, Oliver Christ, Stephan Rinderknecht, Philipp Beckerle, Michael Windrich, Martin Grimmer, Oliver Christ, Stephan Rinderknecht, Philipp Beckerle

Abstract

This paper presents a review on design issues and solutions found in active lower limb prostheses. This review is based on a systematic literature search with a methodical search strategy. The search was carried out across four major technical databases and the retrieved records were screened for their relevance. A total of 21 different active prostheses, including 8 above-knee, 9 below-knee and 4 combined knee-ankle prostheses were identified. While an active prosthesis may help to restore the functional performance of an amputee, the requirements regarding the actuation unit as well as for the control system are high and the development becomes a challenging task. Regarding mechanical design and the actuation unit high force/torque delivery, high efficiency, low size and low weight are conflicting goals. The actuation principle and variable impedance actuators are discussed. The control system is paramount for a "natural functioning" of the prosthesis. The control system has to enable locomotion and should react to the amputee's intent. For this, multi-level control approaches are reviewed.

Keywords: Active prosthesis; Actuation; Artificial limb; Control; Development; Powered prosthesis; Systematic review.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram. The literature review process is pictured throughout the different phases. In each block the number refers to the number of records

References

    1. Tudor-Locke C, Bassett DRJ. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34:1–8. doi: 10.2165/00007256-200434010-00001.
    1. Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31:366–369. doi: 10.1016/j.gaitpost.2010.01.006.
    1. The Amputee Statistical Database for the United Kingdom 2006/07. . Accessed 20 Nov 2013.
    1. Home—Otto Bock. . Accessed 13 Dec 2013.
    1. Gitter A, Czerniecki JM, Degroot DM. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil. 1991;70:142–148. doi: 10.1097/00002060-199106000-00006.
    1. Grimmer M, Seyfarth A. Mimicking human-like leg function in prosthetic limbs. In: Neuro-robotics: from brain machine interfaces to rehabilitation robotics. Berlin: Springer; 2014.
    1. Winter DA, Sienko SE. Biomechanics of below-knee amputee gait. J Biomech. 1988;21:361–367. doi: 10.1016/0021-9290(88)90142-X.
    1. Schneider K, Hart TT, Zernicke RF, Setoguchi Y, Oppenheim W. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot. J Biomech. 1993;26:1191–1204. doi: 10.1016/0021-9290(93)90067-O.
    1. Postema K, Hermens HJ, DeVries J, Koopman H, Eisma WH. Energy storage and release of prosthetic feet. 1. Biomechanical analysis related to user benefits. Prosthet Orthot Int. 1997;21:17–27.
    1. Grimmer M, Eslamy M, Seyfarth A. Energetic and peak power advantages of series elastic actuators in an actuated prosthetic leg for walking and running. Actuators. 2014;3:1–19. doi: 10.3390/act3010001.
    1. Unal R, Carloni R, Behrens SM, Hekman EEG, Stramigioli S, Koopman HFJM. Towards a fully passive transfemoral prosthesis for normal walking. In: 2012 4th IEEE RAS EMBS int conf on biomed robot biomechatronics BioRob. New York: IEEE; 2012.
    1. Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. PLoS ONE. 2010;5:e9307. doi: 10.1371/journal.pone.0009307.
    1. Kampas P. Technologie und Funktionsweise des Genium-Prothesenkniegelenks. Orthop Tech. 2011;62:898.
    1. Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev. 2006;43:857–870. doi: 10.1682/JRRD.2005.09.0147.
    1. Blumentritt S. Prothetik. Zur Biomechanik des mikroprozessorgesteuerten Prothesenkniegelenks Genium. Orthop Tech. 2012;63:24.
    1. Robbins CB, Vreeman DJ, Sothmann MS, Wilson SL, Oldridge NB. A review of the long-term health outcomes associated with war-related amputation. Mil Med. 2009;174:588–592. doi: 10.7205/MILMED-D-00-0608.
    1. Gailey R, Allen K, Castles J, Kucharik J, Roeder M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev. 2008;45:15–30. doi: 10.1682/JRRD.2006.11.0147.
    1. Au S, Berniker M, Herr H. Powered ankle–foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008;21:654–666. doi: 10.1016/j.neunet.2008.03.006.
    1. Martinez-Vilialpando EC, Herr H. Agonist–antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev. 2009;46:361–373. doi: 10.1682/JRRD.2008.09.0131.
