Spasticity mechanisms - for the clinician

Angshuman Mukherjee, Ambar Chakravarty, Angshuman Mukherjee, Ambar Chakravarty

Abstract

Spasticity, a classical clinical manifestation of an upper motor neuron lesion, has been traditionally and physiologically defined as a velocity dependent increase in muscle tone caused by the increased excitability of the muscle stretch reflex. Clinically spasticity manifests as an increased resistance offered by muscles to passive stretching (lengthening) and is often associated with other commonly observed phenomenon like clasp-knife phenomenon, increased tendon reflexes, clonus, and flexor and extensor spasms. The key to the increased excitability of the muscle stretch reflex (muscle tone) is the abnormal activity of muscle spindles which have an intricate relation with the innervations of the extrafusal muscle fibers at the spinal level (feed-back and feed-forward circuits) which are under influence of the supraspinal pathways (inhibitory and facilitatory). The reflex hyperexcitability develops over variable period of time following the primary lesion (brain or spinal cord) and involves adaptation in spinal neuronal circuitries caudal to the lesion. It is highly likely that in humans, reduction of spinal inhibitory mechanisms (in particular that of disynaptic reciprocal inhibition) is involved. While simply speaking the increased muscle stretch reflex may be assumed to be due to an altered balance between the innervations of intra and extrafusal fibers in a muscle caused by loss of inhibitory supraspinal control, the delayed onset after lesion and the frequent reduction in reflex excitability over time, suggest plastic changes in the central nervous system following brain or spinal lesion. It seems highly likely that multiple mechanisms are operative in causation of human spasticity, many of which still remain to be fully elucidated. This will be apparent from the variable mechanisms of actions of anti-spasticity agents used in clinical practice.

Keywords: muscle spindle; muscle tone; spasticity; spinal reflexes; supraspinal pathways.

Figures

Figure 1
Figure 1
Diagrammatic representation of muscle spindle.
Figure 2
Figure 2
Spinal pathways which may be responsible for development of spasticity.
Figure 3
Figure 3
Supraspinal descending pathways in spinal cord (RF, reticular formation).

