Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness

Roberta Bevilacqua, Elvira Maranesi, Giovanni Renato Riccardi, Valentina Di Donna, Paolo Pelliccioni, Riccardo Luzi, Fabrizia Lattanzio, Giuseppe Pelliccioni, Roberta Bevilacqua, Elvira Maranesi, Giovanni Renato Riccardi, Valentina Di Donna, Paolo Pelliccioni, Riccardo Luzi, Fabrizia Lattanzio, Giuseppe Pelliccioni

Abstract

: Objective: the objective of this review is to analyze the advances in the field of rehabilitation through virtual reality, while taking into account non-immersive systems, as evidence have them shown to be highly accepted by older people, due to the lowest "cibersikness" symptomatology.

Data sources: a systematic review of the literature was conducted in June 2019. The data were collected from Cochrane, Embase, Scopus, and PubMed databases, analyzing manuscripts and articles of the last 10 years.

Study selection: we only included randomized controlled trials written in English aimed to study the use of the virtual reality in rehabilitation. We selected 10 studies, which were characterized by clinical heterogeneity.

Data extraction: quality evaluation was performed based on the Physioterapy Evidence Database (PEDro) scale, suggested for evidence based review of stroke rehabilitation. Of 10 studies considered, eight were randomized controlled trials and the PEDro score ranged from four to a maximum of nine.

Data synthesis: VR (Virtual Reality) creates artificial environments with the possibility of a patient interaction. This kind of experience leads to the development of cognitive and motor abilities, which usually positively affect the emotional state of the patient, increasing collaboration and compliance. Some recent studies have suggested that rehabilitation treatment interventions might be useful and effective in treating motor and cognitive symptoms in different neurological disorders, including traumatic brain injury, multiple sclerosis, and progressive supranuclear palsy.

Conclusions: as it is shown by the numerous studies in the field, the application of VR has a positive impact on the rehabilitation of the most predominant geriatric syndromes. The level of realism of the virtual stimuli seems to have a crucial role in the training of cognitive abilities. Future research needs to improve study design by including larger samples, longitudinal designs, long term follow-ups, and different outcome measures, including functional and quality of life indexes, to better evaluate the clinical impact of this promising technology in healthy old subjects and in neurological patients.

Keywords: cognitive and physical rehabilitation; oldest old person; virtual reality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the study selection process.