    1. Varol HA, Goldfarb M. Decomposition-based control for a powered knee and ankle transfemoral prosthesis. In: 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2007. p. 783–9.
    1. Bogue R. Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot Int J. 2009;36:6. doi: 10.1108/01439910910924611.
    1. Collins DM, Karmarkar A, Relich R, Pasquina PF, Cooper RA. Review of research on prosthetic devices for lower extremity amputation. Crit Rev Biomed Eng. 2006;34:379–438. doi: 10.1615/CritRevBiomedEng.v34.i5.20.
    1. Torrealba RR, Fernández-López G, Grieco JC. Towards the development of knee prostheses: review of current researches. Kybernetes. 2008;37(9/10):1561–1576. doi: 10.1108/03684920810907869.
    1. Versluys R, Desomer A, Lenaerts G, Beyl P, Van Damme M, Vanderborght B, Vanderniepen I, Van der Perre G, Lefeber D. From conventional prosthetic feet to bionic feet: a review study. In: 2008 2nd IEEE RAS EMBS international conference on biomedical robotics and biomechatronics. New York: IEEE; 2008. p. 49–54.
    1. How to develop a search strategy for a cochrane review. . Accessed 12 Nov 2013.
    1. Palmer SH, Cross MJ. Total knee arthroplasty. 2014.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA group: preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Versluys R, Desomer A, Lenaerts G, Van Damme M, Beyl P, Van Der Perre G, Peeraer L, Lefeber D. A pneumatically powered below-knee prosthesis: design specifications and first experiments with an amputee. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 372–7.
    1. Borjian R, Lim J, Khamesee MB, Melek W. The design of an intelligent mechanical active prosthetic knee. In: Proceedings—34th annual conference of the IEEE industrial electronics society, IECON 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 3016–21.
    1. Holgate MA, Hitt JK, Bellman RD, Sugar TG, Hollander KW. The SPARKy (spring ankle with regenerative kinetics) project: choosing a DC motor based actuation method. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 163–8.
    1. Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Trans Neural Syst Rehabil Eng. 2013.
    1. Shultz AH, Mitchell JE, Truex D, Lawson BE, Goldfarb M. Preliminary evaluation of a walking controller for a powered ankle prosthesis. In: Proceedings—IEEE international conference on robotics and automation. New York: Institute of Electrical and Electronics Engineers Inc.; 2013. p. 4837–43.
    1. Martinez-Villalpando EC, Mooney L, Elliott G, Herr H. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2011. p. 8519–22.
    1. Dedic R, Dindo H. SmartLeg: An intelligent active robotic prosthesis for lower-limb amputees. In: 2011 23rd international symposium on information, communication and automation technologies, ICAT 2011. bhT; m:tel-imate prijatelije; ENERGOINVEST-SUI-Sistemi upravljanja energijom; Microsoft. New York: IEEE Computer Society; 2011.
    1. Sup F, Varol HA, Mitchell J, Withrow T, Goldfarb M. Design and control of an active electrical knee and ankle prosthesis. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 523–8.
    1. Lawson BE, Varol HA, Huff A, Erdemir E, Goldfarb M. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2013;21:466–473. doi: 10.1109/TNSRE.2012.2225640.
    1. Geng Y, Yang P, Xu X, Chen L. Design and simulation of active transfemoral prosthesis. In: Proceedings of the 2012 24th Chinese control and decision conference, CCDC 2012. New York: IEEE Computer Society; 2012. p. 3724–28.
    1. Herr HM, Grabowski AM. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B Biol Sci. 2012;279:457–464. doi: 10.1098/rspb.2011.1194.
    1. Varol HA, Sup F, Goldfarb M. Real-time gait mode intent recognition of a powered knee and ankle prosthesis for standing and walking. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 66–72.
    1. Wu SK, Waycaster G, Shen XR. Electromyography-based control of active above-knee prostheses. Control Eng Pract. 2011;19:875–882. doi: 10.1016/j.conengprac.2011.04.017.
    1. Au SK, Herr HM. Powered ankle–foot prosthesis—the importance of series and parallel motor elasticity. IEEE Robot Autom Mag. 2008;15:52–59. doi: 10.1109/MRA.2008.927697.
    1. Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Robot Res. 2008;27:263–273. doi: 10.1177/0278364907084588.
    1. Waycaster G, Wu SK, Shen XR. Design and control of a pneumatic artificial muscle actuated above-knee prosthesis. J Med Devices. 2011;5:031003. doi: 10.1115/1.4004417.
