Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease

Yumin Wang, Luyan Gao, Jichao Chen, Qiang Li, Liang Huo, Yanchao Wang, Hongquan Wang, Jichen Du, Yumin Wang, Luyan Gao, Jichao Chen, Qiang Li, Liang Huo, Yanchao Wang, Hongquan Wang, Jichen Du

Abstract

Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.

Keywords: Nrf2; Parkinson’s disease; heme oxygenase-1; neuroprotection; oxidative stress.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wang, Gao, Chen, Li, Huo, Wang, Wang and Du.

Figures

FIGURE 1
FIGURE 1
The schematic pathway of major sources of oxidative stress (OS) and induction of DA neuron death in Parkinson’s disease (PD).
FIGURE 2
FIGURE 2
Schematic presentation of the mitochondrial electron transport chain and production of mitochondrial O2 •−. The mitochondrial electron transport chain produces ROS. Mitochondrial complexes I and II use electrons donated from NADH and FADH2 to reduce coenzyme Q. Coenzyme Q shuttles these electrons to complex III, where they are transferred to cytochrome c. Complex IV uses electrons from cytochrome c to reduce molecular oxygen to water. The action of complexes I, III, and IV produce a proton electrochemical potential gradient, the free energy of which is used to phosphorylate ADP at ATP synthase. Complexes I, II, and III produce superoxide through the incomplete reduction of oxygen to superoxide, whereas complexes I and II produce superoxide only into the mitochondrial matrix and complex III produces superoxide into both the matrix and the intermembrane space.
FIGURE 3
FIGURE 3
Mitochondrial dysfunction and OS in PD. The mechanism of mitochondrial dysfunction and OS highlights the inhibition of mitochondrial complex I (CI) and associated ROS production leading to loss of dopaminergic neurons in PD.
FIGURE 4
FIGURE 4
Activation of the NADPH oxidase family members. Several components and domains make up the transmembrane-active enzyme complexes of NADPH oxidase isoforms. NOX1-5 and DUOX1/DUOX2 are shown. Upon activation, an electron will be transferred from NADPH to O2 to form superoxide. NOX4-generated superoxide undergoes rapid conversion into hydrogen peroxide, which mediates many of its downstream effects. NOX5 and the DUOX enzymes are sensitive to cellular Ca2+ concentrations.
FIGURE 5
FIGURE 5
Alpha-synuclein and microglial Nox2 activation. The activation of microglia by alpha-synuclein can implicate several cell-surface receptors, such as P2X7, TLR2/4, and CR3, and subsequent activation of several kinases, such as PKC, Akt, MAPKs, PAK, and ERK1/2. This in turn could promote the phosphorylation and translocation of p47phox and subsequent Nox2 activation. Released oxygen species appear to promote microglia chemoattraction, activation, and OS. Neuronal damage leads to the release of alpha-synuclein and the TLR-agonist high mobility group box protein 1 (HMGB1).
FIGURE 6
FIGURE 6
SN neuron DA metabolism. In addition to the uptake of DA by the DA transporter (DAT) from outside, DAergic neurons in the SN produce DA under the action of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in the cytosol. The amino acid tyrosine is converted to L-dopa using TH, and the second L-dopa is converted to dopamine using AADC. The newly synthesized or taken up DA is immediately transported to and stored in the monoaminergic vesicles by VMAT-2, preventing the existence of free dopamine in the cytosol. Cytosolic DA oxidizes to dopamine o-quinone (DAQ), which is immediately cyclized to aminochrome, which induces mitochondrial dysfunction, endoplasmic reticulum stress (ERS), oxidative stress (OS), the aggregation of alpha-synuclein, and the dysfunction of protein degradation. Dopamine in the cytosol can be degraded by monoamine oxidase-mediated degradation to 3,4-dihydroxyphenylacetaldehyde (DOPAL), hydrogen peroxide, and ammonia, which is converted to 3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenase. DA can be taken up into glial cells and degraded by catechol-o-methyltransferase (CMOT) or monoamine oxidase (MAO) to form homovanillic acid (HVA).
FIGURE 7
FIGURE 7
Schematic representation of bioactive compounds-mediated neuroprotective against PD through activating Nrf2/ARE/HO-1 pathway.

References

    1. Aarsland D., Creese B., Politis M., Chaudhuri K. R., Ffytche D. H., Weintraub D. (2017). Cognitive Decline in Parkinson Disease. Nat. Rev. Neurol. 13, 217–231. 10.1038/nrneurol.2017.27
    1. Ahmad M. H., Fatima M., Ali M., Rizvi M. A., Chandra Mondal A. (2021). Naringenin Alleviates Paraquat-Induced Dopaminergic Neuronal Loss in SH-Sy5y Cells and a Rat Model of Parkinson's Disease. Neuropharmacology 21, 108831. 10.1016/j.neuropharm.2021.108831
    1. Ahuja M., Ammal Kaidery N., Yang L., Calingasan N., Smirnova N., Gaisin A., et al. (2016). Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-like Disease. J. Neurosci. 36, 6332–6351. 10.1523/JNEUROSCI.0426-16.2016
    1. Alam Z. I., Daniel S. E., Lees A. J., Marsden D. C., Jenner P., Halliwell B. (1997a). A Generalised Increase in Protein Carbonyls in the Brain in Parkinson's but Not Incidental Lewy Body Disease. J. Neurochem. 69, 1326–1329. 10.1046/j.1471-4159.1997.69031326.x
    1. Alam Z. I., Jenner A., Daniel S. E., Lees A. J., Cairns N., Marsden C. D., et al. (1997b). Oxidative DNA Damage in the Parkinsonian Brain: an Apparent Selective Increase in 8-hydroxyguanine Levels in Substantia Nigra. J. Neurochem. 69, 1196–1203. 10.1046/j.1471-4159.1997.69031196.x
    1. Alarcón-Aguilar A., Luna-López A., Ventura-Gallegos J. L., Lazzarini R., Galván-Arzate S., González-Puertos V. Y., et al. (2014). Primary Cultured Astrocytes from Old Rats Are Capable to Activate the Nrf2 Response against MPP+ Toxicity after tBHQ Pretreatment. Neurobiol. Aging 35, 1901–1912. 10.1016/j.neurobiolaging.2014.01.143
    1. Alural B., Ozerdem A., Allmer J., Genc K., Genc S. (2015). Lithium Protects against Paraquat Neurotoxicity by NRF2 Activation and miR-34a Inhibition in SH-Sy5y Cells. Front. Cell. Neurosci. 9, 209. 10.3389/fncel.2015.00209
    1. Anis E., Zafeer M. F., Firdaus F., Islam S. N., Khan A. A., Hossain M. M. (2020). Perillyl Alcohol Mitigates Behavioural Changes and Limits Cell Death and Mitochondrial Changes in Unilateral 6-OHDA Lesion Model of Parkinson's Disease through Alleviation of Oxidative Stress. Neurotoxicity Res. 38, 461–477. 10.1007/s12640-020-00213-0
    1. Arab H. H., Safar M. M., Shahin N. N. (2021). Targeting ROS-dependent AKT/GSK-3β/nf-Κb and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson's Disease Rat Model. ACS Chem. Neurosci. 12, 689–703. 10.1021/acschemneuro.0c00722
    1. Ba Q., Cui C., Wen L., Feng S., Zhou J., Yang K. (2015). Schisandrin B Shows Neuroprotective Effect in 6-OHDA-Induced Parkinson's Disease via Inhibiting the Negative Modulation of miR-34a on Nrf2 Pathway. Biomed. Pharmacother. = Biomédecine pharmacothérapie 75, 165–172. 10.1016/j.biopha.2015.07.034
    1. Babior B. M., Curnutte J. T., Kipnes B. S. (1975). Pyridine Nucleotide-dependent Superoxide Production by a Cell-free System from Human Granulocytes. J. Clin. Invest. 56, 1035–1042. 10.1172/JCI108150
    1. Babior B. M., Kipnes R. S., Curnutte J. T. (1973). Biological Defense Mechanisms. The Production by Leukocytes of Superoxide, a Potential Bactericidal Agent. J. Clin. Invest. 52, 741–744. 10.1172/JCI107236
    1. Bae J., Lee D., Kim Y. K., Gil M., Lee J. Y., Lee K. J. (2013). Berberine Protects 6-Hydroxydopamine-Induced Human Dopaminergic Neuronal Cell Death through the Induction of Heme Oxygenase-1. Mol. Cell 35, 151–157. 10.1007/s10059-013-2298-5
    1. Baluchnejadmojarad T., Rabiee N., Zabihnejad S., Roghani M. (2017). Ellagic Acid Exerts Protective Effect in Intrastriatal 6-hydroxydopamine Rat Model of Parkinson's Disease: Possible Involvement of ERβ/Nrf2/HO-1 Signaling. Brain Res. 1662, 23–30. 10.1016/j.brainres.2017.02.021
    1. Bao B., Zhang M. Q., Chen Z. Y., Wu X. B., Xia Z. B., Chai J. Y., et al. (2019). Sulforaphane Prevents PC12 Cells from Oxidative Damage via the Nrf2 Pathway. Mol. Med. Rep. 19, 4890–4896. 10.3892/mmr.2019.10148
    1. Bedard K., Krause K. H. (2007). The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 87, 245–313. 10.1152/physrev.00044.2005
    1. Begum M E. T., Sen D. (2018). DOR Agonist (SNC-80) Exhibits Anti-parkinsonian Effect via Downregulating UPR/oxidative Stress Signals and Inflammatory Response In Vivo . Neurosci. Lett. 678, 29–36. 10.1016/j.neulet.2018.04.055
    1. Belaidi A. A., Bush A. I. (2016). Iron Neurochemistry in Alzheimer's Disease and Parkinson's Disease: Targets for Therapeutics. J. Neurochem. 139 (Suppl. 1), 179–197. 10.1111/jnc.13425
    1. Bento-Pereira C., Dinkova-Kostova A. T. (2021). Activation of Transcription Factor Nrf2 to Counteract Mitochondrial Dysfunction in Parkinson's Disease. Med. Res. Rev. 41, 785–802. 10.1002/med.21714
    1. Berendes H., Bridges R. A., Good R. A. (1957). A Fatal Granulomatosus of Childhood: the Clinical Study of a New Syndrome. Minn. Med. 40, 309–312.
    1. Betharia S., Rondόn-Ortiz A. N., Brown D. A. (2019). Disubstituted Dithiolethione ACDT Exerts Neuroprotective Effects against 6-Hydroxydopamine-Induced Oxidative Stress in SH-Sy5y Cells. Neurochem. Res. 44, 1878–1892. 10.1007/s11064-019-02823-3
    1. Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V. R. (2015). Oxidative Stress and Parkinson's Disease. Front. Neuroanat. 9, 91. 10.3389/fnana.2015.00091
    1. Blum D., Torch S., Lambeng N., Nissou M., Benabid A. L., Sadoul R., et al. (2001). Molecular Pathways Involved in the Neurotoxicity of 6-OHDA, Dopamine and MPTP: Contribution to the Apoptotic Theory in Parkinson's Disease. Prog. Neurobiol. 65, 135–172. 10.1016/s0301-0082(01)00003-x
    1. Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., et al. (2003). Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 299, 256–259. 10.1126/science.1077209
    1. Boveris A., Chance B. (1973). The Mitochondrial Generation of Hydrogen Peroxide. General Properties and Effect of Hyperbaric Oxygen. Biochem. J. 134, 707–716. 10.1042/bj1340707
    1. Brás I. C., Outeiro T. F. (2021). Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 10, 375. 10.3390/cells10020375
    1. Bryan H. K., Olayanju A., Goldring C. E., Park B. K. (2013). The Nrf2 Cell Defence Pathway: Keap1-dependent and -independent Mechanisms of Regulation. Biochem. Pharmacol. 85, 705–717. 10.1016/j.bcp.2012.11.016
    1. Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R. (2016). Nrf2-ARE Pathway: An Emerging Target against Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. Pharmacol. Ther. 157, 84–104. 10.1016/j.pharmthera.2015.11.003
    1. Calkins M. J., Jakel R. J., Johnson D. A., Chan K., Kan Y. W., Johnson J. A. (2005). Protection from Mitochondrial Complex II Inhibition In Vitro and In Vivo by Nrf2-Mediated Transcription. Proc. Natl. Acad. Sci. United States America 102, 244–249. 10.1073/pnas.0408487101
    1. Calkins M. J., Johnson D. A., Townsend J. A., Vargas M. R., Dowell J. A., Williamson T. P., et al. (2009). The Nrf2/ARE Pathway as a Potential Therapeutic Target in Neurodegenerative Disease. Antioxid. Redox signaling 11, 497–508. 10.1089/ars.2008.2242
    1. Cañas N., Valero T., Villarroya M., Montell E., Vergés J., García A. G., et al. (2007). Chondroitin Sulfate Protects SH-Sy5y Cells from Oxidative Stress by Inducing Heme Oxygenase-1 via Phosphatidylinositol 3-kinase/Akt. J. Pharmacol. Exp. Ther. 323, 946–953. 10.1124/jpet.107.123505
    1. Chandrasekhar Y., Phani Kumar G., Ramya E. M., Anilakumar K. R. (2018). Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem. Res. 43, 1150–1160. 10.1007/s11064-018-2530-y
    1. Chaturvedi R. K., Beal M. F. (2008). Mitochondrial Approaches for Neuroprotection. Ann. N.Y Acad. Sci. 1147, 395–412. 10.1196/annals.1427.027
    1. Chen H., Cao J., Zha L., Wang P., Liu Z., Guo B., et al. (2020). Neuroprotective and Neurogenic Effects of Novel Tetramethylpyrazine Derivative T-006 in Parkinson's Disease Models through Activating the MEF2-Pgc1α and BDNF/CREB Pathways. Aging 12, 14897–14917. 10.18632/aging.103551
    1. Chen H., Li H., Cao F., Zhen L., Bai J., Yuan S., et al. (2012). 1,2,3,4,6-penta-O-galloyl-β-D-glucose Protects PC12 Cells from MPP(+)-mediated Cell Death by Inducing Heme Oxygenase-1 in an ERK- and Akt-dependent Manner. J. Huazhong Univ. Sci. Technolog Med. Sci. 32, 737–745. 10.1007/s11596-012-1027-1
    1. Chen L. L., Huang Y. J., Cui J. T., Song N., Xie J. (2019). Iron Dysregulation in Parkinson's Disease: Focused on the Autophagy-Lysosome Pathway. ACS Chem. Neurosci. 10, 863–871. 10.1021/acschemneuro.8b00390
    1. Chen P. C., Vargas M. R., Pani A. K., Smeyne R. J., Johnson D. A., Kan Y. W., et al. (2009). Nrf2-mediated Neuroprotection in the MPTP Mouse Model of Parkinson's Disease: Critical Role for the Astrocyte. Proc. Natl. Acad. Sci. United States America 106, 2933–2938. 10.1073/pnas.0813361106
    1. Cheng B., Guo Y., Li C., Ji B., Pan Y., Chen J., et al. (2014). Edaravone Protected PC12 Cells against MPP(+)-cytoxicity via Inhibiting Oxidative Stress and Up-Regulating Heme Oxygenase-1 Expression. J. Neurol. Sci. 343, 115–119. 10.1016/j.jns.2014.05.051
    1. Chidambaram S. B., Bhat A., Ray B., Sugumar M., Muthukumar S. P., Manivasagam T., et al. (2018). Cocoa Beans Improve Mitochondrial Biogenesis via PPARγ/PGC1α Dependent Signalling Pathway in MPP+ Intoxicated Human Neuroblastoma Cells (SH-Sy5y). Nutr. Neurosci. 23, 471. 10.1080/1028415X.2018.1521088
    1. Chinta S. J., Andersen J. K. (2008). Redox Imbalance in Parkinson's Disease. Biochim. Biophys. Acta 1780, 1362–1367. 10.1016/j.bbagen.2008.02.005
