Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss

Jingying Wang, Yinghao Pan, Guangmin Wei, Hanxiao Mao, Rulan Liu, Yuanmin He, Jingying Wang, Yinghao Pan, Guangmin Wei, Hanxiao Mao, Rulan Liu, Yuanmin He

Abstract

Objectives: The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis.

Methods: Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc.

Results: Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity.

Discussion: DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.

Keywords: Adenosine triphosphate (ATP); Antimicrobial peptides (AMPs); Heat shock protein 70 (Hsp70); High mobility group box 1 (HMGB1); Interleukin; S100B; Vitiligo; damage-associated molecular patterns; oxidative stress; pathogenesis.

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

Figures

Figure 1.
Figure 1.
Oxidative stress promotes damage-associated molecular pattern secretion, including HMGB1, HSP70, S100B, ATP, the interleukins, and AMPs. These molecules increase cytokine release and accelerate melanocyte death. Abbreviations: HMGB1, high mobility group box 1; HSP70, heat shock protein 70; ATP, adenosine triphosphate; AMPs, antimicrobial peptides. ROS, reactive oxygen species; ERK, extracellular regulated protein kinase; NF-κB, nuclear factor kappa-B; NLRP3, the NOD-like receptor thermal protein domain associated protein 3; pDC, plasmacytoid dendritic cells.

