Investigating Stress Response during Vaginal Delivery and Elective Cesarean Section through Assessment of Levels of Cortisol, Interleukin 6 (IL-6), Growth Hormone (GH) and Insulin-Like Growth Factor 1 (IGF-1)

Nikolaos Kiriakopoulos, Sokratis Grigoriadis, Evangelos Maziotis, Anastasios Philippou, Anna Rapani, Polina Giannelou, Petroula Tsioulou, Konstantinos Sfakianoudis, Adamantia Kontogeorgi, Panagiotis Bakas, George Mastorakos, Michael Koutsilieris, Mara Simopoulou, Nikolaos Kiriakopoulos, Sokratis Grigoriadis, Evangelos Maziotis, Anastasios Philippou, Anna Rapani, Polina Giannelou, Petroula Tsioulou, Konstantinos Sfakianoudis, Adamantia Kontogeorgi, Panagiotis Bakas, George Mastorakos, Michael Koutsilieris, Mara Simopoulou

Abstract

Background: How do stress related phenomena during labor differ between vaginal delivery (VD) and elective cesarean section (CS), remains of heightened interest. The purpose of this study is to investigate discrepancies regarding the stress response during VD and CS.

Methods: Cortisol, interleukin 6 (IL-6), growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels from parturients' peripheral blood were evaluated on three time-points, namely during the first stage of labor (TP1), two hours post labor (TP2) and 48 h post labor (TP3). Levels were also evaluated from the umbilical cord blood. A total of 50 women were enrolled in this prospective cohort study, with 24 and 26 subjected to CS and VD, respectively.

Results: No statistically significant differences were observed between the two groups at TP1. Only GH levels presented the same pattern during the three time-points among both groups. In the umbilical cord blood, the CS group presented statistically significant higher IGF-1 and GH levels. In the umbilical cord blood, IGF-1 and GH levels were positively correlated, while GH and cortisol levels were negatively correlated.

Conclusion: CS is a less stressful procedure than VD and is further associated with less intense inflammation, albeit with a longer inflammatory response period. Labor physiology during CS differs considerably regarding respective observations during VD. This merits extensive investigation in order to decipher these data for optimal clinical practice and guidelines.

Keywords: caesarean section; cortisol; delivery mode; growth hormone; insulin-like growth factor 1; interleukin 6; stress; vaginal delivery.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cortisol levels reported in the caesarean section (CSG) group and in the vaginal delivery group (VDG), respectively, on each of the three separate time-points (TP1: Prior to labor; TP2: 120 min following placenta delivery; TP3: 48 h following placenta delivery).
Figure 2
Figure 2
Interleukin-6 (IL-6) levels reported in the CSG and in the VDG, respectively, on each of the three separate time-points (TP1: Prior to labor; TP2: 120 min following placenta delivery; TP3: 48 h following placenta delivery).
Figure 3
Figure 3
Insulin-like growth factor 1 (IGF-1 levels reported in the CSG and in the VDG, respectively, on each of the three separate time-points (TP1: Prior to labor; TP2: 120 min following placenta delivery; TP3: 48 h following placenta delivery).
Figure 4
Figure 4
Growth hormone (GH) levels reported in the CSG and in the VDG, respectively, on each of the three separate time-points (TP1: Prior to labor; TP2: 120 min following placenta delivery; TP3: 48 h following placenta delivery).