References

    1. Ashby P., Verrier M. (1975). Neurophysiological changes following spinal cord lesions in man. Can. J. Neurol. Sci. 2, 91–100
    1. Ashby P., Verrier M. (1976). Neurophysiologic changes in hemiplegia. Possible explanation for the initial disparity between muscle tone and tendon reflexes. Neurology 26, 1145–1151
    1. Ashby P., Verrier M., Lightfoot E. (1974). Segmental reflex pathways in spinal shock and spinal spasticity in man. J. Neurol. Neurosurg. Psychiatr. 37, 1352–136010.1136/jnnp.37.12.1352
    1. Bareyre F. M., Kerschensteiner M., Rainetear O., Mettenleiter T. C., Weinmann O., Schwab M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–27710.1038/nn1195
    1. Benecke R. (1985). “Basic neurophysiological mechanisms in spasticity,” in Treating Spasticity. Pharmacological Advances, ed. Marsden C. D. (London: Hans Huber Publishers; ), 11–17
    1. Brooks V. B. (1986). The Neural Basis of Motor Control. New York: Oxford University Press;
    1. Bucy P. C., Kephnger J. E., Siqucira E. B. (1964). Destruction of the pyramidal tract in man. J. Neurosurg. 21, 385–39810.3171/jns.1964.21.5.0385
    1. Burke D., Ashby P. (1972). Are spinal ‘presynaptic’ inhibitory mechanisms suppressed in spascity? J. Neurol. Sci. 15, 321–32610.1016/0022-510X(72)90073-1
    1. Burke D., Knowles L., Andrews C. J., Ashby P. (1972). Spasticity decrebrate rigidity in the clasp knife phenomenon: an experimental study in the cat. Brain 95, 31–4810.1093/brain/95.1.31
    1. Carpenter R. H. S. (1984). Neurophysiology. London: Arnold Heinmann, p. 234
    1. Crone C., Johnsen L. L., Bieringsorensen F., Nielsen J. B. (2006). Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain 126, 495–50710.1093/brain/awg036
    1. Crone C., Nielsen J. (1994). Central control of disynaptic reciprocal inhibition in humans. Acta Physiol. Scand. 152, 351–36310.1111/j.1748-1716.1994.tb09817.x
    1. Crone C., Petersen N. T., Gimenz-Roldan S., Lungholt B., Nyborg K., Neilsen J. B. (2007). Reduced reciprocal inhibition is seen only in spastic limbs in patients with neurolathyrism. Exp. Brain Res. 181, 193–19710.1007/s00221-007-0993-1
    1. Crone C., Petersen N. T., Nielsen J. E., Hansen N. L., Nielsen J. B. (2004). Reciprocal inhibition and corticospinal transmission in the arm and leg in patients with autosomal dominant pure spastic paraparesis (ADPSP). Brain 127, 2693–270210.1093/brain/awh319
    1. Davis R. (2000). Cerebellar stimulation for cerebral palsy, spasticity, function and seizures. Arch. Med. Res. 31, 290–29910.1016/S0188-4409(00)00065-5
    1. Delwaide P. J., Gerard P. (1993). “Reduction of non-reciprocal (lb) inhibition: a key factor for interpreting spastic muscle stiffness,” International Congress on Stroke Rehabilitation, Berlin
    1. Delwaide P. J., Oliver E. (1988). Short-latency autogenic inhibition (lB) inhibition) in human spasticity. J. Neurol. Neurosurg. Psychiatr. 51, 1546–155010.1136/jnnp.51.12.1546
    1. Delwarde P. J., Pennisi G. (1994). Tizanidine and electrophysiologic analysis of spinal control mechanisms in human with spasticity. Neurology 44 (11 Suppl. 9), S21–S28
    1. Dietz V., Quimern J., Berger W. (1981). Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain 104, 431–44910.1093/brain/104.3.431
    1. Dimitrijevic M. R. (1984). “Neural control of chronic upper motor neuron syndromes,” in Electromyography in CNS Disorders, ed Shahani B. T. (Boston, London: Butterworths; ), 111–127
    1. Ebner T. J., Bloedel J. R., Schwartz A. B. (1982). The effects of cerebellar stimulation on the stretch reflex in the spastic monkey. Brain 105, 425–44210.1093/brain/105.3.425
    1. Feganel J., Dumtrijevic M. R. (1982). Study of propriospinal interneuron system in man. Cutaneous extenceptive conditioning of stretch reflexes. J. Neurol. Sci. 56, 155–17210.1016/0022-510X(82)90139-3
    1. Fisher C. M., Curry H. B. (1965). Pure motor hemiplegia of vascular origin. Arch. Neurol. 13, 30–44
    1. Fries W., Danek A., Schidumann K., Hamburger C. (1993). Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 116, 369–38210.1093/brain/116.2.369
    1. Gilman S., Marco L. A., Ebel H. C. (1973). Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent response. Brain 94, 515–53010.1093/brain/94.3.515
    1. Hagbarth K. E. (1981). “Fusimotor and stretch reflex functions studied in recordings from muscle spindle afferents in man,” in Muscle Receptors and Movement, Vol. 13 eds Taylor A., Prochazka A. (New York: Oxford University Press; ), 109–115
    1. Heckmann C. H., Gorassini M. A., Bennett D. J. (2005). Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31, 135–15610.1002/mus.20261
    1. Heckman C. J., Lee R. H., Brownstone R. M. (2003). Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci. 26, 688–69510.1016/j.tins.2003.10.002
    1. Hultborn H., Brownstone R. B., Toth T. I., Gossard J. P. (2004). Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 143, 77–95
    1. Hultborn H., Illert M., Santini M. (1976). Convergence on interneurones mediating the reciprocal la inhibition of motoneurons. III. Effects from supraspinal pathways. Acta Physiol. Scand. 96, 368–39110.1111/j.1748-1716.1976.tb10206.x