References

    1. Ezzedine K, Eleftheriadou V, Whitton M, et al. . Vitiligo. The Lancet. 2015;386(9988):74–84.
    1. Dabas G, Vinay K, Parsad D, et al. . Psychological disturbances in patients with pigmentary disorders: a cross-sectional study. J Eur Acad Dermatol Venereol. 2020 Feb;34(2):392–399.
    1. Bergqvist C, Ezzedine K.. Vitiligo: A focus on pathogenesis and its therapeutic implications. J Dermatol. 2021 Mar;48(3):252–270.
    1. Bergqvist C, Ezzedine K.. Vitiligo: A Review. Dermatology. 2020;236(6):571–592.
    1. Xuan Y, Yang Y, Xiang L, et al. . The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. Oxid Med Cell Longev. 2022;2022:8498472.
    1. Li S, Zhu G, Yang Y, et al. . Oxidative stress drives CD8(+) T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 2017 Jul;140(1):177–189. e9.
    1. Roh JS, Sohn DH.. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018 Aug;18(4):e27.
    1. Bertero E, Maack C.. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circ Res. 2018 May 11;122(10):1460–1478.
    1. Mathachan SR, Khurana A, Gautam RK, et al. . Does oxidative stress correlate with disease activity and severity in vitiligo? An analytical study. J Cosmet Dermatol. 2021 Jan;20(1):352–359.
    1. Huchzermeyer B, Menghani E, Khardia P, et al. . Metabolic Pathway of Natural Antioxidants, Antioxidant Enzymes and ROS Providence. Antioxidants (Basel). 2022 Apr 11;11(4):761.
    1. Speeckaert R, Dugardin J, Lambert J, et al. . Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2018 Jul;32(7):1089–1098.
    1. Huo J, Liu T, Huan Y, et al. . Serum level of antioxidant vitamins and minerals in patients with vitiligo, a systematic review and meta-analysis. J Trace Elem Med Biol. 2020 Dec;62:126570.
    1. Liu S, Pi J, Zhang Q.. Mathematical modeling reveals quantitative properties of KEAP1-NRF2 signaling. Redox Biol. 2021 Sep 22;47:102139.
    1. Qiu L, Song Z, Setaluri V.. Oxidative stress and vitiligo: the Nrf2-ARE signaling connection. J Invest Dermatol. 2014 Aug;134(8):2074–2076.
    1. Zhou S, Zeng H, Huang J, et al. . Epigenetic regulation of melanogenesis. Ageing Res Rev. 2021 Aug;69:101349.
    1. Zindel J, Kubes P.. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 2020 Jan 24;15:493–518.
    1. Gong T, Liu L, Jiang W, et al. . DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020 Feb;20(2):95–112.
    1. Yang HZ, Oppenheim JJ.. Alarmins and immunity. Immunol Rev. 2017 Nov;280(1):41–56.
    1. Hudson BI, Lippman ME.. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med. 2018 Jan 29;69:349–364.
    1. Sarrand J, Baglione L, Parisis D, et al. . The Involvement of Alarmins in the Pathogenesis of Sjogren's Syndrome. Int J Mol Sci. 2022 May 18;23(10):5671.
    1. Satoh TK. The role of HMGB1 in inflammatory skin diseases. J Dermatol Sci. 2022 Jul 13. doi:10.1016/j.jdermsci.2022.07.005.
    1. Andersson U, Tracey KJ, Yang H.. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells. 2021 Nov 26;10(12):3323.
    1. Murai S, Yamaguchi Y, Shirasaki Y, et al. . A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nat Commun. 2018 Oct 26;9(1):4457.
    1. Deng M, Tang Y, Li W, et al. . The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity. 2018 Oct 16;49(4):740–753. e7.
    1. Raucci A, Di Maggio S, Scavello F, et al. . The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci. 2019 Jan;76(2):211–229.
    1. Kaur I, Behl T, Bungau S, et al. . Exploring the therapeutic promise of targeting HMGB1 in rheumatoid arthritis. Life Sci. 2020 Oct 1;258:118164.
    1. Cui T, Zhang W, Li S, et al. . Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. J Invest Dermatol. 2019 Oct;139(10):2174–2184. e4.
    1. Mou K, Liu W, Miao Y, et al. . HMGB1 deficiency reduces H2 O2 -induced oxidative damage in human melanocytes via the Nrf2 pathway. J Cell Mol Med. 2018 Dec;22(12):6148–6156.
    1. Kim JY, Lee EJ, Seo J, et al. . Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. Br J Dermatol. 2017 Jun;176(6):1558–1568.
    1. Zhang K, Anumanthan G, Scheaffer S, et al. . HMGB1/RAGE Mediates UVB-Induced Secretory Inflammatory Response and Resistance to Apoptosis in Human Melanocytes. J Invest Dermatol. 2019 Jan;139(1):202–212.
    1. Rosenzweig R, Nillegoda NB, Mayer MP, et al. . The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019 Nov;20(11):665–680.
    1. Pockley AG, Henderson B.. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 19;373(1738):0522.
    1. Veglia F, Tyurin VA, Mohammadyani D, et al. . Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017 Dec 14;8(1):2122.
    1. Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci. 2020 Jul 26;21(15):5298.
    1. Moin ASM, Nandakumar M, Diane A, et al. . The Role of Heat Shock Proteins in Type 1 Diabetes. Front Immunol. 2020;11:612584.
    1. van Eden W, Jansen MAA, Ludwig IS, et al. . Heat Shock Proteins Can Be Surrogate Autoantigens for Induction of Antigen Specific Therapeutic Tolerance in Rheumatoid Arthritis. Front Immunol. 2019;10:279.
    1. Abdou AG, Maraee AH, Reyad W.. Immunohistochemical expression of heat shock protein 70 in vitiligo. Ann Diagn Pathol. 2013 Jun;17(3):245–249.
    1. Mosenson JA, Flood K, Klarquist J, et al. . Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress. Pigment Cell Melanoma Res. 2014 Mar;27(2):209–220.
    1. Hariharan V, Klarquist J, Reust MJ, et al. . Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation. J Invest Dermatol. 2010 Jan;130(1):211–220.
    1. Jacquemin C, Rambert J, Guillet S, et al. . Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol. 2017 Nov;177(5):1367–1375.
    1. Denman CJ, McCracken J, Hariharan V, et al. . HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol. 2008 Aug;128(8):2041–2048.
    1. Mosenson JA, Zloza A, Klarquist J, et al. . HSP70i is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res. 2012 Jan;25(1):88–98.
    1. Mosenson JA, Zloza A, Nieland JD, et al. . Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med. 2013 Feb 27;5(174):174ra28.
    1. Henning SW, Fernandez MF, Mahon JP, et al. . HSP70iQ435A-Encoding DNA Repigments Vitiligo Lesions in Sinclair Swine. J Invest Dermatol. 2018 Dec;138(12):2531–2539.
    1. Frisoli ML, Harris JE.. Treatment with Modified Heat Shock Protein Repigments Vitiligo Lesions in Sinclair Swine. J Invest Dermatol. 2018 Dec;138(12):2505–2506.