    1. Shen X, Christ D. Design and control of chemomuscle: a liquid-propellant-powered muscle actuation system. J Dyn Syst Meas Control. 2011;133:021006. doi: 10.1115/1.4003208.
    1. Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G, Garabini M, Grebenstein M, Grioli G, Haddadin S, Hoppner H, Jafari A, Laffranchi M, Lefeber D, Petit F, Stramigioli S, Tsagarakis N, Van Damme M, Van Ham R, Visser LC, Wolf S. Variable impedance actuators: a review. Robot Auton Syst. 2013;61:1601–1614. doi: 10.1016/j.robot.2013.06.009.
    1. Versluys R, Matthys A, Van Ham R, Vanderniepen I, Lefeber D. Powered ankle–foot system that mimics intact human ankle behavior: proposal of a new concept. In: 2009 IEEE international conference on rehabilitation robotics, ICORR 2009. New York: IEEE Computer Society; 2009. p. 658–62.
    1. Pfeifer S, Riener R, Vallery H. An actuated transfemoral prosthesis with optimized polycentric knee joint. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics. New York: IEEE Computer Society; 2012. p. 1807–12.
    1. Gard SA. The influence of four-bar linkage knees on prosthetic swing-phase floor clearance. J Prosthet Orthot. 1996;8:34–40. doi: 10.1097/00008526-199600820-00004.
    1. Geng Y, Xu X, Chen L, Yang P. Design and analysis of active transfemoral prosthesis. In: IECON proceedings (industrial electronics conference). New York: IEEE Computer Society; 2010. p. 1495–99.
    1. Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng. 2010;57:542–551. doi: 10.1109/TBME.2009.2034734.
    1. Hoover CD, Fite KB, Fulk GD, Holmes DW. Myoelectric torque control of an active transfemoral prosthesis during stair ascent, vol 2. In: ASME 2011 dynamic systems and control conference and Bath/ASME symposium on fluid power and motion control, DSCC 2011. New York: American Society of Mechanical Engineers; 2011. p. 451–58.
    1. Varol HA, Goldfarb M: Real-time intent recognition for a powered knee and ankle transfemoral prosthesis. In: 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2007. p. 16–23.
    1. Hoover CD, Fulk GD, Fite KB. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. J Med Devices. 2012;6:011005. doi: 10.1115/1.4005784.
    1. Sup F, Bohara A, Goldfarb M. Design and control of a powered knee and ankle prosthesis. In: Proceedings—IEEE international conference on robotics and automation. New York: Institute of Electrical and Electronics Engineers Inc.; 2007. p. 4134–9.
    1. Kapti AO, Yucenur MS. Design and control of an active artificial knee joint. Mech Mach Theory. 2006;41:1477–1485. doi: 10.1016/j.mechmachtheory.2006.01.017.
    1. Martinez-Villalpando EC, Weber J, Elliott G, Herr H. Design of an agonist–antagonist active knee prosthesis. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 529–34.
    1. Zhu J, Wang Q, Wang L. PANTOE 1: Biomechanical design of powered ankle–foot prosthesis with compliant joints and segmented foot. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM. New York: Institute of Electrical and Electronics Engineers Inc.; 2010. p. 31–6.
    1. Au SK, Dilworth P, Herr H. An ankle–foot emulation system for the study of human walking biomechanics, vol 2006. In: Proceedings—IEEE international conference on robotics and automation. New York: Institute of Electrical and Electronics Engineers Inc.; 2006. p. 2939–45.
    1. Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. In: 2009 IEEE international conference on rehabilitation robotics, ICORR 2009. New York: IEEE Computer Society; 2009. p. 638–44.
    1. Lawson BE, Shultz AH, Goldfarb M. Evaluation of a coordinated control system for a pair of powered transfemoral prostheses. In: Proceedings—IEEE international conference on robotics and automation. New York: Institute of Electrical and Electronics Engineers Inc.; 2013. p. 3888–93.
    1. Wu S-K, Waycaster G, Shen X. Active knee prosthesis control with electromyography, vol 1. In: ASME 2010 dynamic systems and control conference, DSCC2010. New York: American Society of Mechanical Engineers; 2010. p. 785–91.
    1. Fite K, Mitchell J, Sup F, Goldfarb M. Design and control of an electrically powered knee prosthesis. In: 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2007. p. 902–5.
