Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review

Fabio Alexander Storm, Ambra Cesareo, Gianluigi Reni, Emilia Biffi, Fabio Alexander Storm, Ambra Cesareo, Gianluigi Reni, Emilia Biffi

Abstract

Wearable sensors are becoming increasingly popular for complementing classical clinical assessments of gait deficits. The aim of this review is to examine the existing knowledge by systematically reviewing a large number of papers focusing on the use of wearable inertial sensors for the assessment of gait during the 6-minute walk test (6MWT), a widely recognized, simple, non-invasive, low-cost and reproducible exercise test. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 28 full-text articles. Then, the available knowledge was summarized regarding study design, subjects enrolled (number of patients and pathological condition, if any, age, male/female ratio), sensor characteristics (type, number, sampling frequency, range) and body placement, 6MWT protocol and extracted parameters. Results were critically discussed to suggest future directions for the use of inertial sensor devices in the clinics.

Keywords: 6-minute walk test; MIMUs; gait; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the systematic review process.
Figure 2
Figure 2
Sensor placement reported in the reviewed papers.

References

    1. Holland A.E., Spruit M.A., Troosters T., Puhan M.A., Pepin V., Saey D., McCormack M.C., Carlin B.W., Sciurba F.C., Pitta F., et al. An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Crapo R.O., Casaburi R., Coates A.L., Enright P.L., MacIntyre N.R., McKay R.T., Johnson D., Wanger J.S., Zeballos R.J., Bittner V., et al. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002;166:111–117.
    1. Enright P.L., McBurnie M.A., Bittner V., Tracy R.P., McNamara R., Arnold A., Newman A.B. The 6-min walk test: A quick measure of functional status in elderly adults. Chest. 2003;123:387–398. doi: 10.1378/chest.123.2.387.
    1. Giannitsi S., Bougiakli M., Bechlioulis A., Kotsia A., Michalis L.K., Naka K.K. 6-min walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019;13:1753944719870084. doi: 10.1177/1753944719870084.
    1. Karanth M.P.S., Awad N.T. Six minute walk test: A tool for predicting mortality in chronic pulmonary diseases. J. Clin. Diagn. Res. 2017;11:OC34. doi: 10.7860/JCDR/2017/24707.9723.
    1. Du Bois R.M., Albera C., Bradford W.Z., Costabel U., Leff J.A., Noble P.W., Sahn S.A., Valeyre D., Weycker D., King T.E. 6-min walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2014;43:1421–1429. doi: 10.1183/09031936.00131813.
    1. Beretta E., Storm F.A., Strazzer S., Frascarelli F., Petrarca M., Colazza A., Cordone G., Biffi E., Morganti R., Maghini C., et al. Effect of robotic-assisted gait training in a large population of children with motor impairment due to cerebral palsy or acquired brain injury. Arch. Phys. Med. Rehabil. 2020;101:112. doi: 10.1016/j.apmr.2019.08.479.
    1. Beretta E., Molteni E., Biffi E., Morganti R., Avantaggiato P., Strazzer S. Robotically-driven orthoses exert proximal-to-distal differential recovery on the lower limbs in children with hemiplegia, early after acquired brain injury. Eur. J. Paediatr. Neurol. 2018;22:652–661. doi: 10.1016/j.ejpn.2018.03.002.
    1. Alhamad E.H., Shaik S.A., Idrees M.M., Alanezi M.O., Isnani A.C. Outcome measures of the 6 min walk test: Relationships with physiologic and computed tomography findings in patients with sarcoidosis. BMC Pulm. Med. 2010;10:42. doi: 10.1186/1471-2466-10-42.
    1. Borg G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Okuro R.T., de Oliveira Ribeiro M.A.G., Ribeiro J.D., Minsky R.C., Schivinski C.I.S. Alternative indexes to estimate the functional capacity from the 6-min walk test in children and adolescents with Cystic Fibrosis. Respir. Care. 2017;62:324–332. doi: 10.4187/respcare.04625.
    1. Ben Mansour K., Rezzoug N., Gorce P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture. 2015;42:409–414. doi: 10.1016/j.gaitpost.2015.05.020.
    1. Godinho C., Domingos J., Cunha G., Santos A.T., Fernandes R.M., Abreu D., Gonçalves N., Matthews H., Isaacs T., Duffen J., et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabil. 2016;13:24. doi: 10.1186/s12984-016-0136-7.
    1. Kavanagh J.J., Menz H.B. Accelerometry: A technique for quantifying movement patterns during walking. Gait Posture. 2008;28:1–15. doi: 10.1016/j.gaitpost.2007.10.010.
