The Use of Sports Rehabilitation Robotics to Assist in the Recovery of Physical Abilities in Elderly Patients with Degenerative Diseases: A Literature Review

Fangyuan Ju, Yujie Wang, Bin Xie, Yunxuan Mi, Mengyun Zhao, Junwei Cao, Fangyuan Ju, Yujie Wang, Bin Xie, Yunxuan Mi, Mengyun Zhao, Junwei Cao

Abstract

The increase in the number of elderly patients with degenerative diseases has brought additional medical and financial pressures, which are adding to the burden on society. The development of sports rehabilitation robotics (SRR) is becoming increasingly sophisticated at the technical level of its application; however, few studies have analyzed how it works and how effective it is in aiding rehabilitation, and fewer individualized exercise rehabilitation programs have been developed for elderly patients. The purpose of this study was to analyze the working methods and the effects of different types of SRR and then to suggest the feasibility of applying SRR to enhance the physical abilities of elderly patients with degenerative diseases. The researcher's team searched 633 English-language journal articles, which had been published over the past five years, and they selected 38 of them for a narrative literature review. Our summary found the following: (1) The current types of SRR are generally classified as end-effector robots, smart walkers, intelligent robotic rollators, and exoskeleton robots-exoskeleton robots were found to be the most widely used. (2) The current working methods include assistant tools as the main intermediaries-i.e., robots assist patients to participate; patients as the main intermediaries-i.e., patients dominate the assistant tools to participate; and sensors as the intermediaries-i.e., myoelectric-driven robots promote patient participation. (3) Better recovery was perceived for elderly patients when using SRR than is generally achieved through the traditional single-movement recovery methods, especially in strength, balance, endurance, and coordination. However, there was no significant improvement in their speed or agility after using SRR.

Keywords: assistive technology sports rehabilitation; continuation therapy; degenerative diseases; elder; rehabilitation robot.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart detailing the systematic search, screening, eligibility, and inclusion procedure.
Figure 2
Figure 2
(a) Number of literature accounted for by different diseases; (b) number of literature accounted for by different types of rehabilitation robots.
Figure 3
Figure 3
Rehabilitation effects of different types of robots.

References

    1. Elliott S.J. Changing geographies of aging on a global scale: The knowledge to action gap. Can. Geogr. 2022;66:60–64. doi: 10.1111/cag.12751.
    1. Falck R.S., Davis J.C., Best J.R., Crockett R.A., Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: A systematic review and meta-analysis. Neurobiol. Aging. 2019;79:119–130. doi: 10.1016/j.neurobiolaging.2019.03.007.
    1. Saftari L.N., Kwon O.S. Ageing vision and falls: A review. J. Physiol. Anthropol. 2018;37:1–14. doi: 10.1186/s40101-018-0170-1.
    1. Ahn S., Oh J. Effects of a health-belief-model-based osteoporosis-and fall-prevention program on women at early oldage. Appl. Nurs. Res. 2021;59:151430. doi: 10.1016/j.apnr.2021.151430.
    1. Sharif S.I., Al-Harbi A.B., Al-Shihabi A.M., Al-Daour D.S., Sharif R.S. Falls in the elderly: Assessment of prevalence and risk factors. Pharm. Pract. (Granada) 2018;16:1206. doi: 10.18549/PharmPract.2018.03.1206.
    1. Giovannini S., Brau F., Galluzzo V., Santagada D.A., Loreti C., Biscotti L., Bernabei R. Falls among older adults: Screening, identification, rehabilitation, and management. Appl. Sci. 2022;12:7934. doi: 10.3390/app12157934.
    1. Tijsen L.M., Derksen E.W., Achterberg W.P., Buijck B.I. Challenging rehabilitation environment for older patients. Clin. Interv. Aging. 2019;14:1451. doi: 10.2147/CIA.S207863.
    1. Tang H., Dai Z. Health care intervention measures for the elderly under the smart sports rehabilitation mode under the background of big data. Wirel. Commun. Mob. Comput. 2022;2022:1–10. doi: 10.1155/2022/1652819.
    1. Shi D., Zhang W., Zhang W., Ding X. A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 2019;32:1–11. doi: 10.1186/s10033-019-0389-8.