    1. Jankowska E., Roberts W. J. (1972). Synaptic actions of single interneurons mediating reciprocal la inhibition of motoneurons. J. Physiol. (Lond) 222, 623–642
    1. Katz R., Pierrot-Deseilligny E. (1982). Recurrent inhibition of alphamotoneurons in patients with upper motor neuron lesions. Brain 105, 103–12410.1093/brain/105.1.103
    1. Lance J. W. (1980). “Symposium,” in Spasticity: Disordered Motor Control, eds Feldman R. G., Young R. R., Koella W. P. (Chicago: Year Book Medical Pubs; ), 485–495
    1. Liddell E. G. T., Sherrington C. S. (1924). Reflexes in response to stretch (myotatic reflexes). Proc. R. Soc. 96B, 212–242
    1. Lundberg A. (1975). “Control of spinal mechanism from the brain,” in The Nervous System, Vol. 1, eds Tower D., Brady R. (New York: Raven Press; ), 253–265
    1. Lundberg A. (1979). Multisensory control of spinal reflex pathways. Prog. Brain Res. 50, 11–2810.1016/S0079-6123(08)60803-1
    1. Mazzochio R., Rossi A. (1989). Recurrent inhibition in human spinal spasticity. Int. J. Neurol. Sci. 10, 337–34710.1007/BF02333781
    1. Misra U. K., Pandey C. M. (1994). H reflex studies in neurolathyrism. Electroencephalogr. Clin. Neurophysiol. 93, 281–28510.1016/0168-5597(94)90030-2
    1. Ney J. P., Joseph K. R. (2007). Neurologic uses of Botulinum toxin type A. Neuropsychiatr. Dis. Treat. 6, 785–790
    1. Nielsen J., Petersen N., Crone C. (1995). Changes in transmission across synapses of la afferents in spastic patients. Brain 118, 995–100410.1093/brain/118.4.995
    1. Nielsen J. B., Crone C., Hultborn H. (2007). The spinal pathophysiology of spasticity – from a basic science point of view. Acta Physiol. 189, 171–18010.1111/j.1748-1716.2006.01652.x
    1. Oppenheimer D. R. (1978). The cervical cord in multiple sclerosis. Neuropathol. Appl. Neurobiol. 4, 151–16210.1111/j.1365-2990.1978.tb00555.x
    1. Paist M., Mazevet D., Dietz V., Pierrot-Descilligny E. (1994). A quantitative assessment of presynaptic inhibition of la afferents in spastics. Differences in hemiplegics and paraplegics. Brain 117, 1449–145510.1093/brain/117.6.1449
    1. Peterson B. W., Maunz R. A., Pitts N. G., Mackel R. G. (1975). Patterns of projection and branching of reticulospinal neurons. Exp. Brain Res. 23, 333–35110.1007/BF00238019
    1. Pierrot-Deseilligny E., Bussel B. (1975). Evidence for recurrent inhibition by motoneuron in human subjects. Brain 88, 105–10810.1016/0006-8993(75)90955-5
    1. Pierrot-Deseilligny E., Katz R., Morin C. (1979). Evidence of lb inhibition in human subjects. Brain Res. 166, 176–17910.1016/0006-8993(79)90660-7
    1. Pompetano O. (1984). “Recurrent inhibition,” in Handbook of the Spinal Cord, Vols. 2 and 3, ed. Davidoff F. A. (New York: Marcel Dekker; ), 461–557
    1. Powers R. K., Binder M. D. (2001). Input-output functions of mammalian motoneurons. Rev. Physiol. Biochem. Pharmacol. 143, 137–26310.1007/BFb0115594
    1. Raineteau O., Schwab M. E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–27310.1038/35067570
    1. Raisman G. (1969). Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14, 25–4810.1016/0006-8993(69)90029-8
    1. Raynor E. M., Shefner J. M. (1994). Recurrent inhibition is decreased in patients with amyotrophic lateral sclerosis. Neurology 44, 2148–2150
    1. Rekling J. C., Funk G. D., Bayliss D. A., Dong X. W., Feldman J. L. (2000). Sunaptic control of motoneuronal excitability Phys. Rev. 80, 767–852
    1. Rushworth G. (1960). Spasticity and rigidity: an experimental study and review. J. Neurol. Neurosurg. Psychiatr. 23, 99–11810.1136/jnnp.23.2.99
    1. Schmidt R. F. (1971). Presynaptic inhibition in the vertebrate central nervous system. Ergeb. Physiol. 63, 91–101
    1. Schreiner L. M., Mandsley D. B., Magoum H. W. (1949). Role of brain stem facilitatory systems in maintenance of spasticity. Neurophysiology 12, 207–216
    1. Shahani B. T., Young R. R. (1973). “Human flexor spasm,” in New Developments in Electromyography and Clinical Neurophysiology, Vol. 3, ed J. E. Desmedt (Basal: S Karger AG), 734–743
    1. Sheean G. (2001). The pathophysiology of spasticity. Eur. J. Neurol. 9 (Suppl. 1), 3–910.1046/j.1468-1331.2002.0090s1003.x
    1. Shefner J. M., Berman S. A., Sarkarati M., Young R. R. (1992). Recurrent inhibition is increased in patients with spinal cord injury. Neurology 42, 2162–2168
    1. Sravraky G. W. (1961). Supersensitivity Following Lesions of the Nervous System. An Aspect of the Relativity of Nervous Integration. Toronto: University of Toronto Press, pp. 1–210
    1. Thilmann A. F., Fellows S. J., Grams E. (1991). The mechanism of spastic muscle hypertonus: variation in reflex gain over the time course of spasticity. Brain 114, 233–244
    1. Thompson P. D., Day B. L., Rothwell J. C. (1987). The interpretation of electromyographic responses to electrical stimulation of the motor cortex in diseases of the upper motor neuron. J. Neurol. Sci. 80, 91–11010.1016/0022-510X(87)90224-3
    1. Young R. R. (1989). Treatment of spastic patients. N. Engl. J. Med. 320, 1553–155510.1056/NEJM198906083202310

Source: PubMed

3
Suscribir