Relationship between Muscular Activity and Postural Control Changes after Proprioceptive Focal Stimulation (Equistasi®) in Middle-Moderate Parkinson's Disease Patients: An Explorative Study

Fabiola Spolaor, Marco Romanato, Guiotto Annamaria, Antonella Peppe, Leila Bakdounes, Duc-Khanh To, Daniele Volpe, Zimi Sawacha, Fabiola Spolaor, Marco Romanato, Guiotto Annamaria, Antonella Peppe, Leila Bakdounes, Duc-Khanh To, Daniele Volpe, Zimi Sawacha

Abstract

The aim of this study was to investigate the effects of Equistasi®, a wearable device, on the relationship between muscular activity and postural control changes in a sample of 25 Parkinson's disease (PD) subjects. Gait analysis was carried out through a six-cameras stereophotogrammetric system synchronized with two force plates, an eight-channel surface electromyographic system, recording the activity of four muscles bilaterally: Rectus femoris, tibialis anterior (TA), biceps femoris, and gastrocnemius lateralis (GL). The peak of the envelope (PoE) and its occurrence within the gait cycle (position of the peak of the envelope, PPoE) were calculated. Frequency-domain posturographic parameters were extracted while standing still on a force plate in eyes open and closed conditions for 60 s. After the treatment with Equistasi®, the mid-low (0.5-0.75) Hz and mid-high (0.75-1 Hz) components associated with the vestibular and somatosensory systems, PoE and PPoE, displayed a shift toward the values registered on the controls. Furthermore, a correlation was found between changes in proprioception (power spectrum frequencies during the Romberg Test) and the activity of GL, BF (PoE), and TA (PPoE). Results of this study could provide a quantitative estimation of the effects of a neurorehabilitation device on the peripheral and central nervous system in PD.

Keywords: balance assessment; gait analysis; neurorehabilitation device; parkinson’s disease; surface electromyography; wearable focal mechanical vibrations device.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study design.
Figure 2
Figure 2
Romberg Test. Differences in the treatments effect and controls accounting for the low and high bands of the postural oscillation. Results are reported in both the medial-lateral component (x) and anterior-posterior component (z). *: Statistically significant difference (p < 0.05) between the before-after condition with the Wilcoxon signed rank test (p < 0.05). red † indicate the outliers.
Figure 3
Figure 3
Envelope mean ± 1 standard deviation extracted from the surface electromyographic signal of each muscle analyzed: On the y-axis, the peak of the envelope (PoE in % of mean activation during gait), on the x-axis, the gait cycle (from 0 to 100%). The bottom on the left tibialis anterior (TA) and on the right gastrocnemius lateralis (GL); down on the left rectus femoris (RF) and on the right biceps femoris (BF). In blue PoE before Equistasi®, in red after Equistasi®, and in yellow normative bands of control subjects. Blue *: Before Equistasi® compared with controls; red *: After Equistasi® compared with controls; green *: Before Equistasi® compared with controls after Equistasi®.
Figure 4
Figure 4
Envelope mean ± 1 standard deviation extracted from the surface electromyographic signal of each muscle analyzed: On the y-axis, the peak of the envelope (PoE in % of mean activation during gait), on the x-axis the gait cycle (from 0 to 100%). The bottom on the left tibialis anterior (TA) and on the right gastrocnemius lateralis (GL); down on the left rectus femoris (RF) and on the right biceps femoris (BF). In blue, PoE before placebo, in red after placebo, and in yellow normative bands of control subjects. Blue *: Before placebo compared with controls; red *: After placebo compared with controls; green *: Before placebo compared with after placebo.

