COVID-19 and ischemic stroke

Dimitrios Sagris, Aikaterini Papanikolaou, Alexandra Kvernland, Eleni Korompoki, Jennifer A Frontera, Andrea B Troxel, Maria Gavriatopoulou, Haralampos Milionis, Gregory Y H Lip, Patrik Michel, Shadi Yaghi, George Ntaios, Dimitrios Sagris, Aikaterini Papanikolaou, Alexandra Kvernland, Eleni Korompoki, Jennifer A Frontera, Andrea B Troxel, Maria Gavriatopoulou, Haralampos Milionis, Gregory Y H Lip, Patrik Michel, Shadi Yaghi, George Ntaios

Abstract

Since the onset of the COVID-19 pandemic, a substantial proportion of COVID-19 patients had documented thrombotic complications and ischemic stroke. Several mechanisms related to immune-mediated thrombosis, the renin angiotensin system and the effect of SARS-CoV-2 in cardiac and brain tissue may contribute to the pathogenesis of ischemic stroke in patients with COVID-19. Simultaneously, significant strains on global healthcare delivery, including ischemic stroke management, have made treatment of stroke in the setting of COVID-19 particularly challenging. In this review, we summarize the current knowledge on epidemiology, clinical manifestation, and pathophysiology of ischemic stroke in patients with COVID-19 to bridge the gap from bench to bedside and clinical practice during the most challenging global health crisis of the last decades.

Keywords: COVID-19; SARS-CoV-2; ischemic stroke; pathophysiology.

Conflict of interest statement

None.

© 2021 European Academy of Neurology.

Figures

FIGURE 1
FIGURE 1
Potential mechanisms of ischemic stroke in patients with COVID‐19. ACE2, angiotensin converting enzyme 2; AT1R, angiotensin receptor type 1; AT2R, angiotensin receptor type 2; BBB, blood–brain barrier; eNOS, endothelial nitric oxide synthase; ICAM‐1, intercellular adhesion molecule 1; IL‐1β, interleukin 1β; IL‐6, interleukin 6; IL‐8, interleukin 8; MasR, Mas receptor; MCP‐1, monocyte chemoattractant protein‐1; MIP‐1α, macrophage inflammatory protein 1α; NETs, neutrophil extracellular traps; RAS, renin angiotensin syndrome; TF, tissue factor; TLR, Toll‐like receptor; TNF, tumor necrosis factor; VCAM‐1, vascular cell adhesion molecule‐1

References

    1. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID‐19. Thromb Res. 2020;191:145‐147. 10.1016/j.thromres.2020.04.013
    1. Oxley TJ, Mocco J, Majidi S, et al. Large‐vessel stroke as a presenting feature of Covid‐19 in the young. N Engl J Med. 2020;382:e60. 10.1056/NEJMc2009787
    1. Bangalore S, Sharma A, Slotwiner A, et al. ST‐segment elevation in patients with Covid‐19 — A case series. N Engl J Med. 2020;382:2478‐2480. 10.1056/NEJMc2009020
    1. Annie F, Bates MC, Nanjundappa A, et al. Prevalence and outcomes of acute ischemic stroke among patients </=50 years of age with laboratory confirmed COVID‐19 Infection. Am J Cardiol. 2020;130:169‐170. 10.1016/j.amjcard.2020.06.010
    1. Cantador E, Núñez A, Sobrino P, et al. Incidence and consequences of systemic arterial thrombotic events in COVID‐19 patients. J Thromb Thrombolysis. 2020;50:543‐547. 10.1007/s11239-020-02176-7
    1. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS‐CoV‐2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089‐1098. 10.1007/s00134-020-06062-x
    1. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID‐19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9‐14. 10.1016/j.thromres.2020.04.024