    1. Zhang F, Liu M, Huang H. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2012. p. 2768–71.
    1. Mancinelli C, Patritti BL, Tropea P, Greenwald RM, Casler R, Herr H, Bonato P. Comparing a passive-elastic and a powered prosthesis in transtibial amputees. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2011:8255–8.
    1. Au SK, Herr H, Weber J, Martinez-Villalpando EC. Powered ankle–foot prosthesis for the improvement of amputee ambulation. In: Annual international conference of the IEEE engineering in medicine and biology—proceedings. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2007. p. 3020–26.
    1. SpringActive. . Accessed 18 Jan 2014.
    1. Home—BionX medical technologies. . Accessed 21 Jan 2014.
    1. Freedom innovations: lower extremities prosthetics. . Accessed 21 Jan 2014.
    1. Hargrove LJ, Simon AM, Lipschutz R, Finucane SB, Kuiken TA. Non-weight-bearing neural control of a powered transfemoral prosthesis. J Neuroeng Rehabil. 2013;10:1. doi: 10.1186/1743-0003-10-62.
    1. Hoover CD, Fulk GD, Fite KB. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE–ASME Trans Mechatron. 2013;18:1191–1200. doi: 10.1109/TMECH.2012.2200498.
    1. Grimes DL, Flowers WC, Donath M. Feasibility of an active control scheme for above knee prostheses. J Biomech Eng. 1977;99:215–221. doi: 10.1115/1.3426293.
    1. Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M. Complementary limb motion estimation for the control of active knee prostheses. Biomed Tech. 2011;56:45–51. doi: 10.1515/bmt.2010.057.
    1. Waycaster G, Wu S-K, Shen X. A pneumatic artificial muscle actuated above-knee prosthesis, vol 1. In: ASME 2010 dynamic systems and control conference, DSCC2010. New York: American Society of Mechanical Engineers; 2010. p. 793–800.
    1. Du L, Zhang F, Liu M, Huang H. Toward design of an environment-aware adaptive locomotion-mode-recognition system. IEEE Trans Biomed Eng. 2012;59:2716–2725. doi: 10.1109/TBME.2012.2208641.
    1. Hitt JK, Bellman R, Holgate M, Sugar TG, Hollander KW. The sparky (spring ankle with regenerative kinetics) project: design and analysis of a robotic transtibial prosthesis with regenerative kinetics, vol 5 PART C. In: 2007 Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, DETC2007, New York: American Society of Mechanical Engineers; 2008. p. 1587–96.
    1. Bergelin BJ, Mattos JO, Wells JG, Voglewede PA. Concept through preliminary bench testing of a powered lower limb prosthetic device. J Mech Robot. 2010;2:041005. doi: 10.1115/1.4002205.
    1. Suzuki R, Sawada T, Kobayashi N, Hofer EP. Control method for powered ankle prosthesis via internal model control design. In: 2011 IEEE international conference on mechatronics and automation, ICMA 2011. New York: IEEE Computer Society; 2011. p. 237–42.
    1. Cherelle P, Matthys A, Grosu V, Vanderborght B, Lefeber D. The AMP-foot 2.0: mimicking intact ankle behavior with a powered transtibial prosthesis. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics. New York: IEEE Computer Society; 2012. p. 544–9.
    1. Delis AL, Carvalho JLA, da Rocha AF, Ferreira RU, Rodrigues SS, Borges GA. Estimation of the knee joint angle from surface electromyographic signals for active control of leg prostheses. Physiol Meas. 2009;30:931–946. doi: 10.1088/0967-3334/30/9/005.
    1. Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. Ankle–knee prosthesis with powered ankle and energy transfer for CYBERLEGs-prototype. In: IEEE int conf on rehabil robot ICORR 2013. New York: IEEE. 2013.
    1. Ming L, Datseris P, He H. A prototype for smart prosthetic legs-analysis and mechanical design. Adv Mater Res. 2011;403–408:1999–2006.
    1. Sugar TG, Hollander KW, Hitt JK. Walking with springs. In: Proc SPIE—int soc opt Eng. Bellingham: International Society for Optics and Photonics; 2011. p. 797602.
    1. Wentink EC, Koopman HFJM, Stramigioli S, Rietman JS, Veltink PH. Variable stiffness actuated prosthetic knee to restore knee buckling during stance: a modeling study. 2012.