    1. Chinta S. J., Rajagopalan S., Ganesan A., Andersen J. K. (2012). A Possible Novel Anti-inflammatory Mechanism for the Pharmacological Prolyl Hydroxylase Inhibitor 3,4-dihydroxybenzoate: Implications for Use as a Therapeutic for Parkinson's Disease. Parkinson's Dis. 2012, 364684. 10.1155/2012/364684
    1. Choi J. H., Jang M., Lee J. I., Chung W. S., Cho I. H. (2018). Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-Κb Pathways and Activation of Keap1-Nrf2 Pathway. Front. Pharmacol. 9, 1444. 10.3389/fphar.2018.01444
    1. Choi J. W., Kim S., Yoo J. S., Kim H. J., Kim H. J., Kim B. E., et al. (2021). Development and Optimization of Halogenated Vinyl Sulfones as Nrf2 Activators for the Treatment of Parkinson's Disease. Eur. J. Med. Chem. 212, 113103. 10.1016/j.ejmech.2020.113103
    1. Choi J. W., Shin S. J., Kim H. J., Park J. H., Kim H. J., Lee E. H., et al. (2019). Antioxidant, Anti-inflammatory, and Neuroprotective Effects of Novel Vinyl Sulfonate Compounds as Nrf2 Activator. ACS Med. Chem. Lett. 10, 1061–1067. 10.1021/acsmedchemlett.9b00163
    1. Chong C. M., Zhou Z. Y., Razmovski-Naumovski V., Cui G. Z., Zhang L. Q., Sa F., et al. (2013). Danshensu Protects against 6-Hydroxydopamine-Induced Damage of PC12 Cells In Vitro and Dopaminergic Neurons in Zebrafish. Neurosci. Lett. 543, 121–125. 10.1016/j.neulet.2013.02.069
    1. Chuang J. I., Huang J. Y., Tsai S. J., Sun H. S., Yang S. H., Chuang P. C., et al. (2015). FGF9-induced Changes in Cellular Redox Status and HO-1 Upregulation Are FGFR-dependent and Proceed through Both ERK and AKT to Induce CREB and Nrf2 Activation. Free Radic. Biol. Med. 89, 274–286. 10.1016/j.freeradbiomed.2015.08.011
    1. Colonnello A., Aguilera-Portillo G., Rubio-López L. C., Robles-Bañuelos B., Rangel-López E., Cortez-Núñez S., et al. (2020). Comparing the Neuroprotective Effects of Caffeic Acid in Rat Cortical Slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 Signaling Pathways. Neurotoxicity Res. 37, 326–337. 10.1007/s12640-019-00133-8
    1. Consoli V., Sorrenti V., Grosso S., Vanella L. (2021). Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 11, 589. 10.3390/biom11040589
    1. Cores Á., Piquero M., Villacampa M., León R., Menéndez J. C. (2020). NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 10, 904. 10.3390/biom10060904
    1. Costamagna G., Comi G. P., Corti S. (2021). Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int. J. Mol. Sci. 22, 2659. 10.3390/ijms22052659
    1. Cuadrado A., Manda G., Hassan A., Alcaraz M. J., Barbas C., Daiber A., et al. (2018). Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol. Rev. 70, 348–383. 10.1124/pr.117.014753
    1. Cuadrado A., Rojo A. I., Wells G., Hayes J. D., Cousin S. P., Rumsey W. L., et al. (2019). Therapeutic Targeting of the NRF2 and KEAP1 Partnership in Chronic Diseases. Nat. Rev. Drug Discov. 18, 295–317. 10.1038/s41573-018-0008-x
    1. Cuenca L., Gil-Martinez A. L., Cano-Fernandez L., Sanchez-Rodrigo C., Estrada C., Fernandez-Villalba E., et al. (2018). Parkinson's Disease: a Short story of 200 Years. Histology and histopathology 34, 573. 10.14670/HH-18-073
    1. Cui Q., Li X., Zhu H. (2016). Curcumin Ameliorates Dopaminergic Neuronal Oxidative Damage via Activation of the Akt/Nrf2 Pathway. Mol. Med. Rep. 13, 1381–1388. 10.3892/mmr.2015.4657
    1. D'Autréaux B., Toledano M. B. (2007). ROS as Signalling Molecules: Mechanisms that Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cel. Biol. 8, 813–824. 10.1038/nrm2256
    1. Dal-Cim T., Molz S., Egea J., Parada E., Romero A., Budni J., et al. (2012). Guanosine Protects Human Neuroblastoma SH-Sy5y Cells against Mitochondrial Oxidative Stress by Inducing Heme Oxigenase-1 via PI3K/Akt/GSK-3β Pathway. Neurochem. Int. 61, 397–404. 10.1016/j.neuint.2012.05.021
    1. Danielson S. R., Andersen J. K. (2008). Oxidative and Nitrative Protein Modifications in Parkinson's Disease. Free Radic. Biol. Med. 44, 1787–1794. 10.1016/j.freeradbiomed.2008.03.005
    1. Darabi S., Noori-Zadeh A., Abbaszadeh H. A., Rajaei F., Bakhtiyari S. (2019). Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways. Iranian J. Pharm. Res. 18, 1419–1428. 10.22037/ijpr.2019.2387
    1. Darabi S., Noori-Zadeh A., Rajaei F., Abbaszadeh H. A., Bakhtiyari S., Roozbahany N. A. (2018). SMER28 Attenuates Dopaminergic Toxicity Mediated by 6-Hydroxydopamine in the Rats via Modulating Oxidative Burdens and Autophagy-Related Parameters. Neurochem. Res. 43, 2313–2323. 10.1007/s11064-018-2652-2
    1. de Oliveira M. R., Andrade C., Fürstenau C. R. (2018a). Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-Sy5y Cells through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem. Res. 43, 894–903. 10.1007/s11064-018-2495-x
    1. de Oliveira M. R., de Souza I., Fürstenau C. R. (2018b). Carnosic Acid Induces Anti-inflammatory Effects in Paraquat-Treated SH-Sy5y Cells through a Mechanism Involving a Crosstalk between the Nrf2/HO-1 Axis and NF-Κb. Mol. Neurobiol. 55, 890–897. 10.1007/s12035-017-0389-6
    1. de Oliveira M. R., Ferreira G. C., Schuck P. F. (2016). Protective Effect of Carnosic Acid against Paraquat-Induced Redox Impairment and Mitochondrial Dysfunction in SH-Sy5y Cells: Role for PI3K/Akt/Nrf2 Pathway. Toxicol. vitro 32, 41–54. 10.1016/j.tiv.2015.12.005
    1. de Oliveira M. R., Peres A., Ferreira G. C., Schuck P. F., Gama C. S., Bosco S. (2017a). Carnosic Acid Protects Mitochondria of Human Neuroblastoma SH-Sy5y Cells Exposed to Paraquat through Activation of the Nrf2/HO-1Axis. Mol. Neurobiol. 54, 5961–5972. 10.1007/s12035-016-0100-3
    1. de Oliveira M. R., Peres A., Gama C. S., Bosco S. (2017b). Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-Sy5y Neuroblastoma Cells Exposed to Paraquat. Mol. Neurobiol. 54, 6018–6031. 10.1007/s12035-016-0135-5
    1. de Oliveira M. R., Schuck P. F., Bosco S. (2017c). Tanshinone I Induces Mitochondrial Protection through an Nrf2-dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-Sy5y Cells. Mol. Neurobiol. 54, 4597–4608. 10.1007/s12035-016-0009-x
    1. de Rus Jacquet A., Tambe M. A., Ma S. Y., McCabe G. P., Vest J., Rochet J. C. (2017). Pikuni-Blackfeet Traditional Medicine: Neuroprotective Activities of Medicinal Plants Used to Treat Parkinson's Disease-Related Symptoms. J. ethnopharmacology 206, 393–407. 10.1016/j.jep.2017.01.001
    1. Deng C., Tao R., Yu S. Z., Jin H. (2012a). Inhibition of 6-Hydroxydopamine-Induced Endoplasmic Reticulum Stress by Sulforaphane through the Activation of Nrf2 Nuclear Translocation. Mol. Med. Rep. 6, 215–219. 10.3892/mmr.2012.894
    1. Deng C., Tao R., Yu S. Z., Jin H. (2012b). Sulforaphane Protects against 6-Hydroxydopamine-Induced Cytotoxicity by Increasing Expression of Heme Oxygenase-1 in a PI3K/Akt-dependent Manner. Mol. Med. Rep. 5, 847–851. 10.3892/mmr.2011.731
    1. Deng H., Wang P., Jankovic J. (2018). The Genetics of Parkinson Disease. Ageing Res. Rev. 42, 72–85. 10.1016/j.arr.2017.12.007
    1. Deshmukh P., Unni S., Krishnappa G., Padmanabhan B. (2017). The Keap1-Nrf2 Pathway: Promising Therapeutic Target to Counteract ROS-Mediated Damage in Cancers and Neurodegenerative Diseases. Biophysical Rev. 9, 41–56. 10.1007/s12551-016-0244-4
    1. Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., et al. (1989). Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's Disease. J. Neurochem. 52, 381–389. 10.1111/j.1471-4159.1989.tb09133.x
    1. Di Fonzo A., Rohé C. F., Ferreira J., Chien H. F., Vacca L., Stocchi F., et al. (2005). A Frequent LRRK2 Gene Mutation Associated with Autosomal Dominant Parkinson's Disease. Lancet 365, 412–415. 10.1016/S0140-6736(05)17829-5
    1. Dias V., Junn E., Mouradian M. M. (2013). The Role of Oxidative Stress in Parkinson's Disease. J. Parkinson's Dis. 3, 461–491. 10.3233/JPD-130230
    1. Dinkova-Kostova A. T., Talalay P. (2008). Direct and Indirect Antioxidant Properties of Inducers of Cytoprotective Proteins. Mol. Nutr. Food Res. 52 (Suppl. 1), S128–S138. 10.1002/mnfr.200700195
    1. Domingo A., Klein C. (2018). Genetics of Parkinson Disease. Handbook Clin. Neurol. 147, 211–227. 10.1016/B978-0-444-63233-3.00014-2
    1. Dong H., Zhang J., Rong H., Zhang X., Dong M. (2021). Paeoniflorin and Plycyrrhetinic Acid Synergistically Alleviate MPP(+)/MPTP-Induced Oxidative Stress through Nrf2-dependent Glutathione Biosynthesis Mechanisms. ACS Chem. Neurosci. 12, 1100–1111. 10.1021/acschemneuro.0c00544
    1. Dong J., Zhang X., Wang S., Xu C., Gao M., Liu S., et al. (2020). Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress via the Nrf2/ARE Pathway. Front. Pharmacol. 11, 615598. 10.3389/fphar.2020.615598
    1. Dos Santos Nunes R. G., Pereira P. S., Elekofehinti O. O., Fidelis K. R., da Silva C. S., Ibrahim M., et al. (2019). Possible Involvement of Transcriptional Activation of Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) in the Protective Effect of Caffeic Acid on Paraquat-Induced Oxidative Damage in Drosophila melanogaster . Pestic. Biochem. Physiol. 157, 161–168. 10.1016/j.pestbp.2019.03.017
    1. Dutta N., Ghosh S., Nelson V. K., Sareng H. R., Majumder C., Mandal S. C., et al. (2021). Andrographolide Upregulates Protein Quality Control Mechanisms in Cell and Mouse through Upregulation of mTORC1 Function. Biochim. Biophys. Acta Gen. subjects 1865, 129885. 10.1016/j.bbagen.2021.129885
    1. Duvigneau J. C., Trovato A., Müllebner A., Miller I., Krewenka C., Krenn K., et al. (2020). Cannabidiol Protects Dopaminergic Neurons in Mesencephalic Cultures against the Complex I Inhibitor Rotenone via Modulation of Heme Oxygenase Activity and Bilirubin. Antioxidants 9. 10.3390/antiox9020135
    1. Egea J., Rosa A. O., Cuadrado A., García A. G., López M. G. (2007). Nicotinic Receptor Activation by Epibatidine Induces Heme Oxygenase-1 and Protects Chromaffin Cells against Oxidative Stress. J. Neurochem. 102, 1842–1852. 10.1111/j.1471-4159.2007.04665.x
    1. El-Ghaiesh S. H., Bahr H. I., Ibrahiem A. T., Ghorab D., Alomar S. Y., Farag N. E., et al. (2020). Metformin Protects from Rotenone-Induced Nigrostriatal Neuronal Death in Adult Mice by Activating AMPK-FOXO3 Signaling and Mitigation of Angiogenesis. Front. Mol. Neurosci. 13, 84. 10.3389/fnmol.2020.00084
    1. Elfawy H. A., Das B. (2019). Crosstalk between Mitochondrial Dysfunction, Oxidative Stress, and Age Related Neurodegenerative Disease: Etiologies and Therapeutic Strategies. Life Sci. 218, 165–184. 10.1016/j.lfs.2018.12.029
    1. Elmazoglu Z., Yar Saglam A. S., Sonmez C., Karasu C. (2020). Luteolin Protects Microglia against Rotenone-Induced Toxicity in a Hormetic Manner through Targeting Oxidative Stress Response, Genes Associated with Parkinson's Disease and Inflammatory Pathways. Drug Chem. Toxicol. 43, 96–103. 10.1080/01480545.2018.1504961
    1. Engel D. F., de Oliveira J., Lieberknecht V., Rodrigues A., de Bem A. F., Gabilan N. H. (2018). Duloxetine Protects Human Neuroblastoma Cells from Oxidative Stress-Induced Cell Death through Akt/Nrf-2/HO-1 Pathway. Neurochem. Res. 43, 387–396. 10.1007/s11064-017-2433-3
    1. Eo H., Huh E., Sim Y., Oh M. S. (2019). Ukgansan Protects Dopaminergic Neurons from 6-hydroxydopamine Neurotoxicity via Activation of the Nuclear Factor (Erythroid-derived 2)-like 2 Factor Signaling Pathway. Neurochem. Int. 122, 208–215. 10.1016/j.neuint.2018.11.021
    1. Fahn S., Cohen G. (1992). The Oxidant Stress Hypothesis in Parkinson's Disease: Evidence Supporting it. Ann. Neurol. 32, 804–812. 10.1002/ana.410320616
    1. Farrer M., Gwinn-Hardy K., Muenter M., DeVrieze F. W., Crook R., Perez-Tur J., et al. (1999). A Chromosome 4p Haplotype Segregating with Parkinson's Disease and Postural Tremor. Hum. Mol. Genet. 8, 81–85. 10.1093/hmg/8.1.81
    1. Feng C. W., Chen N. F., Wen Z. H., Yang W. Y., Kuo H. M., Sung P. J., et al. (2019). In Vitro and In Vivo Neuroprotective Effects of Stellettin B through Anti-apoptosis and the Nrf2/HO-1 Pathway. Mar. Drugs 17. 10.3390/md17060315
    1. Feng C. W., Hung H. C., Huang S. Y., Chen C. H., Chen Y. R., Chen C. Y., et al. (2016). Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson's Disease. Mar. Drugs 14, 187. 10.3390/md14100187
    1. Fernandes J. T., Chutna O., Chu V., Conde J. P., Outeiro T. F. (2016). A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Front. Neurosci. 10, 511. 10.3389/fnins.2016.00511
    1. Fernández-Moriano C., González-Burgos E., Iglesias I., Lozano R., Gómez-Serranillos M. P. (2017). Evaluation of the Adaptogenic Potential Exerted by Ginsenosides Rb1 and Rg1 against Oxidative Stress-Mediated Neurotoxicity in an In Vitro Neuronal Model. PloS one 12, e0182933. 10.1371/journal.pone.0182933
    1. Figueira T. R., Barros M. H., Camargo A. A., Castilho R. F., Ferreira J. C., Kowaltowski A. J., et al. (2013). Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: from Molecular Mechanisms to Human Health. Antioxid. Redox signaling 18, 2029–2074. 10.1089/ars.2012.4729
    1. Fujita H., Shiosaka M., Ogino T., Okimura Y., Utsumi T., Sato E. F., et al. (2008). Alpha-lipoic Acid Suppresses 6-Hydroxydopamine-Induced ROS Generation and Apoptosis through the Stimulation of Glutathione Synthesis but Not by the Expression of Heme Oxygenase-1. Brain Res. 1206, 1–12. 10.1016/j.brainres.2008.01.081
    1. Funakohi-Tago M., Sakata T., Fujiwara S., Sakakura A., Sugai T., Tago K., et al. (2018). Hydroxytyrosol Butyrate Inhibits 6-OHDA-Induced Apoptosis through Activation of the Nrf2/HO-1 axis in SH-Sy5y Cells. Eur. J. Pharmacol. 834, 246–256. 10.1016/j.ejphar.2018.07.043
    1. Gaballah H. H., Zakaria S. S., Elbatsh M. M., Tahoon N. M. (2016). Modulatory Effects of Resveratrol on Endoplasmic Reticulum Stress-Associated Apoptosis and Oxido-Inflammatory Markers in a Rat Model of Rotenone-Induced Parkinson's Disease. Chemico-biological interactions 251, 10–16. 10.1016/j.cbi.2016.03.023