    1. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology. 2020;77:683‐690. 10.1001/jamaneurol.2020.1127
    1. Yaghi S, Ishida K, Torres J, et al. SARS‐CoV‐2 and stroke in a New York healthcare system. Stroke. 2020;51:2002‐2011. 10.1161/STROKEAHA.120.030335
    1. Jain R, Young M, Dogra S, et al. COVID‐19 related neuroimaging findings: a signal of thromboembolic complications and a strong prognostic marker of poor patient outcome. J Neurol Sci. 2020;414:116923. 10.1016/j.jns.2020.116923
    1. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID‐19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020;5:279‐284. 10.1136/svn-2020-000431
    1. Hernández‐Fernández F, Sandoval Valencia H, Barbella‐Aponte RA, et al. Cerebrovascular disease in patients with COVID‐19: neuroimaging, histological and clinical description. Brain. 2020;143:3089‐3103. 10.1093/brain/awaa239
    1. Chougar L, Shor N, Weiss N, et al. Retrospective observational study of brain magnetic resonance imaging findings in patients with acute SARS‐CoV‐2 infection and neurological manifestations. Radiology. 2020;297:202422. 10.1148/radiol.2020202422
    1. Fan S, Xiao M, Han F, et al. Neurological manifestations in critically Ill patients with COVID‐19: a retrospective study. Front Neurol. 2020;11:806. 10.3389/fneur.2020.00806
    1. Katz JM, Libman RB, Wang JJ, et al. Cerebrovascular complications of COVID‐19. Stroke. 2020;51:e227‐e231. 10.1161/STROKEAHA.120.031265
    1. Kihira S, Schefflein J, Mahmoudi K, et al. Association of coronavirus disease (COVID‐19) with large vessel occlusion strokes: a case‐control study. AJR Am J Roentgenol. 2020;216:1‐6. 10.2214/AJR.20.23847
    1. Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with Covid‐19 versus patients with influenza. JAMA Neurol. 2020;77(11):1366–1372. 10.1101/2020.05.18.20105494
    1. Rothstein A, Oldridge O, Schwennesen H, et al. Acute cerebrovascular events in hospitalized COVID‐19 patients. Stroke. 2020;51:e219‐e222. 10.1161/strokeaha.120.030995
    1. Sierra‐Hidalgo F, Muñoz‐Rivas N, Torres Rubio P, et al. Large artery ischemic stroke in severe COVID‐19. J Neurol. 2020;267:1‐3. 10.1007/s00415-020-09967-1
    1. Beun R, Kusadasi N, Sikma M, et al. Thromboembolic events and apparent heparin resistance in patients infected with SARS‐CoV‐2. Int J Lab Hematol. 2020;42(Suppl 1):19‐20. 10.1111/ijlh.13230
    1. Romero‐Sánchez CM, Díaz‐Maroto I, Fernández‐Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID‐19: the ALBACOVID registry. Neurology. 2020;95:e1060‐e1070. 10.1212/wnl.0000000000009937
    1. Rudilosso S, Laredo C, Vera V, et al. Acute stroke care is at risk in the era of COVID‐19. Stroke. 2020;51:1991‐1995. 10.1161/STROKEAHA.120.030329
    1. Fridman S, Bres Bullrich M, Jimenez‐Ruiz A, et al. Stroke Risk, phenotypes, and death in COVID‐19: Systematic review and newly reported cases. Neurology. 2020;95(24):e3373‐e3385. 10.1212/WNL.0000000000010851
    1. Kihira S, Schefflein J, Mahmoudi K, et al. Association of coronavirus disease (COVID‐19) with large vessel occlusion strokes: a case‐control study. Am J Roentgenol. 2020;216:1‐6. 10.2214/AJR.20.23847
    1. Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID‐19: experiences from a tertiary care center at the Frontline. J Neurol Sci. 2020;415:116969. 10.1016/j.jns.2020.116969