References

    1. De Lau L.M., Breteler M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9.
    1. Peppe A., Parvati S., Baldassare M.G., Bakdounes L., Spolaor F., Guiotto A., Pavan D., Sawacha Z., Bottino S., Clerici D., et al. Proprioceptive Focal Stimulation (Equistasi®) May Improve the Quality of Gait in Middle-Moderate Parkinson’s Disease Patients. Double-Blind; Double-Dummy; Randomized; Crossover; Italian Multicentric Study. Front. Neurol. 2019;10:998. doi: 10.3389/fneur.2019.00998.
    1. Deng H., Wang P., Jankovic J. The genetics of Parkinson disease. Ageing Res. Rev. 2018;42:72–85. doi: 10.1016/j.arr.2017.12.007.
    1. Tramontano M., Bonnì S., Martino Cinnera A., Marchetti F., Caltagirone C., Koch G., Peppe A. Blindfolded balance training in patients with Parkinson’s disease: A sensory-motor strategy to improve the gait. Parkinsons Dis. 2016;2016:7536862. doi: 10.1155/2016/7536862.
    1. Canning C.G., Ada L., Johnson J.J., McWhirter S. Walking capacity in mild to moderate Parkinson’s dis-ease. Arch. Phys. Med. Rehabil. 2006;87:371–375. doi: 10.1016/j.apmr.2005.11.021.
    1. Garber C.E., Friedman J.H. Effects of fatigue on physical activity and function in patients with Parkin-son’s disease. Neurology. 2003;60:1119–1124. doi: 10.1212/01.WNL.0000055868.06222.AB.
    1. Stack E., Jupp K., Ashburn A. Developing methods to evaluate how people with Parkinson’s disease turn 180 degrees: An activity frequently associated with falls. Disabil. Rehabil. 2004;26:478–484. doi: 10.1080/09638280410001663085.
    1. Kudlicka A., Clare L., Hindle J.V. Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Mov. Disord. 2011;26:2305–2315. doi: 10.1002/mds.23868.
    1. Isella V., Melzi P., Grimaldi M., Iurlaro S., Piolti R., Ferrarese C., Frattola L., Appollonio I. Clinical neuropsychological; and morphometric correlates of apathy in Parkinson’s disease. Mov. Disord. 2002;17:366–371. doi: 10.1002/mds.10041.
    1. Konczak J., Corcos D.M., Horak F., Poizner H., Shapiro M., Tuite P., Volkmann J., Maschke M. Proprioception and motor control in Parkinson’s disease. J. Mot. Behav. 2009;41:6. doi: 10.3200/35-09-002.
    1. Butler A.J., Fink G.R., Dohle C., Wunderlich G., Tellmann L., Seitz R.J., Zilles K., Freund H.J. Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Hum. Brain Mapp. 2004;21:165–177. doi: 10.1002/hbm.20001.
    1. Diener H.C., Dichgans J., Guschlbauer B., Mau H. The significance of proprioception on postural stabilization as assessed by ischemia. Brain Res. 1984;296:103–109. doi: 10.1016/0006-8993(84)90515-8.
    1. Dietz V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 2002;3:781–790. doi: 10.1038/nrn939.
    1. Sainburg R.L., Ghilardi M.F., Poizner H., Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J. Neurophysiol. 1995;73:820–835. doi: 10.1152/jn.1995.73.2.820.
    1. Poizner H., Feldman A.G., Levin M.F., Berkinblit M.B., Hening W.A., Patel A., Adamovich S.V. The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp. Brain Res. 2000;133:279–292. doi: 10.1007/s002210000379.
    1. Goetz C.G., Tilley B.C., Shaftman S.R., Stebbins G.T., Fahn S., Martinez-Martin P., Poewe W., Sampaio C., Stern M.B., Dodel R., et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008;23:2129–2170. doi: 10.1002/mds.22340.
    1. Flood M.W., Jensen B.R., Malling A.M., Lowery M.M. Increased EMG intermuscular coherence and reduced signal complexity in Parkinson’s disease. Clin. Neurophysiol. 2019;130:259–269. doi: 10.1016/j.clinph.2018.10.023.
    1. Kim H.F., Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain. 2015;138:1776–1800. doi: 10.1093/brain/awv134.