    1. Zhu Z., Zheng G., Zhang C. Development and clinical application of robot-assisted technology in traumatic orthopedics. Chin. J. Reparative Reconstr. Surg. 2022;36:915–922. doi: 10.7507/1002-1892.202206097.
    1. Shahar N., Schwartz I., Portnoy S. Differences in muscle activity and fatigue of the upper limb between Task-Specific training and robot assisted training among individuals post stroke. J. Biomech. 2019;89:28–33. doi: 10.1016/j.jbiomech.2019.04.005.
    1. Feng G., Zhang J., Zuo G., Li M., Jiang D., Yang L. Dual-modal hybrid control for an upper-limb rehabilitation robot. Machines. 2022;10:324. doi: 10.3390/machines10050324.
    1. Lin F., Ajay J., Langan J., Cavuoto L., Nwogu I., Subryan H., Xu W. QM-FOrMS: A portable and cost-effective upper extremity rehabilitation system. Smart Health. 2019;14:100080. doi: 10.1016/j.smhl.2019.100080.
    1. Fiorini L., De Mul M., Fabbricotti I., Limosani R., Vitanza A., D’Onofrio G., Tsui M., Sancarlo D., Giuliani F., Greco A., et al. Assistive robots to improve the independent living of older persons: Results from a needs study. Disabil. Rehabil. Assist. Technol. 2021;16:92–102. doi: 10.1080/17483107.2019.1642392.
    1. Soma Y., Mutsuzaki H., Yoshioka T., Kubota S., Shimizu Y., Kanamori A., Yamazaki M. Single-joint hybrid assistive limb in knee rehabilitation after ACL reconstruction: An open-label feasibility and safety trial. Prog. Rehabil. Med. 2022;7:20220036. doi: 10.2490/prm.20220036.
    1. Sierra M.S.D., Garzón M., Múnera M., Cifuentes C.A. Human–robot–environment interaction interface for smart walker assisted gait: AGoRA walker. Sensors. 2019;19:2897. doi: 10.3390/s19132897.
    1. Capecci M., Pournajaf S., Galafate D., Sale P., Le Pera D., Goffredo M., De Pandis M.F., Andrenelli E., Pennacchioni M., Ceravolo M.G., et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann. Phys. Rehabil. Med. 2019;62:303–312. doi: 10.1016/j.rehab.2019.06.016.
    1. Jiménez M.F., Monllor M., Frizera A., Bastos T., Roberti F., Carelli R. Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst. 2019;94:621–637. doi: 10.1007/s10846-018-0854-0.
    1. Moustris G., Kardaris N., Tsiami A., Chalvatzaki G., Koutras P., Dometios A., Mavridis P. The i-walk lightweight assistive rollator: First evaluation study. Front. Robot. AI. 2021;8:677542. doi: 10.3389/frobt.2021.677542.
    1. Frisoli A., Barsotti M., Sotgiu E., Lamola G., Procopio C., Chisari C. A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke. J. NeuroEngineering Rehabil. 2022;19:1–14. doi: 10.1186/s12984-022-00991-y.
    1. Coskunsu D.K., Akcay S., Ogul O.E., Akyol D.K., Ozturk N., Zileli F., Tuzun B.B., Krespi Y. Effects of robotic rehabilitation on recovery of hand functions in acute stroke: A preliminary randomized controlled study. Acta Neurol. Scand. 2022;146:499–511. doi: 10.1111/ane.13672.
    1. Chen Y.W., Chiang W.C., Chang C.L., Lo S.M., Wu C.Y. Comparative effects of EMG-driven robot-assisted therapy versus task-oriented training on motor and daily function in patients with stroke: A randomized cross-over trial. J. NeuroEngineering Rehabil. 2022;19:1–9. doi: 10.1186/s12984-021-00961-w.
    1. Li G., Cheng L., Sun N. Design, manipulability analysis and optimization of an index finger exoskeleton for stroke rehabilitation. Mech. Mach. Theory. 2022;167:104526. doi: 10.1016/j.mechmachtheory.2021.104526.
    1. Kapsalyamov A., Hussain S., Jamwal P.K. State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access. 2020;8:178991–179001. doi: 10.1109/ACCESS.2020.3026641.
    1. Hasan S.K., Dhingra A.K. Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot. Results Control. Optim. 2022;7:100107. doi: 10.1016/j.rico.2022.100107.