    1. Pons‐Escoda A, Naval‐Baudín P, Majós C, et al. Neurologic involvement in COVID‐19: cause or coincidence? A neuroimaging perspective. Am J Neuroradiol. 2020;41:1365‐1369. 10.3174/ajnr.A6627
    1. John S, Kesav P, Mifsud VA, et al. Characteristics of large‐vessel occlusion associated with COVID‐19 and ischemic stroke. Am J Neuroradiol. 2020;41(12):2263‐2268. 10.3174/ajnr.A6799
    1. Karadaş Ö, Öztürk B, Sonkaya AR. A prospective clinical study of detailed neurological manifestations in patients with COVID‐19. Neurol Sci. 2020;41:1991‐1995. 10.1007/s10072-020-04547-7
    1. Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID‐19: a systematic review and meta‐analysis. Int J Stroke. 2021;16(2):137‐149. 10.1177/1747493020972922
    1. Shahjouei S, Naderi S, Li J, et al. Risk of stroke in hospitalized SARS‐CoV‐2 infected patients: a multinational study. EBioMedicine. 2020;59:102939. 10.1016/j.ebiom.2020.102939
    1. Ntaios G, Michel P, Georgiopoulos G, et al. Characteristics and outcomes in patients with COVID‐19 and acute ischemic stroke: the global COVID‐19 stroke registry. Stroke. 2020;51:e254‐e258. 10.1161/STROKEAHA.120.031208
    1. Hoyer C, Ebert A, Huttner HB, et al. Acute stroke in times of the COVID‐19 pandemic. Stroke. 2020;51:2224‐2227. 10.1161/STROKEAHA.120.030395
    1. Sweid A, Hammoud B, Bekelis K, et al. Cerebral ischemic and hemorrhagic complications of coronavirus disease 2019. Int J Stroke. 2020;15:1747493020937189. 10.1177/1747493020937189
    1. Sangalli D, Polonia V, Colombo D, et al. A single‐centre experience of intravenous thrombolysis for stroke in COVID‐19 patients. Neurol Sci. 2020;41:2325‐2329. 10.1007/s10072-020-04591-3
    1. Escalard S, Maïer B, Redjem H, et al. Treatment of acute ischemic stroke due to large vessel occlusion with COVID‐19: experience from Paris. Stroke. 2020;51:2540‐2543. 10.1161/STROKEAHA.120.030574
    1. Park WB, Kwon NJ, Choi SJ, et al. Virus isolation from the first patient with SARS‐CoV‐2 in Korea. J Korean Med Sci. 2020;35:e84. 10.3346/jkms.2020.35.e84
    1. Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271‐280.e278. 10.1016/j.cell.2020.02.052
    1. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF‐kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787‐791. 10.4049/jimmunol.0901363
    1. Panigrahy D, Gilligan MM, Huang S, et al. Inflammation resolution: a dual‐pronged approach to averting cytokine storms in COVID‐19? Cancer Metastasis Rev. 2020;39(2):337‐340. 10.1007/s10555-020-09889-4
    1. ICD10 . Cytokine release syndrome 2021 ICD‐10‐CM Diagnosis Code D89.83. Accessed March 3, 2021. ; 2021.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497‐506. 10.1016/S0140-6736(20)30183-5
    1. Frontera JA, Sabadia S, Lalchan R, et al. A prospective study of neurologic disorders in hospitalized COVID‐19 Patients in New York City. Neurology. 2020;96:e575‐e586. 10.1212/wnl.0000000000010979
    1. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631‐637. 10.1002/path.1570
    1. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395:1417‐1418. 10.1016/S0140-6736(20)30937-5
    1. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID‐19‐associated coagulopathy: evidence from a single‐centre, cross‐sectional study. Lancet Haematol. 2020;7:e575‐e582. 10.1016/S2352-3026(20)30216-7