    1. Galuppo M., Iori R., De Nicola G. R., Bramanti P., Mazzon E. (2013). Anti-inflammatory and Anti-apoptotic Effects of (RS)-Glucoraphanin Bioactivated with Myrosinase in Murine Sub-acute and Acute MPTP-Induced Parkinson's Disease. Bioorg. Med. Chem. 21, 5532–5547. 10.1016/j.bmc.2013.05.065
    1. Gan L., Vargas M. R., Johnson D. A., Johnson J. A. (2012). Astrocyte-specific Overexpression of Nrf2 Delays Motor Pathology and Synuclein Aggregation throughout the CNS in the Alpha-Synuclein Mutant (A53T) Mouse Model. J. Neurosci. 32, 17775–17787. 10.1523/JNEUROSCI.3049-12.2012
    1. Gao H. M., Hong J. S., Zhang W., Liu B. (2002). Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons. J. Neurosci. 22, 782–790. 10.1523/jneurosci.22-03-00782.2002
    1. Gao H. M., Liu B., Hong J. S. (2003a). Critical Role for Microglial NADPH Oxidase in Rotenone-Induced Degeneration of Dopaminergic Neurons. J. Neurosci. 23, 6181–6187. 10.1523/jneurosci.23-15-06181.2003
    1. Gao H. M., Liu B., Zhang W., Hong J. S. (2003b). Critical Role of Microglial NADPH Oxidase-Derived Free Radicals in the In Vitro MPTP Model of Parkinson's Disease. FASEB J. 17, 1954–1956. 10.1096/fj.03-0109fje
    1. Gao H. M., Liu B., Zhang W., Hong J. S. (2003c). Synergistic Dopaminergic Neurotoxicity of MPTP and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson's Disease. FASEB J. 17, 1957–1959. 10.1096/fj.03-0203fje
    1. Gao H. M., Zhou H., Hong J. S. (2012). NADPH Oxidases: Novel Therapeutic Targets for Neurodegenerative Diseases. Trends Pharmacological Sciences 33, 295–303. 10.1016/j.tips.2012.03.008
    1. Garabadu D., Agrawal N. (2020). Naringin Exhibits Neuroprotection against Rotenone-Induced Neurotoxicity in Experimental Rodents. Neuromolecular Med. 22, 314–330. 10.1007/s12017-019-08590-2
    1. García E., Santana-Martínez R., Silva-Islas C. A., Colín-González A. L., Galván-Arzate S., Heras Y., et al. (2014). S-allyl Cysteine Protects against MPTP-Induced Striatal and Nigral Oxidative Neurotoxicity in Mice: Participation of Nrf2. Free Radic. Res. 48, 159–167. 10.3109/10715762.2013.857019
    1. Gatto E. M., Riobó N. A., Carreras M. C., Cherñavsky A., Rubio A., Satz M. L., et al. (2000). Overexpression of Neutrophil Neuronal Nitric Oxide Synthase in Parkinson's Disease. Nitric oxide 4, 534–539. 10.1006/niox.2000.0288
    1. Gilgun-Sherki Y., Melamed E., Offen D. (2001). Oxidative Stress Induced-Neurodegenerative Diseases: the Need for Antioxidants that Penetrate the Blood Brain Barrier. Neuropharmacology 40, 959–975. 10.1016/s0028-3908(01)00019-3
    1. González-Burgos E., Fernández-Moriano C., Lozano R., Iglesias I., Gómez-Serranillos M. P. (2017). Ginsenosides Rd and Re Co-treatments Improve Rotenone-Induced Oxidative Stress and Mitochondrial Impairment in SH-Sy5y Neuroblastoma Cells. Food Chem. Toxicol. 109, 38–47. 10.1016/j.fct.2017.08.013
    1. Good P. F., Hsu A., Werner P., Perl D. P., Olanow C. W. (1998). Protein Nitration in Parkinson's Disease. J. Neuropathol. Exp. Neurol. 57, 338–342. 10.1097/00005072-199804000-00006
    1. Guemez-Gamboa A., Estrada-Sánchez A. M., Montiel T., Páramo B., Massieu L., Morán J. (2011). Activation of NOX2 by the Stimulation of Ionotropic and Metabotropic Glutamate Receptors Contributes to Glutamate Neurotoxicity In Vivo through the Production of Reactive Oxygen Species and Calpain Activation. J. Neuropathol. Exp. Neurol. 70, 1020–1035. 10.1097/NEN.0b013e3182358e4e
    1. Gunjima K., Tomiyama R., Takakura K., Yamada T., Hashida K., Nakamura Y., et al. (2014). 3,4-dihydroxybenzalacetone Protects against Parkinson's Disease-Related Neurotoxin 6-OHDA through Akt/Nrf2/glutathione Pathway. J. Cell. Biochem. 115, 151–160. 10.1002/jcb.24643
    1. Guo C., Zhu J., Wang J., Duan J., Ma S., Yin Y., et al. (2019). Neuroprotective Effects of Protocatechuic Aldehyde through PLK2/p-GSK3β/Nrf2 Signaling Pathway in Both In Vivo and In Vitro Models of Parkinson's Disease. Aging 11, 9424–9441. 10.18632/aging.102394
    1. Guo F., Wang X., Liu X. (2021). Protective Effects of Irigenin against 1-Methyl-4-Phenylpyridinium-Induced Neurotoxicity through Regulating the Keap1/Nrf2 Pathway. Phytotherapy Res. 35, 1585–1596. 10.1002/ptr.6926
    1. Guo J. D., Zhao X., Li Y., Li G. R., Liu X. L. (2018). Damage to Dopaminergic Neurons by Oxidative Stress in Parkinson's Disease (Review). Int. J. Mol. Med. 41, 1817–1825. 10.3892/ijmm.2018.3406
    1. Guo X., Han C., Ma K., Xia Y., Wan F., Yin S., et al. (2019). Hydralazine Protects Nigrostriatal Dopaminergic Neurons from MPP(+) and MPTP Induced Neurotoxicity: Roles of Nrf2-ARE Signaling Pathway. Front. Neurol. 10, 271. 10.3389/fneur.2019.00271
    1. Gutowski M., Kowalczyk S. (2013). A Study of Free Radical Chemistry: Their Role and Pathophysiological Significance. Acta Biochim. Pol. 60, 1–16. 10.18388/abp.2013_1944
    1. Hara H., Kamiya T., Adachi T. (2011). Endoplasmic Reticulum Stress Inducers Provide protection against 6-Hydroxydopamine-Induced Cytotoxicity. Neurochem. Int. 58, 35–43. 10.1016/j.neuint.2010.10.006
    1. Hara H., Ohta M., Adachi T. (2006). Apomorphine Protects against 6-Hydroxydopamine-Induced Neuronal Cell Death through Activation of the Nrf2-ARE Pathway. J. Neurosci. Res. 84, 860–866. 10.1002/jnr.20974
    1. Hastings T. G. (2009). The Role of Dopamine Oxidation in Mitochondrial Dysfunction: Implications for Parkinson's Disease. J. Bioenerg. biomembranes 41, 469–472. 10.1007/s10863-009-9257-z
    1. Hauser D. N., Hastings T. G. (2013). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease and Monogenic Parkinsonism. Neurobiol. Dis. 51, 35–42. 10.1016/j.nbd.2012.10.011
    1. Hernandes M. S., Café-Mendes C. C., Britto L. R. (2013a). NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice. Oxidative Med. Cell. longevity 2013, 157857. 10.1155/2013/157857
    1. Hernandes M. S., Santos G. D., Café-Mendes C. C., Lima L. S., Scavone C., Munhoz C. D., et al. (2013b). Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration. PloS one 8, e75532. 10.1371/journal.pone.0075532
    1. Herrera A., Muñoz P., Steinbusch H., Segura-Aguilar J. (2017). Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease. ACS Chem. Neurosci. 8, 702–711. 10.1021/acschemneuro.7b00034
    1. Hirsch L., Jette N., Frolkis A., Steeves T., Pringsheim T. (2016). The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 46, 292–300. 10.1159/000445751
    1. Hou Y., Peng S., Li X., Yao J., Xu J., Fang J. (2018). Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2. ACS Chem. Neurosci. 9, 3108–3116. 10.1021/acschemneuro.8b00290
    1. Hu L. W., Yen J. H., Shen Y. T., Wu K. Y., Wu M. J. (2014). Luteolin Modulates 6-Hydroxydopamine-Induced Transcriptional Changes of Stress Response Pathways in PC12 Cells. PloS one 9, e97880. 10.1371/journal.pone.0097880
    1. Huang J. Y., Chuang J. I. (2010). Fibroblast Growth Factor 9 Upregulates Heme Oxygenase-1 and Gamma-Glutamylcysteine Synthetase Expression to Protect Neurons from 1-Methyl-4-Phenylpyridinium Toxicity. Free Radic. Biol. Med. 49, 1099–1108. 10.1016/j.freeradbiomed.2010.06.026
    1. Huang J. Y., Yuan Y. H., Yan J. Q., Wang Y. N., Chu S. F., Zhu C. G., et al. (2016). 20C, a Bibenzyl Compound Isolated from Gastrodia Elata, Protects PC12 Cells against Rotenone-Induced Apoptosis via Activation of the Nrf2/ARE/HO-1 Signaling Pathway. Acta pharmacologica Sinica 37, 731–740. 10.1038/aps.2015.154
    1. Huang S., Yuan H., Li W., Liu X., Zhang X., Xiang D., et al. (2021). Polygonatum Sibiricum Polysaccharides Protect against MPP-Induced Neurotoxicity via the Akt/mTOR and Nrf2 Pathways. Oxidative Med. Cell. longevity 2021, 8843899. 10.1155/2021/8843899
    1. Huang T. T., Hao D. L., Wu B. N., Mao L. L., Zhang J. (2017). Uric Acid Demonstrates Neuroprotective Effect on Parkinson's Disease Mice through Nrf2-ARE Signaling Pathway. Biochem. biophysical Res. Commun. 493, 1443–1449. 10.1016/j.bbrc.2017.10.004
    1. Hwang Y. P., Jeong H. G. (2010). Ginsenoside Rb1 Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Heme Oxygenase-1 Expression through an Estrogen Receptor-Related PI3K/Akt/Nrf2-dependent Pathway in Human Dopaminergic Cells. Toxicol. Appl. Pharmacol. 242, 18–28. 10.1016/j.taap.2009.09.009
    1. Hwang Y. P., Jeong H. G. (2008). The Coffee Diterpene Kahweol Induces Heme Oxygenase-1 via the PI3K and p38/Nrf2 Pathway to Protect Human Dopaminergic Neurons from 6-Hydroxydopamine-Derived Oxidative Stress. FEBS Lett. 582, 2655–2662. 10.1016/j.febslet.2008.06.045
    1. Hwang Y. P., Kim H. G., Han E. H., Jeong H. G. (2008). Metallothionein-III Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Expression of Heme Oxygenase-1 in a PI3K and ERK/Nrf2-dependent Manner. Toxicol. Appl. Pharmacol. 231, 318–327. 10.1016/j.taap.2008.04.019
    1. Iannielli A., Ugolini G. S., Cordiglieri C., Bido S., Rubio A., Colasante G., et al. (2019). Reconstitution of the Human Nigro-Striatal Pathway On-A-Chip Reveals OPA1-dependent Mitochondrial Defects and Loss of Dopaminergic Synapses. Cel Rep. 29, 4646–4656.e4. 10.1016/j.celrep.2019.11.111
    1. Inose Y., Izumi Y., Takada-Takatori Y., Akaike A., Koyama Y., Kaneko S., et al. (2020). Protective Effects of Nrf2-ARE Activator on Dopaminergic Neuronal Loss in Parkinson Disease Model Mice: Possible Involvement of Heme Oxygenase-1. Neurosci. Lett. 736, 135268. 10.1016/j.neulet.2020.135268
    1. Inoue Y., Hara H., Mitsugi Y., Yamaguchi E., Kamiya T., Itoh A., et al. (2018). 4-Hydroperoxy-2-decenoic Acid Ethyl Ester Protects against 6-Hydroxydopamine-Induced Cell Death via Activation of Nrf2-ARE and eIF2α-ATF4 Pathways. Neurochem. Int. 112, 288–296. 10.1016/j.neuint.2017.08.011
    1. Inyushin M. Y., Huertas A., Kucheryavykh Y. V., Kucheryavykh L. Y., Tsydzik V., Sanabria P., et al. (2012). L-DOPA Uptake in Astrocytic Endfeet Enwrapping Blood Vessels in Rat Brain. Parkinson's Dis. 2012, 321406. 10.1155/2012/321406
    1. Isobe C., Abe T., Terayama Y. (2010). Levels of Reduced and Oxidized Coenzyme Q-10 and 8-Hydroxy-2'-Deoxyguanosine in the Cerebrospinal Fluid of Patients with Living Parkinson's Disease Demonstrate that Mitochondrial Oxidative Damage And/or Oxidative DNA Damage Contributes to the Neurodegenerative Process. Neurosci. Lett. 469, 159–163. 10.1016/j.neulet.2009.11.065
    1. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., et al. (1999). Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 through Binding to the Amino-Terminal Neh2 Domain. Genes Dev. 13, 76–86. 10.1101/gad.13.1.76
    1. Izumi Y., Kataoka H., Inose Y., Akaike A., Koyama Y., Kume T. (2018). Neuroprotective Effect of an Nrf2-ARE Activator Identified from a Chemical Library on Dopaminergic Neurons. Eur. J. Pharmacol. 818, 470–479. 10.1016/j.ejphar.2017.11.023
    1. Izumi Y., Matsumura A., Wakita S., Akagi K., Fukuda H., Kume T., et al. (2012). Isolation, Identification, and Biological Evaluation of Nrf2-ARE Activator from the Leaves of green Perilla (Perilla Frutescens Var. Crispa F. Viridis). Free Radic. Biol. Med. 53, 669–679. 10.1016/j.freeradbiomed.2012.06.021
    1. Jakel R. J., Townsend J. A., Kraft A. D., Johnson J. A. (2007). Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 1144, 192–201. 10.1016/j.brainres.2007.01.131
    1. Jazwa A., Cuadrado A. (2010). Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets 11, 1517–1531. 10.2174/1389450111009011517
    1. Jazwa A., Rojo A. I., Innamorato N. G., Hesse M., Fernández-Ruiz J., Cuadrado A. (2011). Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxid. Redox signaling 14, 2347–2360. 10.1089/ars.2010.3731
    1. Jenner P. (2003). Oxidative Stress in Parkinson's Disease. Ann. Neurol. 53 (Suppl. 3), S26–S36. discussion S36–38. 10.1002/ana.10483
    1. Ji L. L., Yeo D. (2021). Oxidative Stress: an Evolving Definition. Fac. Rev. 10, 13. 10.12703/r/10-13
    1. Ji L., Qu L., Wang C., Peng W., Li S., Yang H., et al. (2021). Identification and Optimization of Piperlongumine Analogues as Potential Antioxidant and Anti-inflammatory Agents via Activation of Nrf2. Eur. J. Med. Chem. 210, 112965. 10.1016/j.ejmech.2020.112965
    1. Jiang G., Hu Y., Liu L., Cai J., Peng C., Li Q. (2014). Gastrodin Protects against MPP(+)-induced Oxidative Stress by up Regulates Heme Oxygenase-1 Expression through P38 MAPK/Nrf2 Pathway in Human Dopaminergic Cells. Neurochem. Int. 75, 79–88. 10.1016/j.neuint.2014.06.003
    1. Jiang L., Wu X., Wang S., Chen S. H., Zhou H., Wilson B., et al. (2016). Clozapine Metabolites Protect Dopaminergic Neurons through Inhibition of Microglial NADPH Oxidase. J. neuroinflammation 13, 110. 10.1186/s12974-016-0573-z
    1. Jiang T., Sun Q., Chen S. (2016). Oxidative Stress: A Major Pathogenesis and Potential Therapeutic Target of Antioxidative Agents in Parkinson's Disease and Alzheimer's Disease. Prog. Neurobiol. 147, 1–19. 10.1016/j.pneurobio.2016.07.005
    1. Jin X., Liu Q., Jia L., Li M., Wang X. (2015). Pinocembrin Attenuates 6-OHDA-Induced Neuronal Cell Death through Nrf2/ARE Pathway in SH-Sy5y Cells. Cell Mol. Neurobiol. 35, 323–333. 10.1007/s10571-014-0128-8
    1. Jing X., Shi H., Zhang C., Ren M., Han M., Wei X., et al. (2015). Dimethyl Fumarate Attenuates 6-OHDA-Induced Neurotoxicity in SH-Sy5y Cells and in Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity. Neuroscience 286, 131–140. 10.1016/j.neuroscience.2014.11.047
    1. Jing X., Wei X., Ren M., Wang L., Zhang X., Lou H. (2016). Neuroprotective Effects of Tanshinone I against 6-OHDA-Induced Oxidative Stress in Cellular and Mouse Model of Parkinson's Disease through Upregulating Nrf2. Neurochem. Res. 41, 779–786. 10.1007/s11064-015-1751-6
    1. Jo M. G., Ikram M., Jo M. H., Yoo L., Chung K. C., Nah S. Y., et al. (2018). Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway. Mol. Neurobiol. 56, 39. 10.1007/s12035-018-1020-1
