Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease

Lars Frings, Belinda Yew, Emma Flanagan, Bonnie Y K Lam, Michael Hüll, Hans-Jürgen Huppertz, John R Hodges, Michael Hornberger, Lars Frings, Belinda Yew, Emma Flanagan, Bonnie Y K Lam, Michael Hüll, Hans-Jürgen Huppertz, John R Hodges, Michael Hornberger

Abstract

Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD.

Conflict of interest statement

Competing Interests: M Hüll: Personal Compensation: Honoraria for lectures from Pfizer and Merz; Advisory board for Hoffmann-LaRoche; Publishing royalties for Die Antidepressionsstrategie im Alter. Kreuz Verlag Stuttgart, 2011; Psychische Erkrankungen (Hrsg.: Berger M), München Elsevier-Verlag, 2012; Funding support: Grants from the German Federal Ministry of Education and Research (BMBF), German Research Community (DFG), Schwabe GmbH, PI in clinicals trials from Pfizer, AbbVie. HJ Huppert: Funding support: Swiss Epilepsy Foundation. JR Hodges: Editorial Boards: Nature Reviews Neurology, Aphasiology, Cognitive Neuropsychiatry, Cognitive Neuropsychology. Personal Compensation: Publishing royalties for Cognitive Assessment for Clinicians (Oxford University Press, 2007), Frontotemporal Dementia Syndromes (Cambridge University Press, 2007); Funding support: The Australian Research Council and the National Health and Medical Research Council of Australia. M Hornberger: Editorial Boards: Journal of Alzheimer's Disease, Dementia and Geriatric Cognitive Disorders; Funding Support: The Australian Research Council. L Frings, B Yew, E Flanagan, BYK Lam have declared that no competing interests exist. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Volumes at clinic presentation (ml;…
Figure 1. Volumes at clinic presentation (ml; Mean +/– 1 S.D.) of caudate and gyrus rectus grey matter.
Brackets indicate significant group differences. Red dots indicate data from Freiburg. CON  =  control participants.
Figure 2. Annualised volume change (%; mean…
Figure 2. Annualised volume change (%; mean +/– 1 S.D.) of LOFG grey matter.
Brackets indicate significant group differences. Red dots indicate data from Freiburg. CON  =  control participants.

References

    1. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58: 1615–1621.
    1. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, et al. (2010) Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9: 1118–1127.
    1. Rascovsky K, Hodges JR, Kipps CM, Johnson JK, Seeley WW, et al. (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord 21: S14–8.
    1. Hornberger M, Geng J, Hodges JR (2011) Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain 134: 2502–2512.
    1. Piguet O, Hornberger M, Shelley BP, Kipps CM, Hodges JR (2009) Sensitivity of current criteria for the diagnosis of behavioral variant frontotemporal dementia. Neurology 72: 732–737.
    1. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, et al. (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134: 2456–2477.
    1. Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, et al. (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer's disease. Alzheimers Dement 4: 38–48.
    1. Nestor PJ, Fryer TD, Ikeda M, Hodges JR (2003) Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). Eur J Neurosci 18: 2663–2667.
    1. Boccardi M, Laakso MP, Bresciani L, Galluzzi S, Geroldi C, et al. (2003) The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol Aging 24: 95–103.
    1. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, et al. (2002) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58: 198–208.
    1. Seeley WW, Crawford R, Rascovsky K, Kramer JH, Weiner M, et al. (2008) Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 65: 249–255.
    1. Bocti C, Rockel C, Roy P, Gao F, Black SE (2006) Topographical patterns of lobar atrophy in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord 21: 364–372.
    1. Hornberger M, Wong S, Tan R, Irish M, Piguet O, et al. (2012) In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer's disease. Brain 135: 3015–3025.
    1. Pleizier CM, van der Vlies AE, Koedam E, Koene T, Barkhof F, et al. (2012) Episodic memory and the medial temporal lobe: not all it seems. Evidence from the temporal variants of frontotemporal dementia. J Neurol Neurosurg Psychiatry 83: 1145–1148.
    1. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, et al. (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51: 1546–1554.
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34: 939–944.
    1. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21: 1078–1085.
    1. Mioshi E, Hsieh S, Savage S, Hornberger M, Hodges JR (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74: 1591–1597.
    1. Frings L, Mader I, Landwehrmeyer BG, Weiller C, Hull M, et al. (2012) Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry. Human Brain Mapping 33: 1526–1535.
    1. Huppertz HJ, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49: 2216–2224.
    1. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. Neuroimage 11: 805–821.
    1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.
    1. Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, et al. (2009) Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 51: 491–503.
    1. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, et al. (2007) Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 130: 1159–1166.
    1. Perry RJ, Graham A, Williams G, Rosen H, Erzinclioglu S, et al. (2006) Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 22: 278–287.
    1. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, et al. (2009) The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals. Cereb Cortex 19: 497–510.
    1. Agosta F, Scola E, Canu E, Marcone A, Magnani G, et al. (2012) White Matter Damage in Frontotemporal Lobar Degeneration Spectrum. Cereb Cortex 22: 2705–2714.
    1. Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, et al. (2012) Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS ONE 7: e43993.
    1. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41: 1220–1227.
    1. Chow TW, Izenberg A, Binns MA, Freedman M, Stuss DT, et al. (2008) Magnetic resonance imaging in frontotemporal dementia shows subcortical atrophy. Dement Geriatr Cogn Disord 26: 79–88.
    1. Looi JC, Lindberg O, Zandbelt BB, Ostberg P, Andersen C, et al. (2008) Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR Am J Neuroradiol 29: 1537–1543.
    1. O'Callaghan C, Naismith SL, Hodges JR, Lewis SJ, Hornberger M (2013) Fronto-striatal atrophy correlates of inhibitory dysfunction in Parkinson's disease versus behavioural variant frontotemporal dementia. Cortex 49: 1833–1843.
    1. Dalton MA, Weickert TW, Hodges JR, Piguet O, Hornberger M (2013) Impaired acquisition rates of probabilistic associative learning in frontotemporal dementia is associated with fronto-striatal atrophy. NeuroImage: Clinical 2: 56–62.
    1. Yi DS, Bertoux M, Mioshi E, Hodges JR, Hornberger M (2013) Fronto-striatal atrophy correlates of neuropsychiatric dysfunction in frontotemporal dementia (FTD) and Alzheimer's disease (AD). Dementia & Neuropsychologia 7: 75–82.
    1. Hornberger M, Savage S, Hsieh S, Mioshi E, Piguet O, et al. (2010) Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer's disease. Dement Geriatr Cogn Disord 30: 547–552.
    1. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64: 1032–1039.
    1. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23: 3295–3301.
    1. Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR, et al. (2001) Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 57: 1756–1763.
    1. Krueger CE, Dean DL, Rosen HJ, Halabi C, Weiner M, et al. (2010) Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer's disease. Alzheimer Dis Assoc Disord 24: 43–48.
    1. Whitwell JL, Jack CRJ, Parisi JE, Knopman DS, Boeve BF, et al. (2007) Rates of cerebral atrophy differ in different degenerative pathologies. Brain 130: 1148–1158.
    1. Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, et al. (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60: 1005–1011.
    1. Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, et al. (2008) Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 131: 2957–2968.

Source: PubMed

3
Suscribir