    1. Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor‐enriched neutrophil extracellular traps are key drivers in COVID‐19 immunothrombosis. J Clin Investig. 2020;130(11):6151‐6157. 10.1172/JCI141374
    1. Nicolai L, Leunig A, Brambs S, et al. Immunothrombotic dysregulation in COVID‐19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142(12):1176‐1189. 10.1161/CIRCULATIONAHA.120.048488
    1. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID‐19 infection: a report of five cases. Transl Res. 2020;220:1‐13. 10.1016/j.trsl.2020.04.007
    1. Carvelli J, Demaria O, Vély F, et al. Association of COVID‐19 inflammation with activation of the C5a–C5aR1 axis. Nature. 2020;588:146‐150. 10.1038/s41586-020-2600-6
    1. Gencer S, Lacy M, Atzler D, et al. Immunoinflammatory, thrombohaemostatic, and cardiovascular mechanisms in COVID‐19. Thromb Haemost. 2020;120(12):1629‐1641. 10.1055/s-0040-1718735
    1. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid‐19. N Engl J Med. 2020;382:e38. 10.1056/NEJMc2007575
    1. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID‐19. Sci Transl Med. 2020;12:eabd3876. 10.1126/scitranslmed.abd3876
    1. Bowles L, Platton S, Yartey N, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid‐19. N Engl J Med. 2020;383:288‐290. 10.1056/NEJMc2013656
    1. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID‐19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8:681‐686. 10.1016/S2213-2600(20)30243-5
    1. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020;18:1023‐1026. 10.1111/jth.14810
    1. Schalekamp MADH, Danser AHJ. How does the angiotensin II type 1 receptor ‘trump’ the type 2 receptor in blood pressure control? J Hypertens. 2013;31(4):705‐712. 10.1097/HJH.0b013e32835d6d11
    1. Sanchis‐Gomar F, Lavie CJ, Perez‐Quilis C, et al. Angiotensin‐converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin‐converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin Proc. 2020;95:1222‐1230. 10.1016/j.mayocp.2020.03.026
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112‐116. 10.1038/nature03712
    1. Zhang H, Penninger JM, Li Y, et al. Angiotensin‐converting enzyme 2 (ACE2) as a SARS‐CoV‐2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586‐590. 10.1007/s00134-020-05985-9
    1. Liang B, Wang X, Zhang N, et al. Angiotensin‐(1–7) Attenuates Angiotensin II‐Induced ICAM‐1, VCAM‐1, and MCP‐1 Expression via the MAS Receptor Through Suppression of P38 and NF‐κB Pathways in HUVECs. Cell Physiol Biochem. 2015;35:2472‐2482. 10.1159/000374047
    1. Fraga‐Silva RA, Pinheiro SV, Gonçalves AC, et al. The antithrombotic effect of angiotensin‐(1–7) involves mas‐mediated NO release from platelets. Mol Med. 2008;14:28‐35. 10.2119/2007-00073.Fraga-Silva
    1. Schelling P, Hutchinson JS, Ganten U, et al. Impermeability of the blood‐cerebrospinal fluid barrier for angiotensin II in rats. Clin Sci Mol Med Suppl. 1976;3:399s‐402s. 10.1042/cs051399s
    1. Iwai M, Liu HW, Chen R, et al. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation. 2004;110:843‐848. 10.1161/01.Cir.0000138848.58269.80
    1. Zhu YZ, Chimon GN, Zhu YC, et al. Expression of angiotensin II AT2 receptor in the acute phase of stroke in rats. NeuroReport. 2000;11:1191‐1194. 10.1097/00001756-200004270-00009