    1. Johnson J. A., Johnson D. A., Kraft A. D., Calkins M. J., Jakel R. J., Vargas M. R., et al. (2008). The Nrf2-ARE Pathway: an Indicator and Modulator of Oxidative Stress in Neurodegeneration. Ann. N.Y Acad. Sci. 1147, 61–69. 10.1196/annals.1427.036
    1. Ju C., Hou L., Sun F., Zhang L., Zhang Z., Gao H., et al. (2015). Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway. Neurochem. Res. 40, 1509–1519. 10.1007/s11064-015-1628-8
    1. Jung K. A., Kwak M. K. (2010). The Nrf2 System as a Potential Target for the Development of Indirect Antioxidants. Molecules 15, 7266–7291. 10.3390/molecules15107266
    1. Kabel A. M., Omar M. S., Alhadhrami A., Alharthi S. S., Alrobaian M. M. (2018). Linagliptin Potentiates the Effect of L-Dopa on the Behavioural, Biochemical and Immunohistochemical Changes in Experimentally-Induced Parkinsonism: Role of Toll-like Receptor 4, TGF-Β1, NF-κB and Glucagon-like Peptide 1. Physiol. Behav. 188, 108–118. 10.1016/j.physbeh.2018.01.028
    1. Kaidery N. A., Banerjee R., Yang L., Smirnova N. A., Hushpulian D. M., Liby K. T., et al. (2013). Targeting Nrf2-Mediated Gene Transcription by Extremely Potent Synthetic Triterpenoids Attenuate Dopaminergic Neurotoxicity in the MPTP Mouse Model of Parkinson's Disease. Antioxid. Redox signaling 18, 139–157. 10.1089/ars.2011.4491
    1. Kaji H., Matsui-Yuasa I., Matsumoto K., Omura A., Kiyomoto K., Kojima-Yuasa A. (2020). Sesaminol Prevents Parkinson's Disease by Activating the Nrf2-ARE Signaling Pathway. Heliyon 6, e05342. 10.1016/j.heliyon.2020.e05342
    1. Kao C. J., Chen W. F., Guo B. L., Feng C. W., Hung H. C., Yang W. Y., et al. (2017). The 1-Tosylpentan-3-One Protects against 6-Hydroxydopamine-Induced Neurotoxicity. Int. J. Mol. Sci. 18. 10.3390/ijms18051096
    1. Ke Y., Qian Z. M. (2007). Brain Iron Metabolism: Neurobiology and Neurochemistry. Prog. Neurobiol. 83, 149–173. 10.1016/j.pneurobio.2007.07.009
    1. Kehrer J. P. (2000). The Haber-Weiss Reaction and Mechanisms of Toxicity. Toxicology 149, 43–50. 10.1016/s0300-483x(00)00231-6
    1. Kikuchi A., Takeda A., Onodera H., Kimpara T., Hisanaga K., Sato N., et al. (2002). Systemic Increase of Oxidative Nucleic Acid Damage in Parkinson's Disease and Multiple System Atrophy. Neurobiol. Dis. 9, 244–248. 10.1006/nbdi.2002.0466
    1. Kim D. W., Lee K. T., Kwon J., Lee H. J., Lee D., Mar W. (2015). Neuroprotection against 6-OHDA-Induced Oxidative Stress and Apoptosis in SH-Sy5y Cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE Pathway. Life Sci. 130, 25–30. 10.1016/j.lfs.2015.02.026
    1. Kim J., Lim J., Kang B. Y., Jung K., Choi H. J. (2017). Capillarisin Augments Anti-oxidative and Anti-inflammatory Responses by Activating Nrf2/HO-1 Signaling. Neurochem. Int. 105, 11–20. 10.1016/j.neuint.2017.01.018
    1. Kim S., Indu Viswanath A. N., Park J. H., Lee H. E., Park A. Y., Choi J. W., et al. (2020). Nrf2 Activator via Interference of Nrf2-Keap1 Interaction Has Antioxidant and Anti-inflammatory Properties in Parkinson's Disease Animal Model. Neuropharmacology 167, 107989. 10.1016/j.neuropharm.2020.107989
    1. Kim S. S., Lim J., Bang Y., Gal J., Lee S. U., Cho Y. C., et al. (2012). Licochalcone E Activates Nrf2/antioxidant Response Element Signaling Pathway in Both Neuronal and Microglial Cells: Therapeutic Relevance to Neurodegenerative Disease. J. Nutr. Biochem. 23, 1314–1323. 10.1016/j.jnutbio.2011.07.012
    1. Kim Y., Li E., Park S. (2012). Insulin-like Growth Factor-1 Inhibits 6-Hydroxydopamine-Mediated Endoplasmic Reticulum Stress-Induced Apoptosis via Regulation of Heme Oxygenase-1 and Nrf2 Expression in PC12 Cells. Int. J. Neurosci. 122, 641–649. 10.3109/00207454.2012.702821
    1. Kim Y. S., Choi D. H., Block M. L., Lorenzl S., Yang L., Kim Y. J., et al. (2007). A Pivotal Role of Matrix Metalloproteinase-3 Activity in Dopaminergic Neuronal Degeneration via Microglial Activation. FASEB J. 21, 179–187. 10.1096/fj.06-5865com
    1. Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998). Mutations in the Parkin Gene Cause Autosomal Recessive Juvenile Parkinsonism. Nature 392, 605–608. 10.1038/33416
    1. Kobatake E., Nakagawa H., Seki T., Miyazaki T. (2017). Protective Effects and Functional Mechanisms of Lactobacillus Gasseri SBT2055 against Oxidative Stress. PloS one 12, e0177106. 10.1371/journal.pone.0177106
    1. Kraft A. D., Johnson D. A., Johnson J. A. (2004). Nuclear Factor E2-Related Factor 2-dependent Antioxidant Response Element Activation by Tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult. J. Neurosci. 24, 1101–1112. 10.1523/JNEUROSCI.3817-03.2004
    1. Kuo H. C., Chang H. C., Lan W. C., Tsai F. H., Liao J. C., Wu C. R. (2014). Protective Effects of Drynaria Fortunei against 6-Hydroxydopamine-Induced Oxidative Damage in B35 Cells via the PI3K/AKT Pathway. Food Funct. 5, 1956–1965. 10.1039/c4fo00219a
    1. Kurauchi Y., Hisatsune A., Isohama Y., Mishima S., Katsuki H. (2012). Caffeic Acid Phenethyl Ester Protects Nigral Dopaminergic Neurons via Dual Mechanisms Involving Haem Oxygenase-1 and Brain-Derived Neurotrophic Factor. Br. J. Pharmacol. 166, 1151–1168. 10.1111/j.1476-5381.2012.01833.x
    1. Kussmaul L., Hirst J. (2006). The Mechanism of Superoxide Production by NADH:ubiquinone Oxidoreductase (Complex I) from Bovine Heart Mitochondria. Proc. Natl. Acad. Sci. United States America 103, 7607–7612. 10.1073/pnas.0510977103
    1. Kwon S. H., Lee S. R., Park Y. J., Ra M., Lee Y., Pang C., et al. (2019). Suppression of 6-Hydroxydopamine-Induced Oxidative Stress by Hyperoside via Activation of Nrf2/HO-1 Signaling in Dopaminergic Neurons. Int. J. Mol. Sci. 20, 5832. 10.3390/ijms20235832
    1. Langston J. W., Ballard P., Tetrud J. W., Irwin I. (1983). Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science 219, 979–980. 10.1126/science.6823561
    1. Lázaro D. F., Pavlou M., Outeiro T. F. (2017). Cellular Models as Tools for the Study of the Role of Alpha-Synuclein in Parkinson's Disease. Exp. Neurol. 298, 162–171. 10.1016/j.expneurol.2017.05.007
    1. Lee D. W., Rajagopalan S., Siddiq A., Gwiazda R., Yang L., Beal M. F., et al. (2009). Inhibition of Prolyl Hydroxylase Protects against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity: Model for the Potential Involvement of the Hypoxia-Inducible Factor Pathway in Parkinson Disease. J. Biol. Chem. 284, 29065–29076. 10.1074/jbc.M109.000638
    1. Lee G., Joo J. C., Choi B. Y., Lindroth A. M., Park S. J., Park Y. J. (2016). Neuroprotective Effects of Paeonia Lactiflora Extract against Cell Death of Dopaminergic SH-Sy5y Cells Is Mediated by Epigenetic Modulation. BMC Complement. Altern. Med. 16, 208. 10.1186/s12906-016-1205-y
    1. Lee H. J., Han J., Jang Y., Kim S. J., Park J. H., Seo K. S., et al. (2015). Docosahexaenoic Acid Prevents Paraquat-Induced Reactive Oxygen Species Production in Dopaminergic Neurons via Enhancement of Glutathione Homeostasis. Biochem. biophysical Res. Commun. 457, 95–100. 10.1016/j.bbrc.2014.12.085
    1. Lee J. A. J. A., Son H. J., Kim J. H., Park K. D., Shin N., Kim H. R., et al. (2016). A Novel Synthetic Isothiocyanate ITC-57 Displays Antioxidant, Anti-inflammatory, and Neuroprotective Properties in a Mouse Parkinson's Disease Model. Free Radic. Res. 50, 1188–1199. 10.1080/10715762.2016.1223293
    1. Lee J. A., Kim H. R., Son H. J., Shin N., Han S. H., Cheong C. S., et al. (2020). A Novel Pyrazolo [3,4-d] Pyrimidine, KKC080106, Activates the Nrf2 Pathway and Protects Nigral Dopaminergic Neurons. Exp. Neurol. 332, 113387. 10.1016/j.expneurol.2020.113387
    1. Lee J. A., Kim J. H., Woo S. Y., Son H. J., Han S. H., Jang B. K., et al. (2015). A Novel Compound VSC2 Has Anti-inflammatory and Antioxidant Properties in Microglia and in Parkinson's Disease Animal Model. Br. J. Pharmacol. 172, 1087–1100. 10.1111/bph.12973
    1. Lee J. E., Sim H., Yoo H. M., Lee M., Baek A., Jeon Y. J., et al. (2020). Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease. Molecules 25, 3602. 10.3390/molecules25163602
    1. Lee J. M., Calkins M. J., Chan K., Kan Y. W., Johnson J. A. (2003a). Identification of the NF-E2-Related Factor-2-dependent Genes Conferring protection against Oxidative Stress in Primary Cortical Astrocytes Using Oligonucleotide Microarray Analysis. J. Biol. Chem. 278, 12029–12038. 10.1074/jbc.M211558200
    1. Lee J. M., Shih A. Y., Murphy T. H., Johnson J. A. (2003b). NF-E2-related Factor-2 Mediates Neuroprotection against Mitochondrial Complex I Inhibitors and Increased Concentrations of Intracellular Calcium in Primary Cortical Neurons. J. Biol. Chem. 278, 37948–37956. 10.1074/jbc.M305204200
    1. Lee J., Song K., Huh E., Oh M. S., Kim Y. S. (2018). Neuroprotection against 6-OHDA Toxicity in PC12 Cells and Mice through the Nrf2 Pathway by a Sesquiterpenoid from Tussilago Farfara. Redox Biol. 18, 6–15. 10.1016/j.redox.2018.05.015
    1. Lee M. S., Lee J., Kwon D. Y., Kim M. S. (2006). Ondamtanggamibang Protects Neurons from Oxidative Stress with Induction of Heme Oxygenase-1. J. ethnopharmacology 108, 294–298. 10.1016/j.jep.2006.05.012
    1. Lee Y., Heo G., Lee K. M., Kim A. H., Chung K. W., Im E., et al. (2017). Neuroprotective Effects of 2,4-dinitrophenol in an Acute Model of Parkinson's Disease. Brain Res. 1663, 184–193. 10.1016/j.brainres.2017.03.018
    1. Lhermitte J., Kraus W. M., McAlpine D. (1924). Original Papers: On the Occurrence of Abnomal Deposits of Iron in the Brain in Parkinsonism with Special Refeence to its Localisation. The J. Neurol. psychopathology 5, 195–208. 10.1136/jnnp.s1-5.19.195
    1. Li C., Tang B., Feng Y., Tang F., Pui-Man Hoi M., Su Z., et al. (2018). Pinostrobin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson's Disease Models through Nrf2 Induction. J. Agric. Food Chem. 66, 8307–8318. 10.1021/acs.jafc.8b02607
    1. Li H., Wu S., Wang Z., Lin W., Zhang C., Huang B. (2012). Neuroprotective Effects of Tert-Butylhydroquinone on Paraquat-Induced Dopaminergic Cell Degeneration in C57BL/6 Mice and in PC12 Cells. Arch. Toxicol. 86, 1729–1740. 10.1007/s00204-012-0935-y
    1. Li H. Y., Zhong Y. F., Wu S. Y., Shi N. (2007). NF-E2 Related Factor 2 Activation and Heme Oxygenase-1 Induction by Tert-Butylhydroquinone Protect against Deltamethrin-Mediated Oxidative Stress in PC12 Cells. Chem. Res. Toxicol. 20, 1242–1251. 10.1021/tx700076q
    1. Li M., Zhou F., Xu T., Song H., Lu B. (2018). Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-ARE Signaling Pathway. Food Chem. Toxicol. 119, 6–13. 10.1016/j.fct.2018.06.018
    1. Li R., Wang S., Li T., Wu L., Fang Y., Feng Y., et al. (2019). Salidroside Protects Dopaminergic Neurons by Preserving Complex I Activity via DJ-1/Nrf2-Mediated Antioxidant Pathway. Parkinson's Dis. 2019, 6073496. 10.1155/2019/6073496
    1. Li R., Zheng N., Liang T., He Q., Xu L. (2013). Puerarin Attenuates Neuronal Degeneration and Blocks Oxidative Stress to Elicit a Neuroprotective Effect on Substantia Nigra Injury in 6-OHDA-Lesioned Rats. Brain Res. 1517, 28–35. 10.1016/j.brainres.2013.04.013
    1. Li X., Cui X. X., Chen Y. J., Wu T. T., Xu H., Yin H., et al. (2018). Therapeutic Potential of a Prolyl Hydroxylase Inhibitor FG-4592 for Parkinson's Diseases In Vitro and In Vivo: Regulation of Redox Biology and Mitochondrial Function. Front. Aging Neurosci. 10, 121. 10.3389/fnagi.2018.00121
    1. Li X., Zhang J., Rong H., Zhang X., Dong M. (2020a). Ferulic Acid Ameliorates MPP(+)/MPTP-Induced Oxidative Stress via ERK1/2-dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment. Mol. Neurobiol. 57, 2981–2995. 10.1007/s12035-020-01934-1
    1. Li X., Zhang J., Zhang X., Dong M. (2020b). Puerarin Suppresses MPP(+)/MPTP-induced Oxidative Stress through an Nrf2-dependent Mechanism. Food Chem. Toxicol. 144, 111644. 10.1016/j.fct.2020.111644
    1. Lin C. H., Wei P. C., Chen C. M., Huang Y. T., Lin J. L., Lo Y. S., et al. (2020). Lactulose and Melibiose Attenuate MPTP-Induced Parkinson's Disease in Mice by Inhibition of Oxidative Stress, Reduction of Neuroinflammation and Up-Regulation of Autophagy. Front. Aging Neurosci. 12, 226. 10.3389/fnagi.2020.00226
    1. Lin H. Y., Yeh W. L., Huang B. R., Lin C., Lai C. H., Lin H., et al. (2012). Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons. PloS one 7, e50138. 10.1371/journal.pone.0050138
    1. Lin Q., Hou S., Dai Y., Jiang N., Lin Y. (2020). Monascin Exhibits Neuroprotective Effects in Rotenone Model of Parkinson's Disease via Antioxidation and Anti-neuroinflammation. Neuroreport 31, 637–643. 10.1097/WNR.0000000000001467
    1. Lin T. K., Chen S. D., Chuang Y. C., Lin H. Y., Huang C. R., Chuang J. H., et al. (2014). Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-Sy5y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy. Int. J. Mol. Sci. 15, 1625–1646. 10.3390/ijms15011625
    1. Lin Y. C., Uang H. W., Lin R. J., Chen I. J., Lo Y. C. (2007). Neuroprotective Effects of Glyceryl Nonivamide against Microglia-like Cells and 6-Hydroxydopamine-Induced Neurotoxicity in SH-Sy5y Human Dopaminergic Neuroblastoma Cells. J. Pharmacol. Exp. Ther. 323, 877–887. 10.1124/jpet.107.125955
    1. Liu H., Yu C., Xu T., Zhang X., Dong M. (2016). Synergistic Protective Effect of Paeoniflorin and β-ecdysterone against Rotenone-Induced Neurotoxicity in PC12 Cells. Apoptosis 21, 1354–1365. 10.1007/s10495-016-1293-7
    1. Liu L., Yang S., Wang H. (2021). α-Lipoic Acid Alleviates Ferroptosis in the MPP+ -induced PC12 Cells via Activating the PI3K/Akt/Nrf2 Pathway. Cel Biol. Int. 45, 422–431. 10.1002/cbin.11505
    1. Liu Y., Zhang J., Jiang M., Cai Q., Fang J., Jin L. (2018). MANF Improves the MPP+/MPTP-Induced Parkinson's Disease via Improvement of Mitochondrial Function and Inhibition of Oxidative Stress. Am. J. translational Res. 10, 1284–1294.