References

    1. Klaperski S., von Dawans B., Heinrichs M., Fuchs R. Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women? Psychol. Sport Exerc. 2013;14:266–274. doi: 10.1016/j.psychsport.2012.11.003.
    1. Oken B.S., Chamine I., Wakeland W. A Systems Approach to Stress, Stressors and Resilience in Humans. Behav. Brain Res. 2015;282:144–154. doi: 10.1016/j.bbr.2014.12.047.
    1. Pirdel M., Pirdel L. Perceived Environmental Stressors and Pain Perception During Labor Among Primiparous and Multiparous Women. J. Reprod. Infertil. 2009;10:217–223.
    1. Radley J.J., Kabbaj M., Jacobson L., Heydendael W., Yehuda R., Herman J.P. Stress risk factors and stress-related pathology: neuroplasticity, epigenetics and endophenotypes. Stress. 2011;14:481–497. doi: 10.3109/10253890.2011.604751.
    1. Yaribeygi H., Panahi Y., Sahraei H., Johnston T.P., Sahebkar A. The impact of stress on body function: A review. EXCLI J. 2017;16:1057–1072.
    1. Tilbrook A.J., Turner A.I., Clarke I.J. Stress and reproduction: central mechanisms and sex differences in non-rodent species. Stress. 2002;5:83–100. doi: 10.1080/10253890290027912.
    1. Ilias I., Mastorakos G. The emerging role of peripheral corticotropin-releasing hormone (CRH) J. Endocrinol. Investig. 2003;26:364–371. doi: 10.1007/BF03345186.
    1. Prasad S., Tiwari M., Pandey A.N., Shrivastav T.G., Chaube S.K. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 2016;23 doi: 10.1186/s12929-016-0253-4.
    1. Doufas A.G., Mastorakos G. The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann. N. Y. Acad. Sci. 2000;900:65–76. doi: 10.1111/j.1749-6632.2000.tb06217.x.
    1. Mastorakos G., Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann. N. Y. Acad. Sci. 2003;997:136–149. doi: 10.1196/annals.1290.016.
    1. McEvoy A., Tetrokalashvili M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2019. Physiology, Pregnancy Contractions.
    1. Sandman C.A., Glynn L.M. Corticotropin-Releasing Hormone (CRH) Programs the Fetal and Maternal Brain. Future Neurol. 2009;4:257–261. doi: 10.2217/fnl.09.8.
    1. Kota S.K., Gayatri K., Jammula S., Kota S.K., Krishna S.V.S., Meher L.K., Modi K.D. Endocrinology of parturition. Indian J. Endocrinol. Metab. 2013;17:50–59. doi: 10.4103/2230-8210.107841.
    1. Buckley S.J. Executive Summary of Hormonal Physiology of Childbearing: Evidence and Implications for Women, Babies, and Maternity Care. J. Perinat. Educ. 2015;24:145–153. doi: 10.1891/1058-1243.24.3.145.
    1. Clapp M.A., Barth W.H. The Future of Cesarean Delivery Rates in the United States. Clin. Obstet. Gynecol. 2017;60:829–839. doi: 10.1097/GRF.0000000000000325.
    1. WHO WHO Statement on Caesarean Section Rates. [(accessed on 21 June 2019)]; Available online:
    1. Overview | Caesarean Section | Guidance | NICE. [(accessed on 21 June 2019)]; Available online: .
    1. Panda S., Begley C., Daly D. Clinicians’ views of factors influencing decision-making for caesarean section: A systematic review and metasynthesis of qualitative, quantitative and mixed methods studies. PLoS ONE. 2018;13:e0200941. doi: 10.1371/journal.pone.0200941.
    1. White VanGompel E., Main E.K., Tancredi D., Melnikow J. Do provider birth attitudes influence cesarean delivery rate: a cross-sectional study. BMC Pregnancy Childbirth. 2018;18:184. doi: 10.1186/s12884-018-1756-7.
    1. Vogl S.E., Worda C., Egarter C., Bieglmayer C., Szekeres T., Huber J., Husslein P. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG. 2006;113:441–445. doi: 10.1111/j.1471-0528.2006.00865.x.
    1. Mears K., McAuliffe F., Grimes H., Morrison J.J. Fetal cortisol in relation to labour, intrapartum events and mode of delivery. J. Obstet. Gynaecol. 2004;24:129–132. doi: 10.1080/01443610410001645389.
    1. Xiong F., Zhang L. Role of the Hypothalamic-Pituitary-Adrenal Axis in Developmental Programming of Health and Disease. Front. Neuroendocrinol. 2013;34:27–46. doi: 10.1016/j.yfrne.2012.11.002.
    1. Stjernholm Y.V., Nyberg A., Cardell M., Höybye C. Circulating maternal cortisol levels during vaginal delivery and elective cesarean section. Arch. Gynecol. Obstet. 2016;294:267–271. doi: 10.1007/s00404-015-3981-x.
    1. Hannibal K.E., Bishop M.D. Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation. Phys. Ther. 2014;94:1816–1825. doi: 10.2522/ptj.20130597.
    1. Erta M., Quintana A., Hidalgo J. Interleukin-6, a Major Cytokine in the Central Nervous System. Int. J. Biol. Sci. 2012;8:1254–1266. doi: 10.7150/ijbs.4679.
    1. Mastorakos G., Chrousos G.P., Weber J.S. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J. Clin. Endocrinol. Metab. 1993;77:1690–1694.
    1. Goldstein D.S. Adrenal Responses to Stress. Cell. Mol. Neurobiol. 2010;30:1433–1440. doi: 10.1007/s10571-010-9606-9.