    1. Makino I, Shibata K, Ohgami Y, et al. Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides. 1996;30:596‐601. 10.1016/s0143-4179(96)90043-8
    1. Mecca AP, Regenhardt RW, O'Connor TE, et al. Cerebroprotection by angiotensin‐(1–7) in endothelin‐1‐induced ischaemic stroke. Exp Physiol. 2011;96:1084‐1096. 10.1113/expphysiol.2011.058578
    1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054‐1062. 10.1016/s0140-6736(20)30566-3
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in Wuhan, China. JAMA. 2020;323:1061‐1069. 10.1001/jama.2020.1585
    1. Stefanini GG, Montorfano M, Trabattoni D, et al. ST‐Elevation Myocardial Infarction in Patients With COVID‐19. Circulation. 2020;141:2113‐2116. 10.1161/CIRCULATIONAHA.120.047525
    1. Merkler AE, Diaz I, Wu X, et al. Duration of heightened ischemic stroke risk after acute myocardial infarction. J Am Heart Assoc. 2018;7:e010782. 10.1161/JAHA.118.010782
    1. Zeng J‐H, Liu Y‐X, Yuan J, et al. First case of COVID‐19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773‐777. 10.1007/s15010-020-01424-5
    1. Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. Eur J Heart Fail. 2020;22:911‐915. 10.1002/ejhf.1828
    1. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako‐Tsubo syndrome in a patient with SARS‐CoV‐2 respiratory infection. Eur Heart J. 2020;41:1861‐1862. 10.1093/eurheartj/ehaa286
    1. Theetha Kariyanna P, Priyan Chandrakumar H, Jayarangaiah A, et al. Apical Takotsubo cardiomyopathy in a COVID‐19 patient presenting with stroke: a case report and pathophysiologic insights. Am J Med Case Rep. 2020;8(10):350‐357.
    1. Ford JS, Holmes JF, Jones RF. Cardioembolic stroke in a patient with coronavirus disease of 2019 (COVID‐19) myocarditis: a case report. Clin Pract Cases Emerg Med. 2020;4:332‐335. 10.5811/cpcem.2020.6.47856
    1. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID‐19). JAMA Cardiol. 2020;5:1265‐1273. 10.1001/jamacardio.2020.3557
    1. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin‐converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822‐828. 10.1038/nature00786
    1. Oudit GY, Kassiri Z, Jiang C, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39:618‐625. 10.1111/j.1365-2362.2009.02153.x
    1. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID‐19). JAMA Cardiology. 2020;5:811‐818. 10.1001/jamacardio.2020.1017
    1. Lazzerini PE, Boutjdir M, Capecchi PL. COVID‐19, arrhythmic risk, and inflammation. Circulation. 2020;142:7‐9. 10.1161/CIRCULATIONAHA.120.047293
    1. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID‐19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41:1821‐1829. 10.1093/eurheartj/ehaa388
    1. Walkey AJ, Hammill BG, Curtis LH, et al. Long‐term outcomes following development of new‐onset atrial fibrillation during sepsis. Chest. 2014;146:1187‐1195. 10.1378/chest.14-0003
    1. Bohmwald K, Gálvez NMS, Ríos M, et al. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. 10.3389/fncel.2018.00386
    1. Aragão MFVV, Leal MC, Cartaxo Filho OQ, Fonseca TM, Valença MM. Anosmia in COVID‐19 associated with injury to the olfactory bulbs evident on MRI. Am J Neuroradiol. 2020;41:1703‐1706. 10.3174/ajnr.A6675
    1. Brann DH, Tsukahara T, Weinreb C, et al. Non‐neuronal expression of SARS‐CoV‐2 entry genes in the olfactory system suggests mechanisms underlying COVID‐19‐associated anosmia. Sci Adv. 2020;6:eabc5801. 10.1126/sciadv.abc5801