    1. Liu Z., Cai W., Lang M., Yan R., Li Z., Zhang G., et al. (2017). Neuroprotective Effects and Mechanisms of Action of Multifunctional Agents Targeting Free Radicals, Monoamine Oxidase B and Cholinesterase in Parkinson's Disease Model. J. Mol. Neurosci. 61, 498–510. 10.1007/s12031-017-0891-3
    1. Lou H., Jing X., Wei X., Shi H., Ren D., Zhang X. (2014). Naringenin Protects against 6-OHDA-Induced Neurotoxicity via Activation of the Nrf2/ARE Signaling Pathway. Neuropharmacology 79, 380–388. 10.1016/j.neuropharm.2013.11.026
    1. Lu D. Y., Chen J. H., Tan T. W., Huang C. Y., Yeh W. L., Hsu H. C. (2013). Resistin Protects against 6-Hydroxydopamine-Induced Cell Death in Dopaminergic-like MES23.5 Cells. J. Cell. Physiol. 228, 563–571. 10.1002/jcp.24163
    1. Lu X., Kim-Han J. S., O'Malley K. L., Sakiyama-Elbert S. E. (2012). A Microdevice Platform for Visualizing Mitochondrial Transport in Aligned Dopaminergic Axons. J. Neurosci. Methods 209, 35–39. 10.1016/j.jneumeth.2012.05.021
    1. Luo L., Chen J., Su D., Chen M., Luo B., Pi R., et al. (2017). L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochem. Res. 42, 615–624. 10.1007/s11064-016-2117-4
    1. Lushchak V. I., Storey K. B. (2021). Oxidative Stress Concept Updated: Definitions, Classifications, and Regulatory Pathways Implicated. EXCLI J. 20, 956–967. 10.17179/excli2021-3596
    1. Ma L., Zhang B., Liu J., Qiao C., Liu Y., Li S., et al. (2020). Isoorientin Exerts a Protective Effect against 6-OHDA-Induced Neurotoxicity by Activating the AMPK/AKT/Nrf2 Signalling Pathway. Food Funct. 11, 10774–10785. 10.1039/d0fo02165b
    1. Ma M. W., Wang J., Zhang Q., Wang R., Dhandapani K. M., Vadlamudi R. K., et al. (2017). NADPH Oxidase in Brain Injury and Neurodegenerative Disorders. Mol. neurodegeneration 12, 7. 10.1186/s13024-017-0150-7
    1. Magesh S., Chen Y., Hu L. (2012). Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents. Med. Res. Rev. 32, 687–726. 10.1002/med.21257
    1. Mann V. M., Cooper J. M., Krige D., Daniel S. E., Schapira A. H., Marsden C. D. (1992). Brain, Skeletal Muscle and Platelet Homogenate Mitochondrial Function in Parkinson's Disease. Brain 115 (Pt 2), 333–342. 10.1093/brain/115.2.333
    1. Marrali G., Casale F., Salamone P., Fuda G., Ilardi A., Manera U., et al. (2018). NADPH Oxidases 2 Activation in Patients with Parkinson's Disease. Parkinsonism Relat. Disord. 49, 110–111. 10.1016/j.parkreldis.2018.01.003
    1. Masaki Y., Izumi Y., Matsumura A., Akaike A., Kume T. (2017). Protective Effect of Nrf2-ARE Activator Isolated from green Perilla Leaves on Dopaminergic Neuronal Loss in a Parkinson's Disease Model. Eur. J. Pharmacol. 798, 26–34. 10.1016/j.ejphar.2017.02.005
    1. McCann S. K., Dusting G. J., Roulston C. L. (2008). Early Increase of Nox4 NADPH Oxidase and Superoxide Generation Following Endothelin-1-Induced Stroke in Conscious Rats. J. Neurosci. Res. 86, 2524–2534. 10.1002/jnr.21700
    1. Meng F., Wang J., Ding F., Xie Y., Zhang Y., Zhu J. (2017). Neuroprotective Effect of Matrine on MPTP-Induced Parkinson's Disease and on Nrf2 Expression. Oncol. Lett. 13, 296–300. 10.3892/ol.2016.5383
    1. Meng X. B., Sun G. B., Wang M., Sun J., Qin M., Sun X. B. (2013). P90RSK and Nrf2 Activation via MEK1/2-Erk1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-Sy5y Cells. Evid Based. Complement. Altern. Med. 2013, 971712. 10.1155/2013/971712
    1. Michel H. E., Tadros M. G., Esmat A., Khalifa A. E., Abdel-Tawab A. M. (2017). Tetramethylpyrazine Ameliorates Rotenone-Induced Parkinson's Disease in Rats: Involvement of its Anti-inflammatory and Anti-apoptotic Actions. Mol. Neurobiol. 54, 4866–4878. 10.1007/s12035-016-0028-7
    1. Miesenböck G., De Angelis D. A., Rothman J. E. (1998). Visualizing Secretion and Synaptic Transmission with pH-Sensitive green Fluorescent Proteins. Nature 394, 192–195. 10.1038/28190
    1. Minelli A., Conte C., Cacciatore I., Cornacchia C., Pinnen F. (2012). Molecular Mechanism Underlying the Cerebral Effect of Gly-Pro-Glu Tripeptide Bound to L-Dopa in a Parkinson's Animal Model. Amino acids 43, 1359–1367. 10.1007/s00726-011-1210-x
    1. Minelli A., Conte C., Grottelli S., Bellezza I., Cacciatore I., Bolaños J. P. (2009). Cyclo(His-Pro) Promotes Cytoprotection by Activating Nrf2-Mediated Up-Regulation of Antioxidant Defence. J. Cell. Mol. Med. 13, 1149–1161. 10.1111/j.1582-4934.2008.00326.x
    1. Mizuno K., Kume T., Muto C., Takada-Takatori Y., Izumi Y., Sugimoto H., et al. (2011). Glutathione Biosynthesis via Activation of the Nuclear Factor E2-Related Factor 2 (Nrf2)–Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 115, 320–328. 10.1254/jphs.10257fp
    1. Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989). Deficiencies in Complex I Subunits of the Respiratory Chain in Parkinson's Disease. Biochem. biophysical Res. Commun. 163, 1450–1455. 10.1016/0006-291x(89)91141-8
    1. Mohamed S. A., El-Kashef D. H., Nader M. A. (2021). Tiron Alleviates MPTP-Induced Parkinsonism in Mice via Activation of Keap-1/Nrf2 Pathway. J. Biochem. Mol. Toxicol. 35, e22685. 10.1002/jbt.22685
    1. Moi P., Chan K., Asunis I., Cao A., Kan Y. W. (1994). Isolation of NF-E2-Related Factor 2 (Nrf2), a NF-E2-like Basic Leucine Zipper Transcriptional Activator that Binds to the Tandem NF-E2/ap1 Repeat of the Beta-Globin Locus Control Region. Proc. Natl. Acad. Sci. United States America 91, 9926–9930. 10.1073/pnas.91.21.9926
    1. Moon H., Jang J. H., Jang T. C., Park G. H. (2018). Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells. Biomolecules Ther. 26, 175–181. 10.4062/biomolther.2018.009
    1. More S., Choi D. K. (2017a). Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson's Disease. Nutrients 9, 451. 10.3390/nu9050451
    1. More S. V., Choi D. K. (2017b). Atractylenolide-I Protects Human SH-Sy5y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death. Int. J. Mol. Sci. 18, 1012. 10.3390/ijms18051012
    1. Moreira S., Fonseca I., Nunes M. J., Rosa A., Lemos L., Rodrigues E., et al. (2017). Nrf2 Activation by Tauroursodeoxycholic Acid in Experimental Models of Parkinson's Disease. Exp. Neurol. 295, 77–87. 10.1016/j.expneurol.2017.05.009
    1. Morris C. M., Edwardson J. A. (1994). Iron Histochemistry of the Substantia Nigra in Parkinson's Disease. Neurodegeneration 3, 277–282.