References

    1. Torner J., Skouras S., Molinuevo J.L., Gispert J.D., Alpiste F., Molinuevo J.L. Multipurpose Virtual Reality Environment for Biomedical and Health Applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2019;27:1511–1520. doi: 10.1109/TNSRE.2019.2926786.
    1. Sveistrup H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 2004;1:1–10. doi: 10.1186/1743-0003-1-10.
    1. Henderson A., Korner-Bitensky N., Levin M. Virtual reality in stroke rehabilitation: A systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 2007;14:52–61. doi: 10.1310/tsr1402-52.
    1. Piron L., Turolla A., Agostini M., Zucconi C.S., Ventura L., Tonin P., Dam M. Motor Learning Principles for Rehabilitation: A Pilot Randomized Controlled Study in Poststroke Patients. Neurorehabil. Neural Repair. 2010;6:501–508. doi: 10.1177/1545968310362672.
    1. Perrochon A., Borel B., Istrate D., Compagnat M., Daviet J.C. Exercise-based games interventions at home in individuals with a neurological disease: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019;62:366–378. doi: 10.1016/j.rehab.2019.04.004.
    1. Mohammadi R., Semnani A.V., Mirmohammadkhani M., Grampurohit N. Effects of Virtual Reality Compared to Conventional Therapy on Balance Poststroke: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2019;28:1787–1798. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.054.
    1. Maggio M.G., De Cola M.C., Latella D., Maresca G., Finocchiaro C., La Rosa G., Cimino V., Sorbera C., Bramanti P., De Luca R., et al. What about the Role of Virtual Reality in Parkinson Disease’s Cognitive Rehabilitation? Preliminary Findings from a Randomized Clinical Trial. J. Geriatr. Psychiatry Neurol. 2018;31:312–318. doi: 10.1177/0891988718807973.
    1. Alashram A.R., Annino G., Padua E., Romagnoli C., Mercuri N.B. Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology. J. Clin. Neurosci. 2019;66:209–219. doi: 10.1016/j.jocn.2019.04.026.
    1. Maggio M.G., Russo M., Cuzzola M.F., Destro M., La Rosa G., Molonia F., Bramanti P., Lombardo G., De Luca R., Calabrò R.S. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019;65:106–111. doi: 10.1016/j.jocn.2019.03.017.
    1. Freeman D., Reeve S., Robinson A., Ehlers A., Clark D., Spanlang B., Slater M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017;47:2393–2400. doi: 10.1017/S003329171700040X.
    1. Ahn S., Hwang S. Virtual rehabilitation of upper extremity function and independence for stoke: A meta-analysis. J. Exerc. Rehabil. 2019;15:358–369. doi: 10.12965/jer.1938174.087.
    1. Van Schaik P., Blake J., Pernet F., Spears I., Fencott C. Virtual augmented exercise gaming for older adults. Cyberpsychol. Behav. 2008;11:103–106. doi: 10.1089/cpb.2007.9925.
    1. Zelinski E.M., Reyes R. Cognitive benefits of computer games for older adults. Gerontechnology. 2009;8:220–235. doi: 10.4017/gt.2009.08.04.004.00.
    1. Patel J., Fluet G., Qiu Q., Yarossi M., Merians A., Tunik E., Adamovich S. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: A feasibility study. J. Neuroeng. Rehabil. 2019;16:92. doi: 10.1186/s12984-019-0563-3.
    1. Lee S.H., Jung H.Y., Yun S.J., Oh B.M., Seo H.G. Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games with a Head Mount Display: A Feasibility Study. PM R. 2019 doi: 10.1002/pmrj.12206.
    1. Dos Santos L.F., Christ O., Mate K., Schmidt H., Krüger J., Dohle C. Movement visualisation in virtual reality rehabilitation of the lower limb: A systematic review. Biomed. Eng. Online. 2016;15(Suppl. 3):144.
    1. Ku J., Kim Y.J., Cho S., Lim T., Lee H.S., Kang Y.J. Three-Dimensional Augmented Reality System for Balance and Mobility Rehabilitation in the Elderly: A Randomized Controlled Trial. Cyberpsychol. Behav. Soc. Netw. 2019;22:132–141. doi: 10.1089/cyber.2018.0261.
    1. Vogt S., Skjæret-Maroni N., Neuhaus D., Baumeister J. Virtual reality interventions for balance prevention and rehabilitation after musculoskeletal lower limb impairments in young up to middle-aged adults: A comprehensive review on used technology, balance outcome measures and observed effects. Int. J. Med. Inform. 2019;126:46–58. doi: 10.1016/j.ijmedinf.2019.03.009.
    1. Törnbom K., Danielsson A. Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury—A qualitative study. PLoS ONE. 2018;13:e0209214. doi: 10.1371/journal.pone.0209214.
    1. An C.M., Park Y.H. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: A preliminary study. J. Spinal. Cord Med. 2018;41:223–229. doi: 10.1080/10790268.2017.1369217.
    1. Darekar A., McFadyen B.J., Lamontagne A., Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: A scoping review. J. Neuroeng. Rehabil. 2015;12:46. doi: 10.1186/s12984-015-0035-3.