    1. Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID‐19 in Germany: a post‐mortem case series. Lancet Neurol. 2020;19:919‐929. 10.1016/S1474-4422(20)30308-2
    1. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of covid‐19. N Engl J Med. 2020;383:989‐992. 10.1056/NEJMc2019373
    1. Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS‐CoV‐2 in human and mouse brain. bioRxiv. 2020. 10.1101/2020.06.25.169946
    1. Shi K, Tian D‐C, Li Z‐G, et al. Global brain inflammation in stroke. Lancet Neurol. 2019;18:1058‐1066. 10.1016/S1474-4422(19)30078-X
    1. Meza HT, Lambea Gil Á, Saldaña A S, et al. Impact of COVID‐19 outbreak on ischemic stroke admissions and in‐hospital mortality in North‐West Spain. Int J Stroke. 2020;15(7):755‐762. 10.1177/1747493020938301
    1. Kristoffersen ES, Jahr SH, Thommessen B, et al. Effect of COVID‐19 pandemic on stroke admission rates in a Norwegian population. Acta Neurol Scand. 2020;142(6):632‐636. 10.1111/ane.13307
    1. Rinkel LA, Prick JCM, Slot RER, et al. Impact of the COVID‐19 outbreak on acute stroke care. J Neurol. 2020;268(2):403‐408. 10.1007/s00415-020-10069-1
    1. Tejada Meza H, Lambea Gil Á, Sancho Saldaña A, et al. Ischaemic stroke in the time of coronavirus disease 2019. Eur J Neurol. 2020;27(9):1788‐1792. 10.1111/ene.14327
    1. Hoyer C, Ebert A, Huttner HB, et al. Acute stroke in times of the COVID‐19 pandemic: a multicenter study. Stroke. 2020;51:2224‐2227. 10.1161/strokeaha.120.030395
    1. Bres Bullrich M, Fridman S, Mandzia JL, et al. COVID‐19: stroke admissions, emergency department visits, and prevention clinic referrals. Can J Neurol Sci. 2020;47:1‐4. 10.1017/cjn.2020.101
    1. Diegoli H, Magalhães PSC, Martins SCO, et al. Decrease in hospital admissions for transient ischemic attack, mild, and moderate stroke during the COVID‐19 era. Stroke. 2020;51:2315‐2321. 10.1161/strokeaha.120.030481
    1. Desai SM, Guyette FX, Martin‐Gill C, et al. Collateral damage ‐ Impact of a pandemic on stroke emergency services. J Stroke Cerebrovasc Dis. 2020;29:104988. 10.1016/j.jstrokecerebrovasdis.2020.104988
    1. Siegler JE, Heslin ME, Thau L, et al. Falling stroke rates during COVID‐19 pandemic at a comprehensive stroke center. J Stroke Cerebrovasc Dis. 2020;29:104953. 10.1016/j.jstrokecerebrovasdis.2020.104953
    1. Uchino K, Kolikonda MK, Brown D, et al. Decline in stroke presentations during COVID‐19 surge. Stroke. 2020;51:2544‐2547. 10.1161/STROKEAHA.120.030331
    1. Hsiao J, Sayles E, Antzoulatos E, et al. Effect of COVID‐19 on emergent stroke care: a regional experience. Stroke. 2020;51:e2111‐e2114. 10.1161/strokeaha.120.030499
    1. Nguyen‐Huynh MN, Tang XN, Vinson DR, et al. Acute stroke presentation, care, and outcomes in community hospitals in Northern California during the COVID‐19 pandemic. Stroke. 2020;51(10):2918‐2924. 10.1161/STROKEAHA.120.031099
    1. Agarwal S, Scher E, Rossan‐Raghunath N, et al. Acute stroke care in a New York City comprehensive stroke center during the COVID‐19 pandemic. J Stroke Cerebrovasc Dis. 2020;29:105068. 10.1016/j.jstrokecerebrovasdis.2020.105068
    1. de Havenon A, Ney J, Callaghan B, et al. A rapid decrease in stroke, acute coronary syndrome, and corresponding interventions at 65 United States Hospitals Following Emergence of COVID‐19. medRxiv. 2020. 10.1101/2020.05.07.20083386