    1. Morroni F., Sita G., Djemil A., D'Amico M., Pruccoli L., Cantelli-Forti G., et al. (2018). Comparison of Adaptive Neuroprotective Mechanisms of Sulforaphane and its Interconversion Product Erucin in In Vitro and In Vivo Models of Parkinson's Disease. J. Agric. Food Chem. 66, 856–865. 10.1021/acs.jafc.7b04641
    1. Muñoz A. M., Rey P., Soto-Otero R., Guerra M. J., Labandeira-Garcia J. L. (2004). Systemic Administration of N-Acetylcysteine Protects Dopaminergic Neurons against 6-Hydroxydopamine-Induced Degeneration. J. Neurosci. Res. 76, 551–562. 10.1002/jnr.20107
    1. Murakami S., Miyazaki I., Asanuma M. (2018). Neuroprotective Effect of Fermented Papaya Preparation by Activation of Nrf2 Pathway in Astrocytes. Nutr. Neurosci. 21, 176–184. 10.1080/1028415X.2016.1253171
    1. Mythri R. B., Venkateshappa C., Harish G., Mahadevan A., Muthane U. B., Yasha T. C., et al. (2011). Evaluation of Markers of Oxidative Stress, Antioxidant Function and Astrocytic Proliferation in the Striatum and Frontal Cortex of Parkinson's Disease Brains. Neurochem. Res. 36, 1452–1463. 10.1007/s11064-011-0471-9
    1. Napolitano A., Manini P., d'Ischia M. (2011). Oxidation Chemistry of Catecholamines and Neuronal Degeneration: an Update. Curr. Med. Chem. 18, 1832–1845. 10.2174/092986711795496863
    1. Nichols W. C., Pankratz N., Hernandez D., Paisán-Ruíz C., Jain S., Halter C. A., et al. (2005). Genetic Screening for a Single Common LRRK2 Mutation in Familial Parkinson's Disease. Lancet 365, 410–412. 10.1016/S0140-6736(05)17828-3
    1. Oh H., Hur J., Park G., Kim H. G., Kim Y. O., Oh M. S. (2013). Sanguisorbae Radix Protects against 6-Hydroxydopamine-Induced Neurotoxicity by Regulating NADPH Oxidase and NF-E2-Related Factor-2/heme Oxygenase-1 Expressions. Phytotherapy Res. 27, 1012–1017. 10.1002/ptr.4802
    1. Oliveira L., Gasser T., Edwards R., Zweckstetter M., Melki R., Stefanis L., et al. (2021). Alpha-synuclein Research: Defining Strategic Moves in the Battle against Parkinson's Disease. NPJ Parkinson's Dis. 7, 65. 10.1038/s41531-021-00203-9
    1. Onyango I. G. (2008). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease. Neurochem. Res. 33, 589–597. 10.1007/s11064-007-9482-y
    1. Outeiro T. F., Heutink P., Bezard E., Cenci A. M. (2021). From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Move. Disord. 36, 832–841. 10.1002/mds.28387
    1. Ozkan A., Parlak H., Tanriover G., Dilmac S., Ulker S. N., Birsen I., et al. (2016). The Protective Mechanism of Docosahexaenoic Acid in Mouse Model of Parkinson: The Role of Hemeoxygenase. Neurochem. Int. 101, 110. 10.1016/j.neuint.2016.10.012
    1. Paisán-Ruíz C., Jain S., Evans E. W., Gilks W. P., Simón J., van der Brug M., et al. (2004). Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease. Neuron 44, 595–600. 10.1016/j.neuron.2004.10.023
    1. Pan P. K., Qiao L. Y., Wen X. N. (2016). Safranal Prevents Rotenone-Induced Oxidative Stress and Apoptosis in an In Vitro Model of Parkinson's Disease through Regulating Keap1/Nrf2 Signaling Pathway. Cell Mol. Biol. 62, 11–17. 10.14715/cmb/2016.62.14.2
    1. Parada E., Buendia I., Navarro E., Avendaño C., Egea J., López M. G. (2015). Microglial HO-1 Induction by Curcumin Provides Antioxidant, Antineuroinflammatory, and Glioprotective Effects. Mol. Nutr. Food Res. 59, 1690–1700. 10.1002/mnfr.201500279
    1. Parada E., Egea J., Romero A., del Barrio L., García A. G., López M. G. (2010). Poststress Treatment with PNU282987 Can rescue SH-Sy5y Cells Undergoing Apoptosis via α7 Nicotinic Receptors Linked to a Jak2/Akt/HO-1 Signaling Pathway. Free Radic. Biol. Med. 49, 1815–1821. 10.1016/j.freeradbiomed.2010.09.017
    1. Park J. S., Leem Y. H., Park J. E., Kim D. Y., Kim H. S. (2019). Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial P-AMPK/Nrf2/HO-1 Signaling Pathways. Biomolecules Ther. 27, 178–184. 10.4062/biomolther.2018.234
    1. Park S. Y., Son B. G., Park Y. H., Kim C. M., Park G., Choi Y. W. (2014). The Neuroprotective Effects of α-iso-cubebene on Dopaminergic Cell Death: Involvement of CREB/Nrf2 Signaling. Neurochem. Res. 39, 1759–1766. 10.1007/s11064-014-1371-6
    1. Parker W. D., Boyson S. J., Parks J. K. (1989). Abnormalities of the Electron Transport Chain in Idiopathic Parkinson's Disease. Ann. Neurol. 26, 719–723. 10.1002/ana.410260606
    1. Pasban-Aliabadi H., Esmaeili-Mahani S., Abbasnejad M. (2017). Orexin-A Protects Human Neuroblastoma SH-Sy5y Cells against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res. 20, 125–133. 10.1089/rej.2016.1836
    1. Pearce R. K., Owen A., Daniel S., Jenner P., Marsden C. D. (1997). Alterations in the Distribution of Glutathione in the Substantia Nigra in Parkinson's Disease. J. Neural Transm. 104, 661–677. 10.1007/BF01291884
    1. Peng S., Hou Y., Yao J., Fang J. (2017). Activation of Nrf2-Driven Antioxidant Enzymes by Cardamonin Confers Neuroprotection of PC12 Cells against Oxidative Damage. Food Funct. 8, 997–1007. 10.1039/c7fo00054e
    1. Peng S., Zhang B., Meng X., Yao J., Fang J. (2015a). Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents. J. Med. Chem. 58, 5242–5255. 10.1021/acs.jmedchem.5b00410
    1. Peng S., Zhang B., Yao J., Duan D., Fang J. (2015b). Dual protection of Hydroxytyrosol, an Olive Oil Polyphenol, against Oxidative Damage in PC12 Cells. Food Funct. 6, 2091–2100. 10.1039/c5fo00097a
    1. Perry T. L., Godin D. V., Hansen S. (1982). Parkinson's Disease: a Disorder Due to Nigral Glutathione Deficiency. Neurosci. Lett. 33, 305–310. 10.1016/0304-3940(82)90390-1
    1. Perry T. L., Yong V. W., Ito M., Foulks J. G., Wall R. A., Godin D. V., et al. (1984). Nigrostriatal Dopaminergic Neurons Remain Undamaged in Rats Given High Doses of L-DOPA and Carbidopa Chronically. J. Neurochem. 43, 990–993. 10.1111/j.1471-4159.1984.tb12834.x
    1. Pisoschi A. M., Pop A., Iordache F., Stanca L., Predoi G., Serban A. I. (2021). Oxidative Stress Mitigation by Antioxidants - an Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 209, 112891. 10.1016/j.ejmech.2020.112891
    1. Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997). Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson's Disease. Science 276, 2045–2047. 10.1126/science.276.5321.2045
    1. Prasuhn J., Davis R. L., Kumar K. R. (2020). Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front. Cel. Dev. Biol. 8, 615461. 10.3389/fcell.2020.615461
    1. Przedborski S. (2017). The Two-century Journey of Parkinson Disease Research. Nat. Rev. Neurosci. 18, 251–259. 10.1038/nrn.2017.25
    1. Purisai M. G., McCormack A. L., Cumine S., Li J., Isla M. Z., Monte Di. (2007). Microglial Activation as a Priming Event Leading to Paraquat-Induced Dopaminergic Cell Degeneration. Neurobiol. Dis. 25, 392–400. 10.1016/j.nbd.2006.10.008
    1. Puspita L., Chung S. Y., Shim J. W. (2017). Oxidative Stress and Cellular Pathologies in Parkinson's Disease. Mol. Brain 10, 53. 10.1186/s13041-017-0340-9
    1. Qin L., Liu Y., Hong J. S., Crews F. T. (2013). NADPH Oxidase and Aging Drive Microglial Activation, Oxidative Stress, and Dopaminergic Neurodegeneration Following Systemic LPS Administration. Glia 61, 855–868. 10.1002/glia.22479
    1. Qin L., Liu Y., Wang T., Wei S. J., Block M. L., Wilson B., et al. (2004). NADPH Oxidase Mediates Lipopolysaccharide-Induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia. J. Biol. Chem. 279, 1415–1421. 10.1074/jbc.M307657200
    1. Qu L., Xu H., Jia W., Jiang H., Xie J. (2019). Rosmarinic Acid Protects against MPTP-Induced Toxicity and Inhibits Iron-Induced α-synuclein Aggregation. Neuropharmacology 144, 291–300. 10.1016/j.neuropharm.2018.09.042
    1. Quesada A., Micevych P., Handforth A. (2009). C-terminal Mechano Growth Factor Protects Dopamine Neurons: a Novel Peptide that Induces Heme Oxygenase-1. Exp. Neurol. 220, 255–266. 10.1016/j.expneurol.2009.08.029
    1. Quesada A., Ogi J., Schultz J., Handforth A. (2011). C-terminal Mechano-Growth Factor Induces Heme Oxygenase-1-Mediated Neuroprotection of SH-Sy5y Cells via the Protein Kinase Cϵ/Nrf2 Pathway. J. Neurosci. Res. 89, 394–405. 10.1002/jnr.22543
    1. Rai S. N., Birla H., Singh S. S., Zahra W., Patil R. R., Jadhav J. P., et al. (2017). Mucuna Pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson's Disease through NF-κB/pAKT Signaling Pathways. Front. Aging Neurosci. 9, 421. 10.3389/fnagi.2017.00421
    1. Rai S. N., Chaturvedi V. K., Singh P., Singh B. K., Singh M. P. (2020). Mucuna Pruriens in Parkinson's and in Some Other Diseases: Recent Advancement and Future Prospective. 3 Biotech. 10, 522. 10.1007/s13205-020-02532-7
    1. Rai S. N., Dilnashin H., Birla H., Singh S. S., Zahra W., Rathore A. S., et al. (2019a). The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotoxicity Res. 35, 775–795. 10.1007/s12640-019-0003-y
    1. Rai S. N., Singh P. (2020). Advancement in the Modelling and Therapeutics of Parkinson's Disease. J. Chem. Neuroanat. 104, 101752. 10.1016/j.jchemneu.2020.101752
    1. Rai S. N., Singh P., Varshney R., Chaturvedi V. K., Vamanu E., Singh M. P., et al. (2021). Promising Drug Targets and Associated Therapeutic Interventions in Parkinson's Disease. Neural Regen. Res. 16, 1730–1739. 10.4103/1673-5374.306066
    1. Rai S. N., Zahra W., Singh S. S., Birla H., Keswani C., Dilnashin H., et al. (2019b). Anti-inflammatory Activity of Ursolic Acid in MPTP-Induced Parkinsonian Mouse Model. Neurotoxicity Res. 36, 452–462. 10.1007/s12640-019-00038-6
    1. Rasheed M., Tripathi M. K., Patel D. K., Singh M. P. (2020). Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism. Protein Pept. Lett. 27, 1038–1045. 10.2174/0929866527666200403110036
    1. Reeve V. E., Tyrrell R. M. (1999). Heme Oxygenase Induction Mediates the Photoimmunoprotective Activity of UVA Radiation in the Mouse. Proc. Natl. Acad. Sci. United States America 96, 9317–9321. 10.1073/pnas.96.16.9317
    1. Ren J., Yuan L., Wang W., Zhang M., Wang Q., Li S., et al. (2019). Tricetin Protects against 6-OHDA-Induced Neurotoxicity in Parkinson's Disease Model by Activating Nrf2/HO-1 Signaling Pathway and Preventing Mitochondria-dependent Apoptosis Pathway. Toxicol. Appl. Pharmacol. 378, 114617. 10.1016/j.taap.2019.114617
    1. Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K., et al. (1989). Transition Metals, Ferritin, Glutathione, and Ascorbic Acid in Parkinsonian Brains. J. Neurochem. 52, 515–520. 10.1111/j.1471-4159.1989.tb09150.x
    1. Rodriguez-Pallares J., Parga J. A., Muñoz A., Rey P., Guerra M. J., Labandeira-Garcia J. L. (2007). Mechanism of 6-hydroxydopamine Neurotoxicity: the Role of NADPH Oxidase and Microglial Activation in 6-Hydroxydopamine-Induced Degeneration of Dopaminergic Neurons. J. Neurochem. 103, 145–156. 10.1111/j.1471-4159.2007.04699.x
    1. Romero A., Egea J., García A. G., López M. G. (2010). Synergistic Neuroprotective Effect of Combined Low Concentrations of Galantamine and Melatonin against Oxidative Stress in SH-Sy5y Neuroblastoma Cells. J. pineal Res. 49, 141–148. 10.1111/j.1600-079X.2010.00778.x
    1. Rossi F., Zatti M. (1964). Biochemical Aspects of Phagocytosis in Polymorphonuclear Leucocytes. NADH and NADPH Oxidation by the Granules of Resting and Phagocytizing Cells. Experientia 20, 21–23. 10.1007/BF02146019
    1. Royer-Pokora B., Kunkel L. M., Monaco A. P., Goff S. C., Newburger P. E., Baehner R. L., et al. (1986). Cloning the Gene for an Inherited Human Disorder–Chronic Granulomatous Disease–On the Basis of its Chromosomal Location. Nature 322, 32–38. 10.1038/322032a0
    1. Ryu J., Zhang R., Hong B. H., Yang E. J., Kang K. A., Choi M., et al. (2013). Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity. PloS one 8, e71178. 10.1371/journal.pone.0071178
    1. Sachdev S., Ansari S. A., Ansari M. I., Fujita M., Hasanuzzaman M. (2021). Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 10, 277. 10.3390/antiox10020277
    1. Salinas M., Diaz R., Abraham N. G., Ruiz de Galarreta C. M., Cuadrado A. (2003). Nerve Growth Factor Protects against 6-Hydroxydopamine-Induced Oxidative Stress by Increasing Expression of Heme Oxygenase-1 in a Phosphatidylinositol 3-kinase-dependent Manner. J. Biol. Chem. 278, 13898–13904. 10.1074/jbc.M209164200
    1. Sano A., Maehara T., Fujimori K. (2021). Protection of 6-OHDA Neurotoxicity by PGF(2α) through FP-ERK-Nrf2 Signaling in SH-Sy5y Cells. Toxicology 450, 152686. 10.1016/j.tox.2021.152686
    1. Sarrafchi A., Bahmani M., Shirzad H., Rafieian-Kopaei M. (2016). Oxidative Stress and Parkinson's Disease: New Hopes in Treatment with Herbal Antioxidants. Curr. Pharm. Des. 22, 238–246. 10.2174/1381612822666151112151653
    1. Savica R., Grossardt B. R., Bower J. H., Ahlskog J. E., Rocca W. A. (2016). Time Trends in the Incidence of Parkinson Disease. JAMA Neurol. 73, 981–989. 10.1001/jamaneurol.2016.0947
    1. Sbarra A. J., Karnovsky M. L. (1959). The Biochemical Basis of Phagocytosis. I. Metabolic Changes during the Ingestion of Particles by Polymorphonuclear Leukocytes. J. Biol. Chem. 234, 1355–1362. 10.1016/s0021-9258(18)70011-2
    1. Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., Marsden C. D. (1990). Mitochondrial Complex I Deficiency in Parkinson's Disease. J. Neurochem. 54, 823–827. 10.1111/j.1471-4159.1990.tb02325.x
    1. Schapira A. H., Cooper J. M., Dexter D., Jenner P., Clark J. B., Marsden C. D. (1989). Mitochondrial Complex I Deficiency in Parkinson's Disease. Lancet 1, 1269. 10.1016/s0140-6736(89)92366-0
    1. Schipper H. M., Song W., Tavitian A., Cressatti M. (2019). The Sinister Face of Heme Oxygenase-1 in Brain Aging and Disease. Prog. Neurobiol. 172, 40–70. 10.1016/j.pneurobio.2018.06.008