    1. Herrera-May A.L., Aguilera-Cortés L.A., García-Ramírez P.J., Manjarrez E. Resonant magnetic field sensors based on MEMS technology. Sensors. 2009;9:7785–7813. doi: 10.3390/s91007785.
    1. Shull P.B., Jirattigalachote W., Hunt M.A., Cutkosky M.R., Delp S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40:11–19. doi: 10.1016/j.gaitpost.2014.03.189.
    1. Sabatini A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 2006;53:1346–1356. doi: 10.1109/TBME.2006.875664.
    1. Taborri J., Palermo E., Rossi S., Cappa P. Gait Partitioning Methods: A Systematic Review. Sensors. 2016;16:66. doi: 10.3390/s16010066.
    1. Zijlstra W., Hof A. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18:1–10. doi: 10.1016/S0966-6362(02)00190-X.
    1. Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The Instrument. Clin. Biomech. 1998;13:328–335. doi: 10.1016/S0268-0033(98)00090-4.
    1. Hausdorff J.M., Peng C.K., Ladin Z., Wei J.Y., Goldberger A.L. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 1995;78:349–358. doi: 10.1152/jappl.1995.78.1.349.
    1. Hausdorff J.M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 2007;26:555–589. doi: 10.1016/j.humov.2007.05.003.
    1. Kang H.G., Dingwell J.B. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 2008;41:2899–2905. doi: 10.1016/j.jbiomech.2008.08.002.
    1. Picerno P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture. 2017;51:239–246. doi: 10.1016/j.gaitpost.2016.11.008.
    1. Liu T., Inoue Y., Shibata K. Development of a wearable sensor system for quantitative gait analysis. Meas. J. Int. Meas. Confed. 2009;42:978–988. doi: 10.1016/j.measurement.2009.02.002.
    1. Caldas R., Mundt M., Potthast W., Buarque de Lima Neto F., Markert B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture. 2017;57:204–210. doi: 10.1016/j.gaitpost.2017.06.019.
    1. Demchenko Y., Grosso P., De Laat C., Membrey P. Addressing big data issues in Scientific Data Infrastructure; Proceedings of the International Conference on Collaboration Technologies and Systems, CTS 2013; San Diego, CA, USA. 20–24 May 2013.
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., Group P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. Ghislieri M., Gastaldi L., Pastorelli S., Tadano S., Agostini V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors. 2019;19:4075. doi: 10.3390/s19194075.
    1. Taborri J., Agostini V., Artemiadis P.K., Ghislieri M., Jacobs D.A., Roh J., Rossi S. Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl. Bionics Biomech. 2018 doi: 10.1155/2018/3934698.
    1. Luppino F.S., de Wit L.M., Bouvy P.F., Stijnen T., Cuijpers P., Penninx B.W.J.H., Zitman F.G. Overweight, Obesity, and Depression. Arch. Gen. Psychiatry. 2010;67:220–229. doi: 10.1001/archgenpsychiatry.2010.2.
    1. Cooper H.M. Research Synthesis and Meta-Analysis: A Step-by-Step Approach. SAGE Publications; London, UK: 2016.
    1. Downs S.H., Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health. 1998;52:377–384. doi: 10.1136/jech.52.6.377.
    1. Kuijpers T., Van Der Windt D.A.W.M., Van Der Heijden G.J.M.G., Bouter L.M. Systematic review of prognostic cohort studies on shoulder disorders. Pain. 2004;109:420–431. doi: 10.1016/j.pain.2004.02.017.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Earlbam Associates; Hillsdale, NJ, USA: 1988.
    1. McHugh M.L. Interrater reliability: The kappa statistic. Biochem. Medica. 2012;22:276–282. doi: 10.11613/BM.2012.031.
    1. Shema-Shiratzky S., Gazit E., Sun R., Regev K., Karni A., Sosnoff J.J., Herman T., Mirelman A., Hausdorff J.M. Deterioration of specific aspects of gait during the instrumented 6-min walk test among people with multiple sclerosis. J. Neurol. 2019;266:3022–3030. doi: 10.1007/s00415-019-09500-z.
    1. Retory Y., David P., Niedzialkowski P., de Picciotto C., Bonay M., Petitjean M. Gait Monitoring and Walk Distance Estimation with an Accelerometer During 6-Minute Walk Test. Respir. Care. 2019;64:923–930. doi: 10.4187/respcare.06144.