    1. Nijkrake M.J., Keus S.H.J., Kalf J.G., Sturkenboom I.H.W.M., Munneke M., Kappelle A.C., Bloem B.R. Allied health care interventions and complementary therapies in Parkinson’s disease. Parkinsonism Relat. Disord. 2007;13:S488–S494. doi: 10.1016/S1353-8020(08)70054-3.
    1. Peppe A., Chiavalon C., Pasqualetti P., Crovato D., Caltagirone C. Does gait analysis quantify motor rehabilitation efficacy in Parkinson’s disease patients? Gait. Posture. 2007;26:452–462. doi: 10.1016/j.gaitpost.2006.11.207.
    1. Cole M.H., Silburn P.A., Wood J.M., Worringham C.J., Kerr G.K. Falls in Parkinson’s disease: Kinematic evidence for impaired head and trunk control. Mov. Disord. 2010;25:2369–2378. doi: 10.1002/mds.23292.
    1. Latt M.D., Menz H.B., Fung V.S., Lord S.R. Acceleration patterns of the head and pelvis during gait in older people with Parkinson’s disease: A comparison of fallers and nonfallers. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:700–706. doi: 10.1093/gerona/glp009.
    1. Horak F.B., Mancini M., Carlson-Kuhta P., Nutt J.G., Salarian A. Balance and gait represent independent domains of mobility in Parkinson disease. Phys. Ther. 2016;96:1364–1371. doi: 10.2522/ptj.20150580.
    1. Hass C.J., Bishop M., Moscovich M., Stegemöller E.L., Skinner J., Malaty I.A., Shukla A.W., McFarland N., Okun M.S. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J. Neurol. Phys. Ther. 2014;38:233–238. doi: 10.1097/NPT.0000000000000055.
    1. Volpe D., Giantin M.G., Fasano A.A. Wearable Proprioceptive Stabilizer (Equistasi®) for Rehabilitation of Postural Instability in Parkinson’s Disease: A Phase II Randomized Double-Blind; Double-Dummy; Controlled Study. PLoS ONE. 2014;11:e112065. doi: 10.1371/journal.pone.0112065.
    1. Serio F., Minosa C., DeLuca M., Conte P., Albani G., Peppe A. Focal Vibration Training (Equistasi®) to Improve Posture Stability. A Retrospective Study in Parkinson’s Disease. Sensors. 2019;19:2101. doi: 10.3390/s19092101.
    1. Alfonsi E., Paone P., Tassorelli P., De Icco R., Moglia A., Alvisi E., Marchetta L., Fresia M., Montini A., Calabrese M., et al. Acute effects of high-frequency microfocal vibratory stimulation on the H reflex of the soleus muscle. A double-blind study in health subjects. Funct. Neurol. 2015;30:269–274. doi: 10.11138/fneur/2015.30.4.269.
    1. Volpe D., Pavan D., Morris M., Guiotto A.M., Iansek R., Fortuna S., Frazzitta G., Sawacha Z. Underwater gait analysis in Parkinson’s disease. Gait&Post. 2017;52:87–94. doi: 10.1016/j.gaitpost.2016.11.019.
    1. Dickstein R. Stroke: A Critical Review of Intervention Approaches. Neurorehabilit. Neural Repair. 2008;22:649–660. doi: 10.1177/1545968308315997.
    1. Suhr J., Zhang W., Ajayan P.M., Koratkar N.A. Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Lett. 2006;6:219–223. doi: 10.1021/nl0521524.
    1. Kahaly M.U., Waghmare U.V. Vibrational properties of single-wall carbon nanotubes: A first-principles study. J. Nanosci. Nanotechnol. 2007;7:1787–1792. doi: 10.1166/jnn.2007.716.
    1. Seo N.J., Lakshminarayanan K., Bonilha L., Lauer A.W., Schmit B.D. Effect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials—An EEG study. [(accessed on 15 November 2020)];Physiol. Rep. 2015 3:e12624. doi: 10.14814/phy2.12624. Available online:
    1. [(accessed on 15 November 2020)]; Available online:
    1. Sawacha Z., Guarneri G., Cristoferi G., Guiotto A., Avogaro A., Cobelli C. Diabetic gait and posture abnormalities: A biomechanical investigation through three dimensional gait analysis. Clin. Biomech. 2009;24:722–728. doi: 10.1016/j.clinbiomech.2009.07.007.