    1. Segal A. W., Jones O. T. (1978). Novel Cytochrome B System in Phagocytic Vacuoles of Human Granulocytes. Nature 276, 515–517. 10.1038/276515a0
    1. Segal A. W., Jones O. T., Webster D., Allison A. C. (1978). Absence of a Newly Described Cytochrome B from Neutrophils of Patients with Chronic Granulomatous Disease. Lancet 2, 446–449. 10.1016/s0140-6736(78)91445-9
    1. Segura-Aguilar J., Muñoz P., Paris I. (2016). Aminochrome as New Preclinical Model to Find New Pharmacological Treatment that Stop the Development of Parkinson's Disease. Curr. Med. Chem. 23, 346–359. 10.2174/0929867323666151223094103
    1. Segura-Aguilar J., Paris I., Muñoz P., Ferrari E., Zecca L., Zucca F. A. (2014). Protective and Toxic Roles of Dopamine in Parkinson's Disease. J. Neurochem. 129, 898–915. 10.1111/jnc.12686
    1. Seidi A., Kaji H., Annabi N., Ostrovidov S., Ramalingam M., Khademhosseini A. (2011). A Microfluidic-Based Neurotoxin Concentration Gradient for the Generation of an In Vitro Model of Parkinson's Disease. Biomicrofluidics 5, 22214. 10.1063/1.3580756
    1. Sharma N., Khurana N., Muthuraman A., Utreja P. (2021). Pharmacological Evaluation of Vanillic Acid in Rotenone-Induced Parkinson's Disease Rat Model. Eur. J. Pharmacol. 903, 174112. 10.1016/j.ejphar.2021.174112
    1. Sheng X., Yang S., Wen X., Zhang X., Ye Y., Zhao P., et al. (2021). Neuroprotective Effects of Shende'an Tablet in the Parkinson's Disease Model. Chin. Med. 16, 18. 10.1186/s13020-021-00429-y
    1. Shih A. Y., Johnson D. A., Wong G., Kraft A. D., Jiang L., Erb H., et al. (2003). Coordinate Regulation of Glutathione Biosynthesis and Release by Nrf2-Expressing Glia Potently Protects Neurons from Oxidative Stress. J. Neurosci. 23, 3394–3406. 10.1523/JNEUROSCI.23-08-03394.2003
    1. Shih Y. T., Chen I. J., Wu Y. C., Lo Y. C. (2011). San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-Sy5y Cells. Evid Based. Complement. Altern. Med. 2011, 429384. 10.1093/ecam/nep025
    1. Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., et al. (1994). Alterations in Glutathione Levels in Parkinson's Disease and Other Neurodegenerative Disorders Affecting Basal Ganglia. Ann. Neurol. 36, 348–355. 10.1002/ana.410360305
    1. Siebert A., Desai V., Chandrasekaran K., Fiskum G., Jafri M. S. (2009). Nrf2 Activators Provide Neuroprotection against 6-hydroxydopamine Toxicity in Rat Organotypic Nigrostriatal Cocultures. J. Neurosci. Res. 87, 1659–1669. 10.1002/jnr.21975
    1. Sies H. (2020a). Findings in Redox Biology: From H(2)O(2) to Oxidative Stress. J. Biol. Chem. 295, 13458–13473. 10.1074/jbc.X120.015651
    1. Sies H. (2020b). Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 9, 852. 10.3390/antiox9090852
    1. Smirnova N. A., Kaidery N. A., Hushpulian D. M., Rakhman I. I., Poloznikov A. A., Tishkov V. I., et al. (2016). Bioactive Flavonoids and Catechols as Hif1 and Nrf2 Protein Stabilizers - Implications for Parkinson's Disease. Aging Dis. 7, 745–762. 10.14336/AD.2016.0505
    1. Son H. J., Choi J. H., Lee J. A., Kim D. J., Shin K. J., Hwang O. (2015). Induction of NQO1 and Neuroprotection by a Novel Compound KMS04014 in Parkinson's Disease Models. J. Mol. Neurosci. 56, 263–272. 10.1007/s12031-015-0516-7
    1. Son H. J., Han S. H., Lee J. A., Shin E. J., Hwang O. (2017). Potential Repositioning of Exemestane as a Neuroprotective Agent for Parkinson's Disease. Free Radic. Res. 51, 633–645. 10.1080/10715762.2017.1353688
    1. Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R., Goedert M. (1997). Alpha-synuclein in Lewy Bodies. Nature 388, 839–840. 10.1038/42166
    1. Srivastav S., Fatima M., Mondal A. C. (2018). Bacopa Monnieri Alleviates Paraquat Induced Toxicity in Drosophila by Inhibiting Jnk Mediated Apoptosis through Improved Mitochondrial Function and Redox Stabilization. Neurochem. Int. 121, 98–107. 10.1016/j.neuint.2018.10.001
    1. Staal R. G., Mosharov E. V., Sulzer D. (2004). Dopamine Neurons Release Transmitter via a Flickering Fusion Pore. Nat. Neurosci. 7, 341–346. 10.1038/nn1205
    1. Subramaniam S. R., Chesselet M. F. (2013). Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease. Prog. Neurobiol. 106-107, 17–32. 10.1016/j.pneurobio.2013.04.004
    1. Sun W., Zheng J., Ma J., Wang Z., Shi X., Li M., et al. (2021). Increased Plasma Heme Oxygenase-1 Levels in Patients with Early-Stage Parkinson's Disease. Front. Aging Neurosci. 13, 621508. 10.3389/fnagi.2021.621508
    1. Sun X., Zhang H., Xie L., Qian C., Ye Y., Mao H., et al. (2020). Tristetraprolin Destabilizes NOX2 mRNA and Protects Dopaminergic Neurons from Oxidative Damage in Parkinson's Disease. FASEB J. 34, 15047–15061. 10.1096/fj.201902967R
    1. Swanson C. R., Du E., Johnson D. A., Johnson J. A., Emborg M. E. (2013). Neuroprotective Properties of a Novel Non-thiazoledinedione Partial PPAR- γ Agonist against MPTP. PPAR Res. 2013, 582809. 10.1155/2013/582809
    1. Talalay P. (2000). Chemoprotection against Cancer by Induction of Phase 2 Enzymes. BioFactors 12, 5–11. 10.1002/biof.5520120102
    1. Tarafdar A., Pula G. (2018). The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 19, 3824. 10.3390/ijms19123824
    1. Teahan C., Rowe P., Parker P., Totty N., Segal A. W. (1987). The X-Linked Chronic Granulomatous Disease Gene Codes for the Beta-Chain of Cytochrome B-245. Nature 327, 720–721. 10.1038/327720a0
    1. Tebay L. E., Robertson H., Durant S. T., Vitale S. R., Penning T. M., Dinkova-Kostova A. T., et al. (2015). Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which it Attenuates Degenerative Disease. Free Radic. Biol. Med. 88, 108–146. 10.1016/j.freeradbiomed.2015.06.021
    1. Terada K., Murata A., Toki E., Goto S., Yamakawa H., Setoguchi S., et al. (2020). Atypical Antipsychotic Drug Ziprasidone Protects against Rotenone-Induced Neurotoxicity: An In Vitro Study. Molecules 25, 4206. 10.3390/molecules25184206
    1. Thapa P., Katila N., Choi D. Y., Choi H., Nam J. W. (2021). Suntamide A, a Neuroprotective Cyclic Peptide from Cicadidae Periostracum. Bioorg. Chem. 106, 104493. 10.1016/j.bioorg.2020.104493
    1. Tiwari M. N., Agarwal S., Bhatnagar P., Singhal N. K., Tiwari S. K., Kumar P., et al. (2013). Nicotine-encapsulated Poly(lactic-Co-Glycolic) Acid Nanoparticles Improve Neuroprotective Efficacy against MPTP-Induced Parkinsonism. Free Radic. Biol. Med. 65, 704–718. 10.1016/j.freeradbiomed.2013.07.042
    1. Todorovic M., Wood S. A., Mellick G. D. (2016). Nrf2: a Modulator of Parkinson's Disease. J. Neural Transm. 123, 611–619. 10.1007/s00702-016-1563-0
    1. Tong H., Zhang X., Meng X., Lu L., Mai D., Qu S. (2018). Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front. Mol. Neurosci. 11, 165. 10.3389/fnmol.2018.00165
    1. Trachootham D., Lu W., Ogasawara M. A., Nilsa R. D., Huang P. (2008). Redox Regulation of Cell Survival. Antioxid. Redox signaling 10, 1343–1374. 10.1089/ars.2007.1957
    1. Tran N., Nguyen A. N., Takabe K., Yamagata Z., Miyake K. (2017). Pre-treatment with Amitriptyline Causes Epigenetic Up-Regulation of Neuroprotection-Associated Genes and Has Anti-apoptotic Effects in Mouse Neuronal Cells. Neurotoxicology and teratology 62, 1–12. 10.1016/j.ntt.2017.05.002
    1. Tseng W. T., Hsu Y. W., Pan T. M. (2016). Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-Sy5y Cells. J. Agric. Food Chem. 64, 5995–6002. 10.1021/acs.jafc.6b01551
    1. Tseng Y. T., Hsu Y. Y., Shih Y. T., Lo Y. C. (2012). Paeonol Attenuates Microglia-Mediated Inflammation and Oxidative Stress-Induced Neurotoxicity in Rat Primary Microglia and Cortical Neurons. Shock 37, 312–318. 10.1097/SHK.0b013e31823fe939
    1. Turrens J. F. (2003). Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 552, 335–344. 10.1113/jphysiol.2003.049478
    1. Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., et al. (2004). Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science 304, 1158–1160. 10.1126/science.1096284
    1. Valente E. M., Bentivoglio A. R., Dixon P. H., Ferraris A., Ialongo T., Frontali M., et al. (2001). Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-P36. Am. J. Hum. Genet. 68, 895–900. 10.1086/319522
    1. van Duijn C. M., Dekker M. C., Bonifati V., Galjaard R. J., Houwing-Duistermaat J. J., Snijders P. J., et al. (2001). Park7, a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, on Chromosome 1p36. Am. J. Hum. Genet. 69, 629–634. 10.1086/322996
    1. van Muiswinkel F. L., Kuiperij H. B. (2005). The Nrf2-ARE Signalling Pathway: Promising Drug Target to Combat Oxidative Stress in Neurodegenerative Disorders. Curr. Drug Targets CNS Neurol. Disord. 4, 267–281. 10.2174/1568007054038238
    1. Vermot A., Petit-Härtlein I., Smith S., Fieschi F. (2021). NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 10, 890. 10.3390/antiox10060890
    1. Vilariño-Güell C., Wider C., Ross O. A., Dachsel J. C., Kachergus J. M., Lincoln S. J., et al. (2011). VPS35 Mutations in Parkinson Disease. Am. J. Hum. Genet. 89, 162–167. 10.1016/j.ajhg.2011.06.001
    1. Vile G. F., Basu-Modak S., Waltner C., Tyrrell R. M. (1994). Heme Oxygenase 1 Mediates an Adaptive Response to Oxidative Stress in Human Skin Fibroblasts. Proc. Natl. Acad. Sci. United States America 91, 2607–2610. 10.1073/pnas.91.7.2607
    1. Vinish M., Anand A., Prabhakar S. (2011). Altered Oxidative Stress Levels in Indian Parkinson's Disease Patients with PARK2 Mutations. Acta Biochim. Pol. 58, 165–169. 10.18388/abp.2011_2260
    1. Wang G., Ma W., Du J. (2018). β-Caryophyllene (BCP) Ameliorates MPP+ Induced Cytotoxicity. Biomed. Pharmacother. = Biomédecine pharmacothérapie 103, 1086–1091. 10.1016/j.biopha.2018.03.168
    1. Wang H., Dou S., Zhu J., Shao Z., Wang C., Cheng B. (2020). Ghrelin Mitigates MPP(+)-induced Cytotoxicity: Involvement of ERK1/2-Mediated Nrf2/HO-1 and Endoplasmic Reticulum Stress PERK Signaling Pathway. Peptides 133, 170374. 10.1016/j.peptides.2020.170374
    1. Wang H., Wang Y., Zhao L., Cui Q., Wang Y., Du G. (2016). Pinocembrin Attenuates MPP(+)-induced Neurotoxicity by the Induction of Heme Oxygenase-1 through ERK1/2 Pathway. Neurosci. Lett. 612, 104–109. 10.1016/j.neulet.2015.11.048
    1. Wang L., Cai X., Shi M., Xue L., Kuang S., Xu R., et al. (2020). Identification and Optimization of Piperine Analogues as Neuroprotective Agents for the Treatment of Parkinson's Disease via the Activation of Nrf2/keap1 Pathway. Eur. J. Med. Chem. 199, 112385. 10.1016/j.ejmech.2020.112385
    1. Wang L. L., Wang R., Jin M., Huang Y., Liu A., Qin J., et al. (2014). Carvedilol Attenuates 6-Hydroxydopamine-Induced Cell Death in PC12 Cells: Involvement of Akt and Nrf2/ARE Pathways. Neurochem. Res. 39, 1733–1740. 10.1007/s11064-014-1367-2
    1. Wang T., Li C., Han B., Wang Z., Meng X., Zhang L., et al. (2020). Neuroprotective Effects of Danshensu on Rotenone-Induced Parkinson's Disease Models In Vitro and In Vivo . BMC Complement. Med. therapies 20, 20. 10.1186/s12906-019-2738-7
    1. Wang X. L., Xing G. H., Hong B., Li X. M., Zou Y., Zhang X. J., et al. (2014). Gastrodin Prevents Motor Deficits and Oxidative Stress in the MPTP Mouse Model of Parkinson's Disease: Involvement of ERK1/2-Nrf2 Signaling Pathway. Life Sci. 114, 77–85. 10.1016/j.lfs.2014.08.004
    1. Wang Y., Yu X., Zhang P., Ma Y., Wang L., Xu H., et al. (2018). Neuroprotective Effects of Pramipexole Transdermal Patch in the MPTP-Induced Mouse Model of Parkinson's Disease. J. Pharmacol. Sci. 138, 31–37. 10.1016/j.jphs.2018.08.008
    1. Wang Y., Zhao W., Li G., Chen J., Guan X., Chen X., et al. (2017). Neuroprotective Effect and Mechanism of Thiazolidinedione on Dopaminergic Neurons In Vivo and In Vitro in Parkinson's Disease. PPAR Res. 2017, 4089214. 10.1155/2017/4089214
    1. Wei P. C., Lee-Chen G. J., Chen C. M., Wu Y. R., Chen Y. J., Lin J. L., et al. (2019). Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson's Disease Cell Models. Oxidative Med. Cell. longevity 2019, 5074367. 10.1155/2019/5074367
    1. Wei Y. Z., Zhu G. F., Zheng C. Q., Li J. J., Sheng S., Li D. D., et al. (2020). Ellagic Acid Protects Dopamine Neurons from Rotenone-Induced Neurotoxicity via Activation of Nrf2 Signalling. J. Cell. Mol. Med. 24, 9446–9456. 10.1111/jcmm.15616
    1. Weinreb O., Mandel S., Youdim M., Amit T. (2013). Targeting Dysregulation of Brain Iron Homeostasis in Parkinson's Disease by Iron Chelators. Free Radic. Biol. Med. 62, 52–64. 10.1016/j.freeradbiomed.2013.01.017
    1. Werkman T. R., Glennon J. C., Wadman W. J., McCreary A. C. (2006). Dopamine Receptor Pharmacology: Interactions with Serotonin Receptors and Significance for the Aetiology and Treatment of Schizophrenia. CNS Neurol. Disord. Drug Targets 5, 3–23. 10.2174/187152706784111614
    1. Williamson T. P., Johnson D. A., Johnson J. A. (2012). Activation of the Nrf2-ARE Pathway by siRNA Knockdown of Keap1 Reduces Oxidative Stress and Provides Partial protection from MPTP-Mediated Neurotoxicity. Neurotoxicology 33, 272–279. 10.1016/j.neuro.2012.01.015
    1. Woo S. Y., Kim J. H., Moon M. K., Han S. H., Yeon S. K., Choi J. W., et al. (2014). Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson's Disease Therapy. J. Med. Chem. 57, 1473–1487. 10.1021/jm401788m
    1. Wruck C. J., Claussen M., Fuhrmann G., Römer L., Schulz A., Pufe T., et al. (2007). Luteolin Protects Rat PC12 and C6 Cells against MPP+ Induced Toxicity via an ERK Dependent Keap1-Nrf2-ARE Pathway. J. Neural Transm. Supplementum 72, 57–67. 10.1007/978-3-211-73574-9_9
    1. Wu C. C., Hsu M. C., Hsieh C. W., Lin J. B., Lai P. H., Wung B. S. (2006). Upregulation of Heme Oxygenase-1 by Epigallocatechin-3-Gallate via the Phosphatidylinositol 3-kinase/Akt and ERK Pathways. Life Sci. 78, 2889–2897. 10.1016/j.lfs.2005.11.013