    1. Zhang W., Smuck M., Legault C., Ith M.A., Muaremi A., Aminian K. Gait symmetry assessment with a low back 3d accelerometer in post-stroke patients. Sensors. 2018;18:3322. doi: 10.3390/s18103322.
    1. Byrnes S.K., Nüesch C., Loske S., Leuenberger A., Schären S., Netzer C., Mündermann A. Inertial sensor-based gait and attractor analysis as clinical measurement tool: Functionality and sensitivity in healthy subjects and patients with symptomatic lumbar spinal stenosis. Front. Physiol. 2018;9:1095. doi: 10.3389/fphys.2018.01095.
    1. Teufl W., Miezal M., Taetz B., Fröhlich M., Bleser G. Validity, test-retest reliability and long-term stability of magnetometer free inertial sensor based 3D joint kinematics. Sensors. 2018;18:1980. doi: 10.3390/s18071980.
    1. Proessl F., Swanson C.W., Rudroff T., Fling B.W., Tracy B.L. Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk. Gait Posture. 2018;64:63–67. doi: 10.1016/j.gaitpost.2018.05.030.
    1. Loske S., Nüesch C., Byrnes K.S., Fiebig O., Schären S., Mündermann A., Netzer C. Decompression surgery improves gait quality in patients with symptomatic lumbar spinal stenosis. Spine J. 2018;18:2195–2204. doi: 10.1016/j.spinee.2018.04.016.
    1. Drover D., Howcroft J., Kofman J., Lemaire E.D. Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features. Sensors. 2017;17:1321. doi: 10.3390/s17061321.
    1. Brodie M.A.D., Psarakis M., Hoang P. Gyroscopic corrections improve wearable sensor data prior to measuring dynamic sway in the gait of people with Multiple Sclerosis. Comput. Methods Biomech. Biomed. Eng. 2016;19:1339–1346. doi: 10.1080/10255842.2016.1140747.
    1. Grimpampi E., Oesen S., Halper B., Hofmann M., Wessner B., Mazzà C. Reliability of gait variability assessment in older individuals during a six-minute walk test. J. Biomech. 2015;48:4185–4189. doi: 10.1016/j.jbiomech.2015.10.008.
    1. Brooks G.C., Vittinghoff E., Iyer S., Tandon D., Kuhar P., Madsen K.A., Marcus G.M., Pletcher M.J., Olgin J.E. Accuracy and Usability of a Self-Administered Six-Minute Walk Test Smartphone Application. Circ. Heart Fail. 2015;8:905–913. doi: 10.1161/CIRCHEARTFAILURE.115.002062.
    1. Christiansen C.L., Bade M.J., Paxton R.J., Stevens-Lapsley J.E. Measuring movement symmetry using tibial-mounted accelerometers for people recovering from total knee arthroplasty. Clin. Biomech. 2015;30:732–737. doi: 10.1016/j.clinbiomech.2015.04.013.
    1. Juen J., Cheng Q., Schatz B. A Natural Walking Monitor for Pulmonary Patients Using Mobile Phones. IEEE J. Biomed. Health Inform. 2015;19:1399–1405. doi: 10.1109/JBHI.2015.2427511.
    1. Juen J., Cheng Q., Prieto-Centurion V., Krishnan J.A., Schatz B. Health monitors for chronic disease by gait analysis with mobile phones. Telemed. J. e-Health. 2014;20:1035–1041. doi: 10.1089/tmj.2014.0025.
    1. Annegarn J., Spruit M.A., Savelberg H.H.C.M., Willems P.J.B., van de Bool C., Schols A.M.W.J., Wouters E.F.M., Meijer K. Differences in walking pattern during 6-min walk test between patients with COPD and healthy subjects. PLoS ONE. 2012;7:e37329. doi: 10.1371/journal.pone.0037329.
    1. Beausoleil S., Miramand L., Turcot K. Evolution of gait parameters in individuals with a lower-limb amputation during a six-minute walk test. Gait Posture. 2019;72:40–45. doi: 10.1016/j.gaitpost.2019.05.022.
    1. Galán-Mercant A., Ortiz A., Herrera-Viedma E., Tomas M.T., Fernandes B., Moral-Munoz J.A. Assessing physical activity and functional fitness level using convolutional neural networks. Knowl.-Based Syst. 2019;185:104939. doi: 10.1016/j.knosys.2019.104939.
    1. Ameli S., Naghdy F., Stirling D., Naghdy G., Aghmesheh M. Chemotherapy-induced fatigue estimation using hidden Markov model. Biocybern. Biomed. Eng. 2019;39:176–187. doi: 10.1016/j.bbe.2018.11.002.