    1. Gonzalez LL, Garrie K, Turner MD.. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020 Jun;1867(6):118677.
    1. Gross SR, Sin CGT, Barraclough R, et al. . Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci. 2013;71(9):1551–1579.
    1. Xia C, Braunstein Z, Toomey AC, et al. . S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol. 2018;8:01908.
    1. Turnier JL, Fall N, Thornton S, et al. . Urine S100 proteins as potential biomarkers of lupus nephritis activity. Arthritis Res Ther. 2017 Oct 24;19(1):242.
    1. Birlea SA. S100B: Correlation with Active Vitiligo Depigmentation. J Invest Dermatol. 2017 Jul;137(7):1408–1410.
    1. Shabaka FH, Rashed LA, Said M, et al. . Sensitivity of serum S100B protein as a disease activity marker in Egyptian patients with vitiligo (case-control study). Arch Physiol Biochem. 2020 Mar 19;8:1–8.
    1. Speeckaert R, Voet S, Hoste E, et al. . S100B Is a Potential Disease Activity Marker in Nonsegmental Vitiligo. J Invest Dermatol. 2017;137(7):1445–1453.
    1. Tomas-Velazquez A, Lopez-Gutierrez JC, Ceballos C, et al. . S-100B serum protein is elevated in children with medium-to-giant congenital melanocytic nevi: An exploratory case-control study. J Am Acad Dermatol. 2020 Jul;83(1):222–224.
    1. Leclerc E, Fritz G, Weibel M, et al. . S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007 Oct 26;282(43):31317–31331.
    1. Vercellino I, Sazanov LA.. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2021 Oct 7;23(2):141–161.
    1. Giuliani AL, Sarti AC, Di Virgilio F.. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett. 2019 Jan;205:16–24.
    1. Savio LEB, Leite-Aguiar R, Alves VS, et al. . Purinergic signaling in the modulation of redox biology. Redox Biol. 2021 Sep 22;47:102137.
    1. Di Virgilio F, Sarti AC, Falzoni S, et al. . Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer. 2018 Oct;18(10):601–618.
    1. Wang W, Hu D, Feng Y, et al. . Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol. 2020 Nov 26;18(1):182.
    1. Li Z, Gu Y, Wen R, et al. . Lysosome exocytosis is involved in astrocyte ATP release after oxidative stress induced by H2O2. Neurosci Lett. 2019;705:251–258.
    1. Srisomboon Y, Ohkura N, Iijima K, et al. . Airway Exposure to Polyethyleneimine Nanoparticles Induces Type 2 Immunity by a Mechanism Involving Oxidative Stress and ATP Release. Int J Mol Sci. 2021;22(16):9071.
    1. Di Virgilio F, Dal Ben D, Sarti AC, et al. . The P2X7 Receptor in Infection and Inflammation. Immunity. 2017 Jul 18;47(1):15–31.
    1. Riteau N, Baron L, Villeret B, et al. . ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 2012;3(10):e403–e403.
    1. Rogers C, Erkes DA, Nardone A, et al. . Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 2019 Apr 11;10(1):1689.
    1. Di A, Xiong S, Ye Z, et al. . The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity. 2018 Jul 17;49(1):56–65. e4.
    1. Dell'Anna ML, Ottaviani M, Kovacs D, et al. . Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Sci Rep. 2017 Oct 20;7(1):13663.
    1. Xu P, Xue YN, Ji HH, et al. . H2 O2 -induced oxidative stress disrupts mitochondrial functions and impairs migratory potential of human epidermal melanocytes. Exp Dermatol. 2020 Aug;29(8):733–741.
    1. Atwa MA, Ali SMM, Youssef N, et al. . Elevated serum level of interleukin-15 in vitiligo patients and its correlation with disease severity but not activity. J Cosmet Dermatol. 2020;20(8):2640–2644.
    1. Chen X, Guo W, Chang Y, et al. . Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. Free Radical Biol Med. 2019;139:80–91.
    1. Adachi T, Kobayashi T, Sugihara E, et al. . Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015 Nov;21(11):1272–1279.
    1. <Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo..pdf>.
    1. Zhong Z, Su G, Kijlstra A, et al. . Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021 Jan;80:100866.
    1. Speeckaert R, Speeckaert M, De Schepper S, et al. . Biomarkers of disease activity in vitiligo: A systematic review. Autoimmun Rev. 2017 Sep;16(9):937–945.
    1. Acharya P, Mathur M.. Interleukin-17 level in patients with vitiligo: A systematic review and meta-analysis. Australas J Dermatol. 2020 May;61(2):e208–e212.
    1. Bhardwaj S, Rani S, Kumaran MS, et al. . Expression of Th17- and Treg-specific transcription factors in vitiligo patients. Int J Dermatol. 2020 Apr;59(4):474–481.
    1. Kotobuki Y, Tanemura A, Yang L, et al. . Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2012 Mar;25(2):219–230.
    1. Li P, Ma H, Han D, et al. . Interleukin-33 affects cytokine production by keratinocytes in vitiligo. Clinical & Experimental Dermatology. 2015;40(2):163–170.
    1. Vaccaro M, Cicero F, Mannucci C, et al. . IL-33 circulating serum levels are increased in patients with non-segmental generalized vitiligo. Arch Dermatol Res. 2016;308(7):527–530.
    1. Magana M, Pushpanathan M, Santos AL, et al. . The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e216–e230.
    1. Gan BH, Gaynord J, Rowe SM, et al. . The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–7880.
    1. Mookherjee N, Anderson MA, Haagsman HP, et al. . Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020 May;19(5):311–332.
    1. Deng Z, Chen M, Liu Y, et al. . A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol Med. 2021 May 7;13(5):e13560.
    1. Nguyen HLT, Trujillo-Paez JV, Umehara Y, et al. . Role of Antimicrobial Peptides in Skin Barrier Repair in Individuals with Atopic Dermatitis. Int J Mol Sci. 2020 Oct 14;21(20):7607.
    1. Zhang LJ, Sen GL, Ward NL, et al. . Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-beta Production by Epidermal Keratinocytes during Skin Injury. Immunity. 2016 Jul 19;45(1):119–130.
    1. Liang H, Yan Y, Wu J, et al. . Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci Adv. 2020 Jul;6(31):eabb5274.
    1. Frisoli ML, Essien K, Harris JE.. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu Rev Immunol. 2020 Apr 26;38:621–648.
    1. Atazadeh F, Fazeli Z, Vahidnezhad H, et al. . Increased level of cathelicidin (LL-37) in vitiligo: Possible pathway independent from vitamin D receptor gene polymorphism. Exp Dermatol. 2020 Dec;29(12):1176–1185.

Source: PubMed

3
Suscribir