    1. Chang S.H., Zhu F., Patel N., Afzal T., Kern M., Francisco G.E. Combining robotic exoskeleton and body weight unweighing technology to promote walking activity in tetraplegia following SCI: A case study. J. Spinal Cord Med. 2020;43:126–129. doi: 10.1080/10790268.2018.1527078.
    1. Lovrenovic Z., Doumit M. Development and testing of a passive walking assist exoskeleton. Biocybern. Biomed. Eng. 2019;39:992–1004. doi: 10.1016/j.bbe.2019.01.002.
    1. McGibbon C., Sexton A., Gryfe P., Dutta T., Jayaraman A., Deems-Dluhy S., Novak A., Fabara E., Adans-Dester C., Bonato P. Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disabil. Rehabil. Assist. Technol. 2021:1–8. doi: 10.1080/17483107.2021.1874064.
    1. Berriozabalgoitia R., Sanz B., Fraile-Bermúdez A.B., Otxoa E., Yeregui I., Bidaurrazaga-Letona I., Duñabeitia I., Antigüedad A., Domercq M., Irazusta J. An overground robotic gait training program for people with multiple sclerosis: A protocol for a randomized clinical trial. Front. Med. 2020;7:238. doi: 10.3389/fmed.2020.00238.
    1. Galperin I., Herman T., Assad M., Ganz N., Mirelman A., Giladi N., Hausdorff J.M. Sensor-based and patient-based assessment of daily-living physical activity in people with parkinson’s disease: Do motor subtypes play a role? Sensors. 2020;20:7015. doi: 10.3390/s20247015.
    1. Christensen S., Rafique S., Bai S. Design of a powered full-body exoskeleton for physical assistance of elderly people. Int. J. Adv. Robot. Syst. 2021;18:17298814211053534. doi: 10.1177/17298814211053534.
    1. De Luca R., Maresca G., Balletta T., Cannavò A., Leonardi S., Latella D., Calabrò R.S. Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study. J. Clin. Neurosci. 2020;81:240–245. doi: 10.1016/j.jocn.2020.09.070.
    1. Qu Q., Lin Y., He Z., Fu J., Zou F., Jiang Z., Jia J. The effect of applying robot-assisted task-oriented training using human-robot collaborative interaction force control technology on upper limb function in stroke patients: Preliminary findings. BioMed Res. Int. 2021;2021:1–8. doi: 10.1155/2021/9916492.
    1. Choi W. Effects of robot-assisted gait training with body weight support on gait and balance in stroke patients. Int. J. Environ. Res. Public Health. 2022;19:5814. doi: 10.3390/ijerph19105814.
    1. Pan L., Song A., Wang S., Duan S. Experimental study on upper-limb rehabilitation training of stroke patients based on adaptive task level: A preliminary study. BioMed Res. Int. 2019;2019:2742595. doi: 10.1155/2019/2742595.
    1. Suo P., Zhu X., Wang S., Li M., Yu T., Song C., Ning H., Xin Y. A training method for a sensor-based exercise rehabilitation robot. J. Sens. 2022;2022:4336664. doi: 10.1155/2022/4336664.
    1. Mcleod J.C., Ward S.J., Hicks A.L. Evaluation of the Keeogo™ dermoskeleton. Disabil. Rehabil. Assist. Technol. 2019;14:503–512. doi: 10.1080/17483107.2017.1396624.
    1. Chinembiri B., Ming Z., Kai S., Xiu F.Z., Wei C. The fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life: A randomized clinical trial. Top. Stroke Rehabil. 2021;28:1–18. doi: 10.1080/10749357.2020.1755815.
    1. Franceschini M., Mazzoleni S., Goffredo M., Pournajaf S., Galafate D., Criscuolo S., Posteraro F. Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: A follow-up study. J. Bodyw. Mov. Ther. 2020;24:194–198. doi: 10.1016/j.jbmt.2019.03.016.
    1. Hasan S.K., Dhingra A.K. State of the art technologies for exoskeleton human lower extremity rehabilitation robots. J. Mechatron Robot. 2020;4:211–235. doi: 10.3844/jmrsp.2020.211.235.
    1. Just F., Özen Ö., Tortora S., Klamroth-Marganska V., Riener R., Rauter G. Human arm weight compensation in rehabilitation robotics: Efficacy of three distinct methods. J. Neuroeng. Rehabil. 2020;17:1–17. doi: 10.1186/s12984-020-0644-3.