    1. Jimenez-Moreno A.C., Charman S.J., Nikolenko N., Larweh M., Turner C., Gorman G., Lochmüller H., Catt M. Analyzing walking speeds with ankle and wrist worn accelerometers in a cohort with myotonic dystrophy. Disabil. Rehabil. 2018;41:2972–2978. doi: 10.1080/09638288.2018.1482376.
    1. Dandu S.R., Engelhard M.M., Qureshi A., Gong J., Lach J.C., Brandt-Pearce M., Goldman M.D. Understanding the physiological significance of four inertial gait features in multiple sclerosis. IEEE J. Biomed. Health Inform. 2018;22:40–46. doi: 10.1109/JBHI.2017.2773629.
    1. Cheng Q., Juen J., Bellam S., Fulara N., Close D., Silverstein J.C., Schatz B. Predicting Pulmonary Function from Phone Sensors. Telemed. e-Health. 2017;23:913–919. doi: 10.1089/tmj.2017.0008.
    1. Ameli S., Naghdy F., Stirling D., Naghdy G., Aghmesheh M. Objective clinical gait analysis using inertial sensors and six minute walking test. Pattern Recognit. 2017;63:246–257. doi: 10.1016/j.patcog.2016.08.002.
    1. Gong J., Qi Y., Goldman M.D., Lach J. Causality Analysis of Inertial Body Sensors for Multiple Sclerosis Diagnostic Enhancement. IEEE J. Biomed. Health Inform. 2016;20:1273–1280. doi: 10.1109/JBHI.2016.2589902.
    1. Riva F., Grimpampi E., Mazzà C., Stagni R. Are gait variability and stability measures influenced by directional changes? Biomed. Eng. Online. 2014;13:56. doi: 10.1186/1475-925X-13-56.
    1. Waugh J.L.S., Huang E., Fraser J.E., Beyer K.B., Trinh A., McIlroy W.E., Kulić D. Online Learning of Gait Models from Older Adult Data. IEEE Trans. Neural Syst. Rehabil. Eng. 2019;27:733–742. doi: 10.1109/TNSRE.2019.2904477.
    1. Engelhard M.M., Dandu S.R., Patek S.D., Lach J.C., Goldman M.D. Quantifying Six-Minute Walk Induced Gait Deterioration with Inertial Sensors in Multiple Sclerosis Subjects. Gait Posture. 2016;49:340–345. doi: 10.1016/j.gaitpost.2016.07.184.
    1. Howcroft J., Kofman J., Lemaire E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017;25:1812–1820. doi: 10.1109/TNSRE.2017.2687100.
    1. Cheng Q., Juen J., Hsu-Lumetta J., Schatz B. Predicting Transitions in Oxygen Saturation Using Phone Sensors. Telemed. e-Health. 2016;22:132–137. doi: 10.1089/tmj.2015.0040.
    1. Tamburini P., Storm F., Buckley C., Bisi M.C., Stagni R., Mazzà C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture. 2018;59:248–252. doi: 10.1016/j.gaitpost.2017.10.024.
    1. Storm F.A., Nair K.P.S., Clarke A.J., Van der Meulen J.M., Mazzà C. Free-living and laboratory gait characteristics in patients with multiple sclerosis. PLoS ONE. 2018;13:e0196463. doi: 10.1371/journal.pone.0196463.
    1. Muro-de-la-Herran A., García-Zapirain B., Méndez-Zorrilla A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014;14:3362–3394. doi: 10.3390/s140203362.
    1. El-Gohary M., Pearson S., McNames J., Mancini M., Horak F., Mellone S., Chiari L. Continuous monitoring of turning in patients with movement disability. Sensors. 2014;14:356–369. doi: 10.3390/s140100356.
    1. Mizrahi J., Verbitsky O., Isakov E. Shock accelerations and attenuation in downhill and level running. Clin. Biomech. 2000;15:15–20. doi: 10.1016/S0268-0033(99)00033-9.
    1. Morrison S., Newell K.M. Bilateral organization of physiological tremor in the upper limb. Eur. J. Appl. Physiol. Occup. Physiol. 1999;80:564–574. doi: 10.1007/s004210050635.
    1. Cappozzo A. Low frequency self-generated vibration during ambulation in normal men. J. Biomech. 1982;15:599–609. doi: 10.1016/0021-9290(82)90071-9.