    1. García-Betances R.I., Arredondo Waldmeyer M.T., Fico G., Cabrera-Umpiérrez M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015;7:80.
    1. Palacios-Navarro G., Albiol-Pérez S., García-Magariño García I. Effects of sensory cueing in virtual motor rehabilitation. A review. J. Biomed. Inform. 2016;60:49–57. doi: 10.1016/j.jbi.2016.01.006.
    1. Walker M.L., Ringleb S.I., Maihafer G.C., Walker R., Crouch J.R., Van Lunen B., Morrison S. Virtual Reality–Enhanced Partial Body Weight–Supported Treadmill Training Poststroke: Feasibility and Effectiveness in 6 Subjects. Arch. Phys. Med. Rehabil. 2010;91:115–122. doi: 10.1016/j.apmr.2009.09.009.
    1. Turolla A., Dam M., Ventura L., Tonin P., Agostini M., Zucconi C., Kiper P., Cagnin A., Piron L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: A prospective controlled trial. J. Neuroeng. Rehabil. 2013;10:85. doi: 10.1186/1743-0003-10-85.
    1. Allain P., Foloppe D.A., Besnard J., Yamaguchi T., Etcharry-Bouyx F., Le Gall D., Nolin P., Richard P. Detecting everyday action deficits in Alzheimer’s disease using a nonimmersive virtual reality kitchen. J. Int. Neuropsychol. Soc. 2014;20:468–477. doi: 10.1017/S1355617714000344.
    1. Saposnik G., Cohen L.G., Mamdani M., Pooyania S., Ploughman M., Cheung D., Shaw J., Hall J., Nord P., Dukelow S., et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15:1019–1027. doi: 10.1016/S1474-4422(16)30121-1.
    1. Mirelman A., Rochester L., Maidan I., Del Din S., Alcock L., Nieuwhof F., Rikkert M.O., Bloem B.R., Pelosin E., Avanzino L., et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet. 2016;388:1170–1182. doi: 10.1016/S0140-6736(16)31325-3.
    1. Segura-Ortí E., Pérez-Domínguez B., Ortega-Pérez de Villar L., Meléndez-Oliva E., Martínez-Gramage J., García-Maset R., Gil-Gómez J.A. Virtual reality exercise intradialysis to improve physical function: A feasibility randomized trial. Scand. J. Med. Sci. Sports. 2019;29:89–94. doi: 10.1111/sms.13304.
    1. Trevizan I.L., Silva T.D., Dawes H., Massetti T., Crocetta T.B., Favero F.M., Oliveira A.S.B., de Araújo L.V., Santos A.C.C., de Abreu L.C., et al. Efficacy of different interaction devices using non-immersive virtual tasks in individuals with Amyotrophic Lateral Sclerosis: A cross-sectional randomized trial. BMC Neurol. 2018;18:209. doi: 10.1186/s12883-018-1212-3.
    1. Pelosin E., Cerulli C., Ogliastro C., Lagravinese G., Mori L., Bonassi G., Mirelman A., Hausdorff J.M., Abbruzzese G., Marchese R., et al. A multimodal training modulates short-afferent inhibition and improves complex walking in a cohort of faller older adults with an increased prevalence of Parkinson’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2019 doi: 10.1093/gerona/glz072.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003;83:713–721.
    1. Doniger G.M., Beeri M.S., Bahar-Fuchs A., Gottlieb A., Tkachov A., Kenan H., Livny A., Bahat Y., Sharon H., Ben-Gal O., et al. Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer’s disease risk: A randomized controlled trial. Alzh. Dement. (N. Y.) 2018;4:118–129. doi: 10.1016/j.trci.2018.02.005.
    1. Savović J., Weeks L., Sterne J.A.C., Turner L., Altman D.G., Moher D., Higgins J.P.T. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: Focus groups, online survey, proposed recommendations and their implementation. Syst. Rev. 2014;3:37. doi: 10.1186/2046-4053-3-37.
    1. Weerdesteyn V., de Niet M., van Duijnhoven H.J.R., Geurts A.C.H. Falls in individuals with stroke. JRRD. 2008;45:1195–1214. doi: 10.1682/JRRD.2007.09.0145.
    1. Botner E.M., Miller W.C., Eng J.J. Measurement properties of the Activities-specific Balance Confidence Scale among individuals with stroke. Disabil. Rehabil. 2005;27:156–163. doi: 10.1080/09638280400008982.
    1. Coyle H., Traynor V., Solowij N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. Am. J. Geriatr. Psychiatry. 2015;23:335–359. doi: 10.1016/j.jagp.2014.04.009.
    1. Manera V., Chapoulie E., Bourgeois J., Guerchouche R., David R., Ondrej J., Drettakis G., Robert P. A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia. PLoS ONE. 2016;11:e0151487. doi: 10.1371/journal.pone.0151487.
    1. Maggio M.G., Maresca G., Scarcella I., Latella D., De Domenico C., Destro M., De Luca R., Calabro R.S. Virtual reality-based cognitive rehabilitation in progressive supranuclear palsy. Psychogeriatr. Soc. 2019 doi: 10.1111/psyg.12431.
    1. Regulation (EU) No 282/2014 of the European Parliament and of the Councilof 11 March 2014 on the Establishment of a Third Programme for the Union’s Action in the Field of Health (2014–2020) and Repealing Decision No 1350/2007/EC. [(accessed on 23 October 2019)]; Available online: .

Source: PubMed

3
Suscribir