    1. Sawacha Z., Carraro E., Del Din S., Guiotto A., Bonaldo L., Punzi L., Cobelli C., Masiero S. Biomechanical assessment of balance and posture in subjects with ankylosing spondylitis. J. Neuroeng. Rehabil. 2012;9:63. doi: 10.1186/1743-0003-9-63.
    1. Blanc Y., Dimanico U. Open Access Electrode Placement in Surface Electromyography (sEMG) “Minimal Crosstalk Area” (MCA) Open Rehabil. J. 2010;3:110–126. doi: 10.2174/1874943701003010110.
    1. Oppenheim U., Kohen-Raz R., Alex D., Kohen-Raz A., Azarya M. Postural characteristics of diabetic neuropathy. Diabetes Care. 1999;22:328–332. doi: 10.2337/diacare.22.2.328.
    1. Kohen-Raz R. Application of Tetra-ataxia-metric posturography in clinical and developmental diagnosis. Percept. Mot. Skills. 1991;73:635–656. doi: 10.2466/pms.1991.73.2.635.
    1. De Wit G. Optic versus vestibular and proprioceptive impulses; measured by posturometry. Agressologie. 1972;13:75–79.
    1. Taguchi K. Spectral analysis of movement of the center of gravity in vertiginous and ataxicpatients. Agressologie. 1978;19:69–70.
    1. Kohen-Raz R., Volkmar F.R., Cohen D.J. Postural control in children with autism. J. Autism. Dev. Disord. 1992;22:419–432. doi: 10.1007/BF01048244.
    1. Kohen-Raz R., Hiriart borde E. Some observations on tetraataxiametric patterns ofstatic balance and their relation to mentaland scholastic achievement. Percept. Mot. Skills. 1979;18:871–890. doi: 10.2466/pms.1979.48.3.871.
    1. Perry J., Davids J.R. Gait analysis: Normal and pathological function. J. Pediatr. Orthop. 1992;12:815. doi: 10.1097/01241398-199211000-00023.
    1. Volpe D., Spolaor F., Sawacha Z., Guiotto A., Pavan D., Bakdounes L., Urbani V., Frazzitta G., Iansek R. Muscular activation changes in lower limbs after underwater gait training in Parkinson’s disease: A surface emg pilot study. Gait Posture. 2020;80:185–191. doi: 10.1016/j.gaitpost.2020.03.017.
    1. Gurka M.J., Edwards L.J., Muller K.E., Kupper L.L. Extending the Box–Cox transformation to the linear mixed model. J. R. Stat. Soc. Ser. A Stat. Soc. 2006;169:273–288. doi: 10.1111/j.1467-985X.2005.00391.x.
    1. Han J., Kim E., Jung J., Lee J., Sung H., Kim J. Effect of muscle vibration on spatiotemporal gait parameters in patients with Parkinson’s disease. J. Phys. Ther. Sci. 2014;26:671–673. doi: 10.1589/jpts.26.671.
    1. Mileti I., Zampogna A., Santuz A., Asci F., Del Prete Z., Arampatzis A., Palermo E., Suppa A. Muscle Synergies in Parkinson’s Disease. Sensors. 2020;20:3209. doi: 10.3390/s20113209.
    1. Horak F.B., Nutt J.G., Nashner L.M. Postural inflexibility in parkinsonian subjects. J. Neurol. Sci. 1992;111:46–58. doi: 10.1016/0022-510X(92)90111-W.
    1. Paul S.S., Canning C.G., Sherrington C., Fung V.S. Reproducibility of measures of leg muscle power, leg muscle strength, postural sway and mobility in people with Parkinson’s disease. Gait Posture. 2012;36:639–642. doi: 10.1016/j.gaitpost.2012.04.013.
    1. Fukunaga J.Y., Quitschal R.M., Doná F., Ferraz H.B., Ganança M.M., Caovilla H.H. Postural control in Parkinson’s disease. Braz. J. Otorhinolaryngol. 2014;80:508–514. doi: 10.1016/j.bjorl.2014.05.032.
    1. Crouse J.J., Phillips J.R., Jahanshahi M., Moustafa A.A. Postural instability and falls in Parkinson’s disease. Rev. Neurosci. 2016;27:549–555. doi: 10.1515/revneuro-2016-0002.
    1. Zhang S., Manor B., Li L. H-Index Is Important for Postural Control for People with Impaired Foot Sole Sensation. PLoS ONE. 2015;10:e0121847. doi: 10.1371/journal.pone.0121847.
    1. Quattrone A., Barbagallo G., Cerasa A., Stoessl A.J. Neurobiology of placebo effect in Parkinson’s disease: What we have learned and where we are going AJ. Mov. Disord. 2018;33:1213–1227. doi: 10.1002/mds.27438.

Source: PubMed

3
Suscribir