    1. Wu C. R., Chang H. C., Cheng Y. D., Lan W. C., Yang S. E., Ching H. (2018). Aqueous Extract of Davallia Mariesii Attenuates 6-Hydroxydopamine-Induced Oxidative Damage and Apoptosis in B35 Cells through Inhibition of Caspase Cascade and Activation of PI3K/AKT/GSK-3β Pathway. Nutrients 10, 1449. 10.3390/nu10101449
    1. Wu D. C., Teismann P., Tieu K., Vila M., Jackson-Lewis V., Ischiropoulos H., et al. (2003). NADPH Oxidase Mediates Oxidative Stress in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Proc. Natl. Acad. Sci. United States America 100, 6145–6150. 10.1073/pnas.0937239100
    1. Wu J., Zhao Y. M., Deng Z. K. (2018). Neuroprotective Action and Mechanistic Evaluation of Protodioscin against Rat Model of Parkinson's Disease. Pharmacol. Rep. 70, 139–145. 10.1016/j.pharep.2017.08.013
    1. Wu L., Xu H., Cao L., Li T., Li R., Feng Y., et al. (2017). Salidroside Protects against MPP+-Induced Neuronal Injury through DJ-1-Nrf2 Antioxidant Pathway. Evid Based. Complement. Altern. Med. 2017, 5398542. 10.1155/2017/5398542
    1. Wu W., Han H., Liu J., Tang M., Wu X., Cao X., et al. (2021). Fucoxanthin Prevents 6-OHDA-Induced Neurotoxicity by Targeting Keap1. Oxidative Med. Cell. longevity 2021, 6688708. 10.1155/2021/6688708
    1. Wu X. F., Block M. L., Zhang W., Qin L., Wilson B., Zhang W. Q., et al. (2005). The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity. Antioxid. Redox signaling 7, 654–661. 10.1089/ars.2005.7.654
    1. Xiao H., Lv F., Xu W., Zhang L., Jing P., Cao X. (2011). Deprenyl Prevents MPP(+)-induced Oxidative Damage in PC12 Cells by the Upregulation of Nrf2-Mediated NQO1 Expression through the Activation of PI3K/Akt and Erk. Toxicology 290, 286–294. 10.1016/j.tox.2011.10.007
    1. Xu H., Wang Y., Song N., Wang J., Jiang H., Xie J. (2017). New Progress on the Role of Glia in Iron Metabolism and Iron-Induced Degeneration of Dopamine Neurons in Parkinson's Disease. Front. Mol. Neurosci. 10, 455. 10.3389/fnmol.2017.00455
    1. Xu L. L., Wu Y. F., Yan F., Li C. C., Dai Z., You Q. D., et al. (2019). 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a Novel Nrf2 Activator Targeting Brain Tissue, Protects against MPTP-Induced Subacute Parkinson's Disease in Mice by Inhibiting the NLRP3 Inflammasome and Protects PC12 Cells against Oxidative Stress. Free Radic. Biol. Med. 134, 288–303. 10.1016/j.freeradbiomed.2019.01.003
    1. Xu Y., Tang D., Wang J., Wei H., Gao J. (2019). Neuroprotection of Andrographolide against Microglia-Mediated Inflammatory Injury and Oxidative Damage in PC12 Neurons. Neurochem. Res. 44, 2619–2630. 10.1007/s11064-019-02883-5
    1. Yamamoto M., Kensler T. W., Motohashi H. (2018). The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 98, 1169–1203. 10.1152/physrev.00023.2017
    1. Yamamoto N., Izumi Y., Matsuo T., Wakita S., Kume T., Takada-Takatori Y., et al. (2010). Elevation of Heme Oxygenase-1 by Proteasome Inhibition Affords Dopaminergic Neuroprotection. J. Neurosci. Res. 88, 1934–1942. 10.1002/jnr.22363
    1. Yamamoto N., Sawada H., Izumi Y., Kume T., Katsuki H., Shimohama S., et al. (2007). Proteasome Inhibition Induces Glutathione Synthesis and Protects Cells from Oxidative Stress: Relevance to Parkinson Disease. J. Biol. Chem. 282, 4364–4372. 10.1074/jbc.M603712200
    1. Yan J., Pang Y., Zhuang J., Lin H., Zhang Q., Han L., et al. (2019). Selenepezil, a Selenium-Containing Compound, Exerts Neuroprotective Effect via Modulation of the Keap1-Nrf2-ARE Pathway and Attenuates Aβ-Induced Cognitive Impairment In Vivo . ACS Chem. Neurosci. 10, 2903–2914. 10.1021/acschemneuro.9b00106
    1. Yan J., Qiao L., Wu J., Fan H., Sun J., Zhang Y. (2018). Simvastatin Protects Dopaminergic Neurons against MPP+-Induced Oxidative Stress and Regulates the Endogenous Anti-oxidant System through ERK. Cell Physiol. Biochem. 51, 1957–1968. 10.1159/000495720
    1. Yang C., Mo Y., Xu E., Wen H., Wei R., Li S., et al. (2019). Astragaloside IV Ameliorates Motor Deficits and Dopaminergic Neuron Degeneration via Inhibiting Neuroinflammation and Oxidative Stress in a Parkinson's Disease Mouse Model. Int. immunopharmacology 75, 105651. 10.1016/j.intimp.2019.05.036
    1. Yang C., Zhao J., Cheng Y., Le X. C., Rong J. (2015). N-propargyl Caffeate Amide (PACA) Potentiates Nerve Growth Factor (NGF)-Induced Neurite Outgrowth and Attenuates 6-Hydroxydopamine (6-Ohda)-Induced Toxicity by Activating the Nrf2/HO-1 Pathway. ACS Chem. Neurosci. 6, 1560–1569. 10.1021/acschemneuro.5b00115
    1. Yang L., Calingasan N. Y., Thomas B., Chaturvedi R. K., Kiaei M., Wille E. J., et al. (2009). Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription. PloS one 4, e5757. 10.1371/journal.pone.0005757
    1. Yang Y., Kong F., Ding Q., Cai Y., Hao Y., Tang B. (2020). Bruceine D Elevates Nrf2 Activation to Restrain Parkinson's Disease in Mice through Suppressing Oxidative Stress and Inflammatory Response. Biochem. biophysical Res. Commun. 526, 1013–1020. 10.1016/j.bbrc.2020.03.097
    1. Ye Q., Huang B., Zhang X., Zhu Y., Chen X. (2012). Astaxanthin Protects against MPP(+)-induced Oxidative Stress in PC12 Cells via the HO-1/NOX2 axis. BMC Neurosci. 13, 156. 10.1186/1471-2202-13-156
    1. Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E. R., Mizuno Y. (1996). Immunohistochemical Detection of 4-hydroxynonenal Protein Adducts in Parkinson Disease. Proc. Natl. Acad. Sci. United States America 93, 2696–2701. 10.1073/pnas.93.7.2696
    1. Zahra W., Rai S. N., Birla H., Singh S. S., Rathore A. S., Dilnashin H., et al. (2020). Neuroprotection of Rotenone-Induced Parkinsonism by Ursolic Acid in PD Mouse Model. CNS Neurol. Disord. Drug Targets 19, 527–540. 10.2174/1871527319666200812224457
    1. Zakharova E. T., Sokolov A. V., Pavlichenko N. N., Kostevich V. A., Abdurasulova I. N., Chechushkov A. V., et al. (2018). Erythropoietin and Nrf2: Key Factors in the Neuroprotection provided by Apo-Lactoferrin. Biometals 31, 425. 10.1007/s10534-018-0111-9
    1. Zawada W. M., Banninger G. P., Thornton J., Marriott B., Cantu D., Rachubinski A. L., et al. (2011). Generation of Reactive Oxygen Species in 1-Methyl-4-Phenylpyridinium (MPP+) Treated Dopaminergic Neurons Occurs as an NADPH Oxidase-dependent Two-Wave cascade. J. neuroinflammation 8, 129. 10.1186/1742-2094-8-129
    1. Zenkov N. K., Kozhin P. M., Chechushkov A. V., Martinovich G. G., Kandalintseva N. V., Menshchikova E. B. (2017). Mazes of Nrf2 Regulation. Biochemistry 82, 556–564. 10.1134/S0006297917050030
    1. Zgorzynska E., Dziedzic B., Walczewska A. (2021). An Overview of the Nrf2/ARE Pathway and its Role in Neurodegenerative Diseases. Int. J. Mol. Sci. 22, 9592. 10.3390/ijms22179592
    1. Zhang B., Wang G., He J., Yang Q., Li D., Li J., et al. (2019). Icariin Attenuates Neuroinflammation and Exerts Dopamine Neuroprotection via an Nrf2-dependent Manner. J. neuroinflammation 16, 92. 10.1186/s12974-019-1472-x
    1. Zhang C., Li C., Chen S., Li Z., Jia X., Wang K., et al. (2017). Berberine Protects against 6-OHDA-Induced Neurotoxicity in PC12 Cells and Zebrafish through Hormetic Mechanisms Involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 Pathways. Redox Biol. 11, 1–11. 10.1016/j.redox.2016.10.019
    1. Zhang D., Hu X., Wei S. J., Liu J., Gao H., Qian L., et al. (2008). Squamosamide Derivative FLZ Protects Dopaminergic Neurons against Inflammation-Mediated Neurodegeneration through the Inhibition of NADPH Oxidase Activity. J. neuroinflammation 5, 21. 10.1186/1742-2094-5-21
    1. Zhang J., Perry G., Smith M. A., Robertson D., Olson S. J., Graham D. G., et al. (1999). Parkinson's Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons. Am. J. Pathol. 154, 1423–1429. 10.1016/S0002-9440(10)65396-5
    1. Zhang L., Hao J., Zheng Y., Su R., Liao Y., Gong X., et al. (2018). Fucoidan Protects Dopaminergic Neurons by Enhancing the Mitochondrial Function in a Rotenone-Induced Rat Model of Parkinson's Disease. Aging Dis. 9, 590–604. 10.14336/AD.2017.0831
    1. Zhang M., An C., Gao Y., Leak R. K., Chen J., Zhang F. (2013). Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection. Prog. Neurobiol. 100, 30–47. 10.1016/j.pneurobio.2012.09.003
    1. Zhang N., Shu H. Y., Huang T., Zhang Q. L., Li D., Zhang G. Q., et al. (2014). Nrf2 Signaling Contributes to the Neuroprotective Effects of Urate against 6-OHDA Toxicity. PloS one 9, e100286. 10.1371/journal.pone.0100286
    1. Zhang S., Wang R., Wang G. (2019). Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem. Neurosci. 10, 945–953. 10.1021/acschemneuro.8b00454
    1. Zhang W., Wang T., Pei Z., Miller D. S., Wu X., Block M. L., et al. (2005). Aggregated Alpha-Synuclein Activates Microglia: a Process Leading to Disease Progression in Parkinson's Disease. FASEB J. 19, 533–542. 10.1096/fj.04-2751com
    1. Zhang X. L., Yuan Y. H., Shao Q. H., Wang Z. Z., Zhu C. G., Shi J. G., et al. (2017). DJ-1 Regulating PI3K-Nrf2 Signaling Plays a Significant Role in Bibenzyl Compound 20C-Mediated Neuroprotection against Rotenone-Induced Oxidative Insult. Toxicol. Lett. 271, 74–83. 10.1016/j.toxlet.2017.02.022
    1. Zhang X. S., Ha S., Wang X. L., Shi Y. L., Duan S. S., Li Z. A. (2015). Tanshinone IIA Protects Dopaminergic Neurons against 6-Hydroxydopamine-Induced Neurotoxicity through miR-153/nf-E2-Related Factor 2/antioxidant Response Element Signaling Pathway. Neuroscience 303, 489–502. 10.1016/j.neuroscience.2015.06.030
    1. Zhang Z., Cui W., Li G., Yuan S., Xu D., Hoi M. P., et al. (2012). Baicalein Protects against 6-OHDA-Induced Neurotoxicity through Activation of Keap1/Nrf2/HO-1 and Involving PKCα and PI3K/AKT Signaling Pathways. J. Agric. Food Chem. 60, 8171–8182. 10.1021/jf301511m
    1. Zhang Z., Li G., Szeto S., Chong C. M., Quan Q., Huang C., et al. (2015). Examining the Neuroprotective Effects of Protocatechuic Acid and Chrysin on In Vitro and In Vivo Models of Parkinson Disease. Free Radic. Biol. Med. 84, 331–343. 10.1016/j.freeradbiomed.2015.02.030
    1. Zhang Z., Peng L., Fu Y., Wang W., Wang P., Zhou F. (2021). Ginnalin A Binds to the Subpockets of Keap1 Kelch Domain to Activate the Nrf2-Regulated Antioxidant Defense System in SH-Sy5y Cells. ACS Chem. Neurosci. 12, 872–882. 10.1021/acschemneuro.0c00713
    1. Zhao J., Cheng Y. Y., Fan W., Yang C. B., Ye S. F., Cui W., et al. (2015). Botanical Drug Puerarin Coordinates with Nerve Growth Factor in the Regulation of Neuronal Survival and Neuritogenesis via Activating ERK1/2 and PI3K/Akt Signaling Pathways in the Neurite Extension Process. CNS Neurosci. Ther. 21, 61–70. 10.1111/cns.12334
    1. Zhao M., Wang B., Zhang C., Su Z., Guo B., Zhao Y., et al. (2021). The DJ1-Nrf2-STING axis Mediates the Neuroprotective Effects of Withaferin A in Parkinson's Disease. Cel Death Differ. 28, 2517. 10.1038/s41418-021-00767-2
    1. Zhao Y. F., Zhang Q., Xi J. Y., Li Y. H., Ma C. G., Xiao B. G. (2015). Multitarget Intervention of Fasudil in the Neuroprotection of Dopaminergic Neurons in MPTP-Mouse Model of Parkinson's Disease. J. Neurol. Sci. 353, 28–37. 10.1016/j.jns.2015.03.022
    1. Zhao Y., Han Y., Wang Z., Chen T., Qian H., He J., et al. (2020). Rosmarinic Acid Protects against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Dopaminergic Neurotoxicity in Zebrafish Embryos. Toxicol. vitro 65, 104823. 10.1016/j.tiv.2020.104823
    1. Zheng J., Zhu J. L., Zhang Y., Zhang H., Yang Y., Tang D. R., et al. (2020). PGK1 Inhibitor CBR-470-1 Protects Neuronal Cells from MPP+. Aging 12, 13388–13399. 10.18632/aging.103443
    1. Zhou J., Qu X. D., Li Z. Y., Ji W., Liu Q., Ma Y. H., et al. (2014). Salvianolic Acid B Attenuates Toxin-Induced Neuronal Damage via Nrf2-dependent Glial Cells-Mediated Protective Activity in Parkinson's Disease Models. PloS one 9, e101668. 10.1371/journal.pone.0101668
    1. Zhou Q., Chen B., Wang X., Wu L., Yang Y., Cheng X., et al. (2016). Sulforaphane Protects against Rotenone-Induced Neurotoxicity In Vivo: Involvement of the mTOR, Nrf2, and Autophagy Pathways. Scientific Rep. 6, 32206. 10.1038/srep32206
    1. Zhou Y., Jiang Z., Lu H., Xu Z., Tong R., Shi J., et al. (2019). Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. biodiversity 16, e1900400. 10.1002/cbdv.201900400
    1. Zhu J. L., Wu Y. Y., Wu D., Luo W. F., Zhang Z. Q., Liu C. F. (2019). SC79, a Novel Akt Activator, Protects Dopaminergic Neuronal Cells from MPP(+) and Rotenone. Mol. Cell. Biochem. 461, 81–89. 10.1007/s11010-019-03592-x
    1. Zhu L., Li D., Chen C., Wang G., Shi J., Zhang F. (2019). Activation of Nrf2 Signaling by Icariin Protects against 6-OHDA-Induced Neurotoxicity. Biotechnol. Appl. Biochem. 66, 465–471. 10.1002/bab.1743
    1. Zou Y. M., Liu J., Tian Z. Y., Lu D., Zhou Y. Y. (2015). Systematic Review of the Prevalence and Incidence of Parkinson's Disease in the People's Republic of China. Neuropsychiatr. Dis. Treat. 11, 1467–1472. 10.2147/NDT.S85380
    1. Zou Y., Wang R., Guo H., Dong M. (2015). Phytoestrogen β-Ecdysterone Protects PC12 Cells against MPP+-Induced Neurotoxicity In Vitro: Involvement of PI3K-Nrf2-Regulated Pathway. Toxicol. Sci. 147, 28–38. 10.1093/toxsci/kfv111
    1. Zou Z. C., Fu J. J., Dang Y. Y., Zhang Q., Wang X. F., Chen H. B., et al. (2021). Pinocembrin-7-Methylether Protects SH-Sy5y Cells against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction through AKT and ERK Pathways. Neurotoxicity Res. 39, 1323–1337. 10.1007/s12640-021-00376-4
    1. Zucca F. A., Segura-Aguilar J., Ferrari E., Muñoz P., Paris I., Sulzer D., et al. (2017). Interactions of Iron, Dopamine and Neuromelanin Pathways in Brain Aging and Parkinson's Disease. Prog. Neurobiol. 155, 96–119. 10.1016/j.pneurobio.2015.09.012

Source: PubMed

3
Suscribir