    1. Kim Ki J, Wu C, Wang F, Wen S. The research of the four-bar bionic active knee. Adv Mater Res. 2011;308–310:1988–1991. doi: 10.4028/.
    1. Bellman RD, Holgate MA, Sugar TG. SPARKy 3: design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2008. NEw York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 511–6.
    1. Hitt J, Sugar T, Holgate M, Bellman R, Hollander K. Robotic transtibial prosthesis with biomechanical energy regeneration. Ind Robot Int J. 2009;36:441–447. doi: 10.1108/01439910910980169.
    1. Liu M, Datseris P, Huang H. Prototype for smart prosthetic legs-analysis and mechanical design, vol 403–408. In: Advanced Materials Research. Zurich: Trans Tech Publications; 2012. p. 1999–2006.
    1. Au SK, Weber J, Herr H. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Trans Robot. 2009;25:51–66. doi: 10.1109/TRO.2008.2008747.
    1. Tucker MR, Fite KB. Mechanical damping with electrical regeneration for a powered transfemoral prosthesis. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM. New York: Institute of Electrical and Electronics Engineers Inc.; 2010. p. 13–8.
    1. Powelson T, Yang J. Finite element analysis of piezoelectric strips for modifying ankle torques in active prosthetic feet—a pilot study, vol 4. In: Proceedings of the ASME design engineering technical conference. New York: American Society of Mechanical Engineers; 2012. p. 133–41.
    1. Andrade JAA, Silva RC, Brasil LM, Rosa SF. Development of an active prosthesis for transtibial amputees. In: 2011 Pan Health Care Exch PAHCE Am. New York: IEEE. 2011.
    1. Hoover CD, Fite KB. Development of a powered-knee transfemoral prosthesis prototype. In: ASME 2011 summer bioengineering conference, SBC 2011. New York: American Society of Mechanical Engineers; 2011. p. 531–2.
    1. Bergelin BJ, Voglewede PA. Design of an active ankle–foot prosthesis utilizing a four-bar mechanism. J Mech Des. 2012;134:061004. doi: 10.1115/1.4006436.
    1. Wells Jr JG, Voglewede PA, Rocheleau DM. Design for improved trans-tibial prosthetic devices using four bar mechanisms, vol 7A. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference—DETC2005. New York: American Society of Mechanical Engineers; 2005. p. 467–73.
    1. Han Y, Jia S, Wang X. Design and simulation of an ankle prosthesis with lower power based on human biomechanics. Robot. 2013;35:276–282. doi: 10.3724/SP.J.1218.2013.00276.
    1. Kim Ki J, Wu C, Wang F, Wen S. By the ball screw drive a new initiative knee joint structure design. Appl Mech Mater. 2011;58–60:332–337. doi: 10.4028/.
    1. Martinez-Villalpando EC, Weber J, Elliott G, Herr H. Biomimetic prosthetic knee using antagonistic muscle-like activation, vol 2. In: ASME international mechanical engineering congress and exposition, proceedings. New York: American Society of Mechanical Engineers; 2009. p. 141–3.
    1. Au SK, Weber J, Herr H. Biomechanical design of a powered ankle–foot prosthesis. In: 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2007. p. 298–303.
    1. Yang P, Chen L, Guo X, Wang X, Li L. Artificial lower limb with myoelectrical control based on support vector machine, vol 2. In: Proceedings of the world congress on intelligent control and automation (WCICA). New York: Institute of Electrical and Electronics Engineers Inc.; 2006. p. 9486–89.
    1. Hitt JK, Sugar TG, Holgate M, Bellman R. An active foot–ankle prosthesis with biomechanical energy regeneration. J Med Devices. 2010;4:011003. doi: 10.1115/1.4001139.
    1. Mattos JO, Kane ED, Voglewede PA. Active component lower limb prosthetic device research: concept and design, vol 8 Part A. In: 2007 Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, DETC2007. New York: American Society of Mechanical Engineers; 2008. p. 607–13.
    1. Wang F, Zhang Y, Ye T, Wu C. A hybrid actuation scheme of trans-femoral prosthesis for motion adaptation. In: 2009 4th IEEE conference on industrial electronics and applications, ICIEA 2009. New York: IEEE Computer Society; 2009. p. 2850–54.
    1. Versluys R, Desomer A, Lenaerts G, Van Ham R, Vanderniepen I, Peeraer L, Lefeber D. On the development of a powered prosthesis for transtibial amputees, vol 22 IFMBE. In: IFMBE Proceedings. Berlin: Springer; 2008. p. 1612–5.