    1. Antonsson E.K., Mann R.W. The frequency content of gait. J. Biomech. 1985;18:39–47. doi: 10.1016/0021-9290(85)90043-0.
    1. Mitschke C., Kiesewetter P., Milani T.L. The effect of the accelerometer operating range on biomechanical parameters: Stride length, velocity, and peak tibial acceleration during running. Sensors. 2018;18:130. doi: 10.3390/s18010130.
    1. Brodie M., Walmsley A., Page W. The static accuracy and calibration of inertial measurement units for 3D orientation. Comput. Methods Biomech. Biomed. Eng. 2008;11:641–648. doi: 10.1080/10255840802326736.
    1. Arvidsson D., Fridolfsson J., Börjesson M., Andersen L.B., Ekblom Ö., Dencker M., Brønd J.C. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scand. J. Med. Sci. Sports. 2019;29:1442–1452. doi: 10.1111/sms.13470.
    1. Yang C.-C., Hsu Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772–7788. doi: 10.3390/s100807772.
    1. Buckley C., Galna B., Rochester L., Mazzà C. Quantification of upper body movements during gait in older adults and in those with Parkinson’s disease: Impact of acceleration realignment methodologies. Gait Posture. 2016;52:265–271. doi: 10.1016/j.gaitpost.2016.11.047.
    1. Hubble R.P., Naughton G.A., Silburn P.A., Cole M.H. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: A systematic review. PLoS ONE. 2015;10:e0123705. doi: 10.1371/journal.pone.0123705.
    1. Sciurba F., Criner G.J., Lee S.M., Mohsenifar Z., Shade D., Slivka W., Wise R.A. Six-Minute Walk Distance in Chronic Obstructive Pulmonary Disease: Reproducibility and Effect of Walking Course Layout and Length. Am. J. Respir. Crit. Care Med. 2003;167:1522–1527. doi: 10.1164/rccm.200203-166OC.
    1. Aminian S., Hinckson E.A. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int. J. Behav. Nutr. Phys. Act. 2012;9:119. doi: 10.1186/1479-5868-9-119.
    1. Esliger D.W., Rowlands A.V., Hurst T.L., Catt M., Murray P., Eston R.G. Validation of the GENEA accelerometer. Med. Sci. Sports Exerc. 2011;43:1085–1093. doi: 10.1249/MSS.0b013e31820513be.
    1. Dijkstra B., Zijlstra W., Scherder E., Kamsma Y. Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: Accuracy of a pedometer and an accelerometry-based method. Age Ageing. 2008;37:436–441. doi: 10.1093/ageing/afn097.
    1. Fortune E., Lugade V., Morrow M., Kaufman K. Validity of using tri-axial accelerometers to measure human movement—Part II: Step counts at a wide range of gait velocities. Med. Eng. Phys. 2014;36:659–669. doi: 10.1016/j.medengphy.2014.02.006.
    1. Doheny E.P., Walsh C., Foran T., Greene B.R., Fan C.W., Cunningham C., Kenny R.A. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Gait Posture. 2013;38:1021–1025. doi: 10.1016/j.gaitpost.2013.05.013.
    1. Bellanca J.L., Lowry K.A., VanSwearingen J.M., Brach J.S., Redfern M.S. Harmonic ratios: A quantification of step to step symmetry. J. Biomech. 2013;46:828–831. doi: 10.1016/j.jbiomech.2012.12.008.
    1. Kusmirek S., Hana K., Socha V., Prucha J., Kutilek P., Svoboda Z. Postural instability assessment using trunk acceleration frequency analysis. Eur. J. Physiother. 2016;18:237–244. doi: 10.1080/21679169.2016.1211174.
    1. Sekine M., Tamura T., Yoshida M., Suda Y., Kimura Y., Miyoshi H., Kijima Y., Higashi Y., Fujimoto T. A gait abnormality measure based on root mean square of trunk acceleration. J. Neuroeng. Rehabil. 2013;10:4–8. doi: 10.1186/1743-0003-10-118.
    1. Dingwell J.B., Cusumano J.P., Cavanagh P.R., Sternad D. Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking. J. Biomech. Eng. 2001;123:27. doi: 10.1115/1.1336798.
    1. Sabatini A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors. 2011;11:1489–1525. doi: 10.3390/s110201489.
    1. Bartels B., de Groot J.F., Terwee C.B. The Six-Minute Walk Test in Chronic Pediatric Conditions: A Systematic Review of Measurement Properties. Phys. Ther. 2013;93:529–541. doi: 10.2522/ptj.20120210.

Source: PubMed

3
Suscribir