    1. Paliwal PR, Tan BYQ, Leow AST, et al. Impact of the COVID‐19 pandemic on hyperacute stroke treatment: experience from a comprehensive stroke centre in Singapore. J Thromb Thrombolysis. 2020;50(3):596‐603. 10.1007/s11239-020-02225-1
    1. Zhao J, Li H, Kung D, et al. Impact of the COVID‐19 epidemic on stroke care and potential solutions. Stroke. 2020;51:1996‐2001. 10.1161/STROKEAHA.120.030225
    1. Sarfo FS, Mensah NO, Opoku FA, et al. COVID‐19 and stroke: experience in a Ghanaian healthcare system. J Neurol Sci. 2020;416:117044. 10.1016/j.jns.2020.117044
    1. Jasne AS, Chojecka P, Maran I, et al. Stroke code presentations, interventions, and outcomes before and during the COVID‐19 pandemic. Stroke. 2020;51:2664‐2673. 10.1161/STR.0000000000000347
    1. Kerleroux B, Fabacher T, Bricout N, et al. Mechanical thrombectomy for acute ischemic stroke amid the COVID‐19 outbreak: decreased activity, and increased care delays. Stroke. 2020;51:2012‐2017. 10.1161/strokeaha.120.030373
    1. Montaner J, Barragán‐Prieto A, Pérez‐Sánchez S, et al. Break in the stroke chain of survival due to COVID‐19. Stroke. 2020;51:2307‐2314. 10.1161/STROKEAHA.120.030106
    1. Neves Briard J, Ducroux C, Jacquin G, et al. Early impact of the COVID‐19 pandemic on acute stroke treatment delays. Can J Neurol Sci. 2021;48:122‐126. 10.1017/cjn.2020.160
    1. Naccarato M, Scali I, Olivo S, et al. Has COVID‐19 played an unexpected & #x201c;stroke” on the chain of survival? J Neurol Sci. 2020;414:116889. 10.1016/j.jns.2020.116889
    1. Schirmer CM, Ringer AJ, Arthur AS, et al. Delayed presentation of acute ischemic strokes during the COVID‐19 crisis. J NeuroIntervent Surg. 2020;12:639‐642. 10.1136/neurintsurg-2020-016299
    1. Teo KC, Leung WCY, Wong YK, et al. Delays in stroke onset to hospital arrival time during COVID‐19. Stroke. 2020;51:2228‐2231. 10.1161/strokeaha.120.030105
    1. Yang B, Wang T, Chen J, et al. Impact of the COVID‐19 pandemic on the process and outcome of thrombectomy for acute ischemic stroke. J NeuroIntervent Surg. 2020;12:664‐668. 10.1136/neurintsurg-2020-016177
    1. Katsanos AH, Palaiodimou L, Zand R, et al. The impact of SARS‐CoV‐2 on stroke epidemiology and care: a meta‐analysis. Ann Neurol. 2021;89:380‐388. 10.1002/ana.25967
    1. Frisullo G, Brunetti V, Di Iorio R, et al. Effect of lockdown on the management of ischemic stroke: an Italian experience from a COVID hospital. Neurol Sci. 2020;41:2309‐2313. 10.1007/s10072-020-04545-9
    1. Hajdu SD, Pittet V, Puccinelli F, et al. Acute stroke management during the COVID‐19 pandemic: does confinement impact eligibility for endovascular therapy? Stroke. 2020;51:2593‐2596. 10.1161/strokeaha.120.030794
    1. Owen KPaD . RAS and Coagulopathy in COVID19. ClinicalTrials.gov2021.
    1. Gunst JD, Staerke NB, Pahus MH, et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid‐19‐a double‐blind randomized controlled trial. EClinicalMedicine. 2021;35:100849. 10.1016/j.eclinm.2021.100849
    1. Role of Microparticles in Covid‐19 Infection (MICO). Accessed March 3, 2021. ; 2020.
    1. Knight JS. Dipyridamole to Prevent Coronavirus Exacerbation of Respiratory Status (DICER) in COVID‐19 (DICER). Accessed March 3, 2021. ; 2020.