    1. Sup FC, Goldfarb M. Design of a pneumatically actuated transfemoral prosthesis. In: American society of mechanical engineers, dynamic systems and control division (Publication) DSC. New York: American Society of Mechanical Engineers; 2006.
    1. Shen XR, Waycaster G, Wu SK. Design and control of a variable-radius pulley-based pneumatic artificial muscle actuation system. Int J Robot Autom. 2013;28:389–400.
    1. Dabiri Y, Najarian S, Eslami MR, Zahedi S, Moser D. A powered prosthetic knee joint inspired from musculoskeletal system. Biocybern Biomed Eng. 2013;33:118–124. doi: 10.1016/j.bbe.2013.03.004.
    1. Driver T, Wu S-K, Shen X. A pneumatic muscle-actuated transfemoral prosthesis. In: ASME 2012 5th annu dyn syst control conf JT JSME 2012 11th motion vib conf DSCC 2012-MOVIC 2012. New York: American Society of Mechanical Engineers; 2012. p. 779–86.
    1. Versluys R, Desomer A, Lenaerts G, Pareit O, Vanderborght B, Peeraer L, Lefeber D. A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles. Int J Model Identif Control. 2008;4:394–405. doi: 10.1504/IJMIC.2008.021479.
    1. Borjian R, Khamesee MB, Melek W. Feasibility study on echo control of a prosthetic knee: sensors and wireless communication. Microsyst Technol. 2010;16:257–265. doi: 10.1007/s00542-009-0853-y.
    1. Gou B, Liu Z, Zhao L, Yang P. Walking mode pre-judgment of lower limb prosthesis based on correlation analysis. J Southeast Univ Nat Sci Ed. 2013;43(SUPPL.I):192–196.
    1. Wang D, Du L, Huang H. Terrain recognition improves the performance of neural-machine interface for locomotion mode recognition. In: 2013 international conference on computing, networking and communications, ICNC 2013. New York: IEEE Computer Society; 2013. p. 87–91.
    1. Lawson BE, Varol HA, Sup F, Goldfarb M. Stumble detection and classification for an intelligent transfemoral prosthesis. In: 2010 annual international conference of the IEEE engineering in medicine and biology society, EMBC’10. New York: IEEE Computer Society; 2010. p. 511–4.
    1. Yanli G, Peng Y, Lingling C. Study of the control of active transfemoral prosthesis based on CPG. Adv Mater Res. 2012;468–471:1710–1713.
    1. Lawson BE, Varol HA, Goldfarb M. Standing stability enhancement with an intelligent powered transfemoral prosthesis. IEEE Trans Biomed Eng. 2011;58:2617–2624. doi: 10.1109/TBME.2011.2160173.
    1. Zhang F, Huang H. Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE J Biomed Health Inform. 2013;17:907–914. doi: 10.1109/JBHI.2012.2236563.
    1. Zhang F, Dou Z, Nunnery M, Huang H. Real-time implementation of an intent recognition system for artificial legs. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2011. p. 2997–3000.
    1. Varol HA, Sup F, Goldfarb M. Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: 2009 IEEE international conference on rehabilitation robotics, ICORR 2009. New York: IEEE Computer Society; 2009. p. 645–51.
    1. Liu L, Yang P, Liu Z, Chen L, Geng Y. Pattern recognition of the thigh amputee motion based on genetic algorithm and BP, vol 254 LNEE. In: Lecture notes in electrical engineering. Berlin: Springer; 2013. p. 291–8.
    1. Zheng E, Wang L, Luo Y, Wei K, Wang Q. Non-contact capacitance sensing for continuous locomotion mode recognition: design specifications and experiments with an amputee. In: IEEE int conf on rehabil robot ICORR 2013. New York: IEEE; 2013.
    1. Tkach DC, Hargrove LJ. Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for trans-tibial amputees. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2013. p. 3074–77.
    1. Miller JD, Beazer MS, Hahn ME. Myoelectric walking mode classification for transtibial amputees. IEEE Trans Biomed Eng. 2013;60:2745–2750. doi: 10.1109/TBME.2013.2264466.
    1. Tkach DC, Lipschutz RD, Finucane SB, Hargrove LJ. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. In: IEEE int conf on rehabil robot ICORR 2013. New York: IEEE. 2013.