    1. Chen S.C., Kang J.H., Peng C.W., Hsu C.C., Lin Y.N., Lai C.H. Adjustable parameters and the effectiveness of adjunct robot-assisted gait training in individuals with chronic stroke. Int. J. Environ. Res. Public Health. 2022;19:8186. doi: 10.3390/ijerph19138186.
    1. Giovannini S., Iacovelli C., Brau F., Loreti C., Fusco A., Caliandro P., Castelli L. Robotic-assisted rehabilitation for balance and gait in stroke patients (ROAR-S): Study protocol for a preliminary randomized controlled trial. Trials. 2022;23:1–10. doi: 10.1186/s13063-022-06812-w.
    1. Yun N., Joo M.C., Kim S.C., Kim M.S. Robot-assisted gait training effectively improved lateropulsion in subacute stroke patients: A single-blinded randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2018;54:827–836. doi: 10.23736/S1973-9087.18.05077-3.
    1. Manuli A., Maggio M.G., Latella D., Cannavò A., Balletta T., De Luca R., Naro A., Calabrò R.S. Can robotic gait rehabilitation plus virtual reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. J. Stroke Cerebrovasc. Dis. 2020;29:104994. doi: 10.1016/j.jstrokecerebrovasdis.2020.104994.
    1. Kim H., Kim E., Yun S.J., Kang M., Shin H.I., Oh B., Seo H.G. Robot-assisted gait training with auditory and visual cues in Parkinson’s disease: A randomized controlled trial. Ann. Phys. Rehabil. Med. 2022;65:101620. doi: 10.1016/j.rehab.2021.101620.
    1. Gassert R., Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. NeuroEng. Rehabil. 2018;15:46. doi: 10.1186/s12984-018-0383-x.
    1. Martinez-Martin E., Escalona F., Cazorla M. Socially assistive robots for older adults and people with autism: An overview. Electronics. 2020;9:367. doi: 10.3390/electronics9020367.
    1. Losey D.P., McDonald C.G., Battaglia E., O’Malley M.K. A review of intent detection, arbitration, and communication aspects of shared control for physical human–robot interaction. Appl. Mech. Rev. 2018;70(1):010804. doi: 10.1115/1.4039145.
    1. Bove R., Musallam A., Healy B.C., Houtchens M., Glanz B.I., Khoury S., Chitnis T. No sex-specific difference in disease trajectory in multiple sclerosis patients before and after age 50. BMC Neurol. 2013;13:1–7. doi: 10.1186/1471-2377-13-73.
    1. Gu Y., Xu Y., Shen Y., Huang H., Liu T., Jin L., Wang J. A review of hand function rehabilitation systems based on hand motion recognition devices and artificial intelligence. Brain Sci. 2022;12:1079. doi: 10.3390/brainsci12081079.
    1. Moggio L., de Sire A., Marotta N., Demeco A., Ammendolia A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: Systematic review and meta-analysis. Top. Stroke Rehabil. 2022;29:539–550. doi: 10.1080/10749357.2021.1967657.
    1. Lin F., Ajay J., Langan J., Cavuoto L., Nwogu I., Subryan H., Xu W. A portable and cost-effective upper extremity rehabilitation system for individuals with upper limb motor deficits; Proceedings of the 2016 IEEE Wireless Health (WH); Bethesda, MD, USA. 25–27 October 2016;
    1. Abbasimoshaei A., Mohammadimoghaddam M., Kern T.A. Adaptive fuzzy sliding mode controller design for a new hand rehabilitation robot; Proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications; Leiden, The Netherlands. 6–9 September 2020; Cham, Switzerland: Springer; 2020. pp. 506–517.
    1. Moshaii A.A., Moghaddam M.M., Niestanak V.D. Fuzzy sliding mode control of a wearable rehabilitation robot for wrist and finger. Ind. Robot. 2019;46:839–850. doi: 10.1108/IR-05-2019-0110.
    1. Aly A.A.I., Abbasimoshaei A., Kern T.A. Developing a VR Training Environment for Fingers Rehabilitation; Proceedings of the13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (EuroHaptics 2022); Hamburg, Germany. 22–25 May 2022; Hamburg, Germany: TUHH Universitätsbibliothek; 2022.
    1. Molteni F., Gasperini G., Cannaviello G., Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PMR. 2018;10:S174–S188. doi: 10.1016/j.pmrj.2018.06.005.