    1. Ho J.T., Lewis J.G., O’Loughlin P., Bagley C.J., Romero R., Dekker G.A., Torpy D.J. Reduced maternal corticosteroid-binding globulin and cortisol levels in pre-eclampsia and gamete recipient pregnancies. Clin. Endocrinol. (Oxf.) 2007;66:869–877. doi: 10.1111/j.1365-2265.2007.02826.x.
    1. Jung C., Ho J.T., Torpy D.J., Rogers A., Doogue M., Lewis J.G., Czajko R.J., Inder W.J. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 2011;96:1533–1540. doi: 10.1210/jc.2010-2395.
    1. Goldkrand J.W., Schulte R.L., Messer R.H. Maternal and fetal plasma cortisol levels at parturition. Obstet. Gynecol. 1976;47:41–45.
    1. Anim-Somuah M., Smyth R.M., Cyna A.M., Cuthbert A. Epidural versus non-epidural or no analgesia for pain management in labour. Cochrane Database Syst. Rev. 2018;5:CD000331. doi: 10.1002/14651858.CD000331.pub4.
    1. Miller N.M., Fisk N.M., Modi N., Glover V. Stress responses at birth: determinants of cord arterial cortisol and links with cortisol response in infancy. BJOG. 2005;112:921–926. doi: 10.1111/j.1471-0528.2005.00620.x.
    1. Schuller C., Känel N., Müller O., Kind A.B., Tinner E.M., Hösli I., Zimmermann R., Surbek D. Stress and pain response of neonates after spontaneous birth and vacuum-assisted and cesarean delivery. Am. J. Obstet. Gynecol. 2012;207:416-e1. doi: 10.1016/j.ajog.2012.08.024.
    1. Gitau R., Menson E., Pickles V., Fisk N.M., Glover V., MacLachlan N. Umbilical cortisol levels as an indicator of the fetal stress response to assisted vaginal delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;98:14–17. doi: 10.1016/S0301-2115(01)00298-6.
    1. Winkler M., Kemp B., Fischer D.C., Maul H., Hlubek M., Rath W. Tissue concentrations of cytokines in the lower uterine segment during preterm parturition. J. Perinat. Med. 2001;29:519–527. doi: 10.1515/JPM.2001.072.
    1. Haghshenas Mojaveri M., Mohammadzadeh I., Al-Sadat Bouzari Z., Akbarian Rad Z., Haddad G., Alizadeh- Navaei R. The comparison of serum interleukin-6 of mothers in vaginal and elective cesarean delivery. Caspian J. Intern. Med. 2014;5:223–226.
    1. Berner R., Niemeyer C.M., Leititis J.U., Funke A., Schwab C., Rau U., Richter K., Tawfeek M.S., Clad A., Brandis M. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr. Res. 1998;44:469–477. doi: 10.1203/00006450-199810000-00002.
    1. Malamitsi-Puchner A., Protonotariou E., Boutsikou T., Makrakis E., Sarandakou A., Creatsas G. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 2005;81:387–392. doi: 10.1016/j.earlhumdev.2004.10.017.
    1. Zanardo V., Soldà G., Trevisanuto D. Elective cesarean section and fetal immune-endocrine response. Int. J. Gynaecol. Obstet. 2006;95:52–53. doi: 10.1016/j.ijgo.2006.06.022.
    1. Rettig T.C.D., Verwijmeren L., Dijkstra I.M., Boerma D., van de Garde E.M.W., Noordzij P.G. Postoperative Interleukin-6 Level and Early Detection of Complications After Elective Major Abdominal Surgery. Ann. Surg. 2016;263:1207–1212. doi: 10.1097/SLA.0000000000001342.
    1. Hebisch G., Neumaier-Wagner P.M., Huch R., von Mandach U. Maternal serum interleukin-1 beta, -6 and -8 levels and potential determinants in pregnancy and peripartum. J. Perinat. Med. 2004;32:475–480. doi: 10.1515/JPM.2004.131.
    1. De Jongh R.F., Puylaert M., Bosmans E., Ombelet W., Maes M., Heylen R. The fetomaternal dependency of cord blood interleukin-6. Am. J. Perinatol. 1999;16:121–128. doi: 10.1055/s-2007-993845.
    1. Fukuda H., Masuzaki H., Ishimaru T. Interleukin-6 and interleukin-1 receptor antagonist in amniotic fluid and cord blood in patients with pre-term, premature rupture of the membranes. Int. J. Gynaecol. Obstet. 2002;77:123–129. doi: 10.1016/S0020-7292(02)00016-4.
    1. Takahashi N., Uehara R., Kobayashi M., Yada Y., Koike Y., Kawamata R., Odaka J., Honma Y., Momoi M.Y. Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings. Cytokine. 2010;49:331–337. doi: 10.1016/j.cyto.2009.11.024.
    1. Geary M.P.P., Pringle P.J., Rodeck C.H., Kingdom J.C.P., Hindmarsh P.C. Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth. J. Clin. Endocrinol. Metab. 2003;88:3708–3714. doi: 10.1210/jc.2002-022006.
    1. Mazziotti G., Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat. Rev. Endocrinol. 2013;9:265–276. doi: 10.1038/nrendo.2013.5.
    1. Berryman D.E., List E.O. Growth Hormone’s Effect on Adipose Tissue: Quality versus Quantity. Int. J. Mol. Sci. 2017;18:1621. doi: 10.3390/ijms18081621.
    1. Masukume G., McCarthy F.P., Baker P.N., Kenny L.C., Morton S.M., Murray D.M., Hourihane J.O., Khashan A.S. Association between caesarean section delivery and obesity in childhood: a longitudinal cohort study in Ireland. BMJ Open. 2019;9:e025051. doi: 10.1136/bmjopen-2018-025051.

Source: PubMed

3
Suscribir