    1. Chen BJ, Zheng EH, Fan XD, Liang T, Wang QN, Wei KL, Wang L. Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans Neural Syst Rehabil Eng. 2013;21:744–755. doi: 10.1109/TNSRE.2013.2262952.
    1. Liu L, Yang P, Liu Z, Geng Y, Zhang J. Leg amputees motion pattern recognition based on principal component analysis and BP network. In: 2013 25th Chinese control and decision conference, CCDC 2013. New York: IEEE Computer Society; 2013. p. 3802–4.
    1. Lawson BE, Varol HA, Goldfarb M. Ground adaptive standing controller for a powered transfemoral prosthesis. In: IEEE international conference on rehabilitation robotics. New York: IEEE Computer Society; 2011.
    1. Huang H, Zhang F, Sun YL, He HB. Design of a robust EMG sensing interface for pattern classification. J Neural Eng. 2010;7:056005. doi: 10.1088/1741-2560/7/5/056005.
    1. Young AJ, Simon A, Hargrove LJ. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2013. p. 1587–90.
    1. Chen L, Yang P, Xu X, Zu L, Guo X. Above-knee prosthesis control based on posture recognition by support vector machine. In: 2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008. New York: Inst. of Elec. and Elec. Eng. Computer Society; 2008. p. 307–12.
    1. Zheng E, Chen B, Wang Q, Wei K, Wang L. A wearable capacitive sensing system with phase-dependent classifier for locomotion mode recognition. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics. New York: IEEE Computer Society; 2012. p. 1747–52.
    1. Huff AM, Lawson BE, Goldfarb M. A running controller for a powered transfemoral prosthesis. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2012. p. 4168–71.
    1. Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng. 2011;58:144–151. doi: 10.1109/TBME.2010.2070840.
    1. Chen L, Yang P, Geng Y, Liu Z: Torque recognition of knee joint based on electromyography. Zhongnan Daxue Xuebao Ziran Kexue Ban J Cent South Univ Sci Technol 2013, 44(SUPPL.2):117–121.
    1. Guo X, Yang P, Chen L, Wang X, Li L. Study of the control mechanism of robot-prosthesis based-on the EMG processed, vol 2. In: Proceedings of the world congress on intelligent control and automation (WCICA). New York: Institute of Electrical and Electronics Engineers Inc.; 2006. p. 9490–3.
    1. Wang J, Kannape OA, Herr HM. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In: IEEE int conf on rehabil robot ICORR 2013. New York: IEEE; 2013.
    1. Hoover CD, Fite KB. Preliminary evaluation of myoelectric control of an active transfemoral prosthesis during stair ascent, vol 1. In: ASME 2010 dynamic systems and control conference, DSCC2010. New York: American Society of Mechanical Engineers; 2010. p. 801–8.
    1. Ha KH, Varol HA, Goldfarb M. Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities. In: 2010 annual international conference of the IEEE engineering in medicine and biology society, EMBC’10. New York: IEEE Computer Society; 2010. p. 3515–8.
    1. Du L, Zhang F, He H, Huang H. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. New York: Institute of Electrical and Electronics Engineers Inc.; 2013. p. 1571–4.
    1. Dawley JA, Fite KB, Fulk GD. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function. In: IEEE int conf on rehabil robot ICORR 2013. New York: IEEE; 2013.
    1. Myers DR, Moskowitz GD. Active EMG-controlled A/K prosthesis. Oxford: Pergamon Press; 1983. pp. 35–41.
    1. Zhang X, Huang H, Yang Q. A special purpose embedded system for neural machine interface for artificial legs. In: 2011 annu int conf IEEE eng med biol soc. New York: IEEE. 2011.
    1. Hoover CD, Fite KB: A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis. In: IEEE international conference on rehabilitation robotics. New York: IEEE Computer Society; 2011.
    1. Kalanovic VD, Popovic DB. Tracking method for the control of the above-knee prosthesis. Autom Remote Control. 1993;54:119–132.
    1. Fujimoto H, Kato I. Method of controlling A/K prosthesis for ascending with disabled side hip joint torque. Trans Jpn Soc Mech Eng Part C. 1995;61:641–646. doi: 10.1299/kikaic.61.641.
    1. Zhang F, D’Andrea SE, Nunnery MJ, Kay SM, Huang H. Towards design of a stumble detection system for artificial legs. IEEE Trans Neural Syst Rehabil Eng. 2011;19:567–577. doi: 10.1109/TNSRE.2011.2161888.

Source: PubMed

3
Suscribir