    1. Shoirah H, Wechsler LR, Jovin TG, et al. Acute stroke trial enrollment through a telemedicine network: a 12‐year experience. J Stroke Cerebrovasc Dis. 2019;28:1926‐1929.
    1. Sheth SA, Wu T‐C, Sharrief A, et al. Early lessons from world war COVID reinventing our stroke systems of care. Stroke. 2020;51:2268‐2272. 10.1161/STROKEAHA.120.030154
    1. Frontera J, Mainali S, Fink EL, et al. Global consortium study of neurological dysfunction in COVID‐19 (GCS‐NeuroCOVID): study design and rationale. Neurocrit Care. 2020;33:25‐34. 10.1007/s12028-020-00995-3
    1. Gerotziafas G, Catalano M, Colgan M‐P, et al. Guidance for the management of patients with vascular disease or cardiovascular risk factors and COVID‐19: position paper from VAS‐European Independent Foundation in Angiology/Vascular Medicine. Thromb Haemost. 2020;120:1597‐1628. 10.1055/s-0040-1715798
    1. Tremblay D, van Gerwen M, Alsen M, et al. Impact of anticoagulation prior to COVID‐19 infection: a propensity score‐matched cohort study. Blood. 2020;136:144‐147. 10.1182/blood.2020006941
    1. Liberale L, Diaz‐Cañestro C, Bonetti NR, et al. Post‐ischaemic administration of the murine Canakinumab‐surrogate antibody improves outcome in experimental stroke. Eur Heart J. 2018;39:3511‐3517. 10.1093/eurheartj/ehy286
    1. Smith CJ, Hulme S, Vail A, et al. SCIL‐STROKE (Subcutaneous Interleukin‐1 Receptor Antagonist in Ischemic Stroke). Stroke. 2018;49:1210‐1216. 10.1161/STROKEAHA.118.020750
    1. Peña‐Martínez C, Durán‐Laforet V, García‐Culebras A, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue‐type plasminogen activator) resistance. Stroke. 2019;50:3228‐3237. 10.1161/STROKEAHA.119.026848
    1. Stone JH, Frigault MJ, Serling‐Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with Covid‐19. N Engl J Med. 2020;383(24):2333‐2344. 10.1056/NEJMoa2028836
    1. Mateo PF. Clinical Trial of the Use of Anakinra in Cytokine Storm Syndrome Secondary to Covid‐19 (ANA‐COVID‐GEAS) (ANA‐COVID‐GEAS). Accessed March 3, 2021. ; 2021.
    1. Kyriazopoulou E, Panagopoulos P, Metallidis S, et al. An open label trial of anakinra to prevent respiratory failure in COVID‐19. Elife. 2021;10:e66125. 10.7554/eLife.66125
    1. Vlaar APJ, de Bruin S, Busch M, et al. Anti‐C5a antibody IFX‐1 (vilobelimab) treatment versus best supportive care for patients with severe COVID‐19 (PANAMO): an exploratory, open‐label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020;2:e764‐e773. 10.1016/S2665-9913(20)30341-6
    1. Urwyler P, Charitos P, Moser S, et al. Recombinant human C1 esterase inhibitor (conestat alfa) in the prevention of severe SARS‐CoV‐2 infection in hospitalized patients with COVID‐19: a structured summary of a study protocol for a randomized, parallel‐group, open‐label, multi‐center pilot trial (PROTECT‐COVID‐19). Trials. 2021;22:1. 10.1186/s13063-020-04976-x
    1. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA‐1273 SARS‐CoV‐2 vaccine. N Engl J Med. 2020;384(5):403‐416. 10.1056/NEJMoa2035389
    1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid‐19 vaccine. N Engl J Med. 2020;383:2603‐2615. 10.1056/NEJMoa2034577

Source: PubMed

3
Suscribir