    1. Chalvatzaki G., Koutras P., Tsiami A., Tzafestas C.S., Maragos P. I-Walk intelligent assessment system: Activity, mobility, intention, communication; Proceedings of the European Conference on Computer Vision; Glasgow, UK. 23–28 August 2020; Cham, Switzerland: Springer; 2020. pp. 500–517.
    1. Moustris G., Kardaris N., Tsiami A., Chalvatzaki G., Koutras P., Dometios A., Mavridis P. The I-walk assistive robot; Proceedings of the 13th International Workshop on Human-Friendly Robotics; Innsbruck, Austria. 22–23 October 2020; Cham, Switzerland: Springer; 2020. pp. 31–45.
    1. Weber L.M., Stein J. The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation. 2018;43:99–110. doi: 10.3233/NRE-172408.
    1. Rupal B.S., Rafique S., Singla A., Singla E., Isaksson M., Virk G.S. Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. Int. J. Adv. Robot. Syst. 2017;14:1729881417743554. doi: 10.1177/1729881417743554.
    1. Gorgey A.S. Robotic exoskeletons: The current pros and cons. World J. Orthop. 2018;9:112. doi: 10.5312/wjo.v9.i9.112.
    1. Martinek R., Ladrova M., Sidikova M., Jaros R., Behbehani K., Kahankova R., Kawala-Sterniuk A. Advanced bioelectrical signal processing methods: Past, present, and future approach—Part III: Other biosignals. Sensors. 2021;21:6064. doi: 10.3390/s21186064.
    1. Ding I.J., Chang Y.J. On the use of Kinect sensors to design a sport instructor robot for rehabilitation and exercise training of the elderly. Sens. Mater. 2016;28:463–476.
    1. Kropielnicka K., Dziubek W., Bulińska K., Stefańska M., Wojcieszczyk-Latos J., Jasiński R., Pilch U., Dąbrowska G., Skórkowska-Telichowska K., Kałka D., et al. Influence of the physical training on muscle function and walking distance in symptomatic peripheral arterial disease in elderly. BioMed Res. Int. 2018;2018:1937527. doi: 10.1155/2018/1937527.
    1. Rogers C.E., Cordeiro M., Perryman E. Maintenance of physical function in frail older adults. Nurs. Clin. 2014;49:147–156. doi: 10.1016/j.cnur.2014.02.003.
    1. Fragala M.S., Cadore E.L., Dorgo S., Izquierdo M., Kraemer W.J., Peterson M.D., Ryan E.D. Resistance training for older adults: Position statement from the national strength and conditioning association. J. Strength Cond. Res. 2019;33:2019–2052. doi: 10.1519/JSC.0000000000003230.
    1. Bessler J., Prange-Lasonder G.B., Schaake L., Saenz J.F., Bidard C., Fassi I., Valori M., Lassen A.B., Buurke J.H. Safety assessment of rehabilitation robots: A review identifying safety skills and current knowledge gaps. Front. Robot. AI. 2021;8:602878. doi: 10.3389/frobt.2021.602878.
    1. Der Loos V., Machiel H.F., Reinkensmeyer D.J., Guglielmelli E. Springer Handbook of Robotics. Springer; Cham, Switzerland: 2016. Rehabilitation and health care robotics; pp. 1685–1728.
    1. Osoba M.Y., Rao A.K., Agrawal S.K., Lalwani A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019;4:143–153. doi: 10.1002/lio2.252.
    1. Ogilvie M., Wallen M.P., Talpey S.W. Agile ageing–A modifiable vital sign to mitigate the risk of falls in older adults? Med. Hypotheses. 2021;148:110517. doi: 10.1016/j.mehy.2021.110517.
    1. Porciuncula F., Roto A.V., Kumar D., Davis I., Roy S., Walsh C.J., Awad L.N. Wearable movement sensors for rehabilitation: A focused review of technological and clinical advances. PMR. 2018;10:S220–S232. doi: 10.1016/j.pmrj.2018.06.013.
    1. Kondratenko Y.P. Decision Making and Knowledge Decision Support Systems. Springer; Cham, Switzerland: 2015. Robotics, automation and information systems: Future perspectives and correlation with culture, sport and life science; pp. 43–55.

Source: PubMed

3
Suscribir