Increased Neutrophil Extracellular Trap Formation in Uremia Is Associated with Chronic Inflammation and Prevalent Coronary Artery Disease

Jwa-Kyung Kim, Chang-Won Hong, Mi Jin Park, Young Rim Song, Hyung Jik Kim, Sung Gyun Kim, Jwa-Kyung Kim, Chang-Won Hong, Mi Jin Park, Young Rim Song, Hyung Jik Kim, Sung Gyun Kim

Abstract

Background. Neutrophils are involved in the pathogenesis of atherosclerosis by neutrophil extracellular trap (NET) formation. We hypothesized that the NET formation of neutrophils might be changed in end-stage renal disease (ESRD) patients, explaining their higher incidence of coronary artery diseases (CAD). Method. A cross-sectional study was performed in 60 maintenance hemodialysis (MHD) patients, 30 age- and sex-matched healthy individuals (HV, negative control), and 30 patients with acute infection (positive control). Neutrophil activation and function were measured with reactive oxygen species (ROS) activity, degranulation, NET formation, and phenotypical changes. Result. Compared with HV, neutrophils extracted from MHD patients displayed significantly increased levels of basal NET formation, ROS production, and degranulation, suggesting spontaneous activation in uremia. Also, an increase in citrullinated histone H3 was detected in this group compared to the HV. And neutrophils from HV were normal CD16bright/CD62Lbright cells; however, neutrophils from MHD were CD16bright/CD62Ldim, similar to those from patients with acute infections. Interestingly, multivariate analyses identified the prevalent CAD and neutrophil counts as independent determinants of baseline NET formation (β = 0.323, p = 0.016 and β = 0.369, p = 0.006, resp.). Conclusions. Uremia-associated-increased NET formation may be a sign of increased burden of atherosclerosis.

Figures

Figure 1
Figure 1
Basal activity of neutrophils of the HV, MHD, and acute infection groups. Compared with HV patients, neutrophils extracted from MHD individuals produced significantly higher levels of ROS (a), basal NET formation (b), and hypercitrullination (c) compared with those from the HV group.
Figure 2
Figure 2
Response of neutrophils to stimulus. NET formation was increased 2.31-fold upon PMA treatment in HV. NET formation among the MHD and acute infection groups, however, was only stimulated 1.89- and 1.28-fold, compared with that observed in the HV group, supporting the spontaneous activated state of neutrophils.
Figure 3
Figure 3
Changes in phenotypes of neutrophils in maintenance hemodialysis patients. Neutrophils from HV patients were normal CD16bright/CD62Lbright cells; however, neutrophils from MHD patients were CD16bright/CD62Ldim, similar to those from patients with acute infections.
Figure 4
Figure 4
Degranulation of neutrophils at baseline. Expression of CD35 was significantly increased on the surface of neutrophils from MHD patients, compared with HV patients, indicating spontaneous degranulation. All three markers were significantly higher in the acute infection group than in the HV and MHD groups.

References

    1. Recio-Mayoral A., Banerjee D., Streather C., Kaski J. C. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis. 2011;216(2):446–451. doi: 10.1016/j.atherosclerosis.2011.02.017.
    1. Betjes M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nature Reviews. Nephrology. 2013;9(5):255–265. doi: 10.1038/nrneph.2013.44.
    1. Kato S., Chmielewski M., Honda H., et al. Aspects of immune dysfunction in end-stage renal disease. Clinical Journal of the American Society of Nephrology: CJASN. 2008;3(5):1526–1533. doi: 10.2215/CJN.00950208.
    1. Yoon J. W., Pahl M. V., Vaziri N. D. Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney International. 2007;71(2):167–172. doi: 10.1038/sj.ki.5002019.
    1. Chonchol M. Neutrophil dysfunction and infection risk in end-stage renal disease. Seminars in Dialysis. 2006;19(4):291–296. doi: 10.1111/j.1525-139X.2006.00175.x.
    1. Vaziri N. D. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Seminars in Nephrology. 2004;24(5):469–473. doi: 10.1016/j.semnephrol.2004.06.026.
    1. Pecoits-Filho R., Heimburger O., Barany P., et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. American Journal of Kidney Diseases. 2003;41(6):1212–1218. doi: 10.1016/S0272-6386(03)00353-6.
    1. Locatelli F., Canaud B., Eckardt K. U., Stenvinkel P., Wanner C., Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrology, Dialysis, Transplantation. 2003;18(7):1272–1280. doi: 10.1093/ndt/gfg074.
    1. Paulsson J., Dadfar E., Held C., Jacobson S. H., Lundahl J. Activation of peripheral and in vivo transmigrated neutrophils in patients with stable coronary artery disease. Atherosclerosis. 2007;192(2):328–334. doi: 10.1016/j.atherosclerosis.2006.08.003.
    1. Pindjakova J., Griffin M. D. Defective neutrophil rolling and transmigration in acute uremia. Kidney International. 2011;80(5):447–450. doi: 10.1038/ki.2011.169.
    1. Mahajan S., Kalra O. P., Asit K. T., Ahuja G., Kalra V. Phagocytic polymorphonuclear function in patients with progressive uremia and the effect of acute hemodialysis. Renal Failure. 2005;27(4):357–360.
    1. Anding K., Gross P., Rost J. M., Allgaier D., Jacobs E. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing. Nephrology Dialysis Transplantation. 2003;18(10):2067–2073. doi: 10.1093/ndt/gfg330.
    1. Sela S., Shurtz-Swirski R., Cohen-Mazor M., et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. Journal of the American Society of Nephrology: JASN. 2005;16(8):2431–2438. doi: 10.1681/ASN.2004110929.
    1. Cendoroglo M., Jaber B. L., Balakrishnan V. S., Perianayagam M., King A. J., Pereira B. J. Neutrophil apoptosis and dysfunction in uremia. Journal of the American Society of Nephrology: JASN. 1999;10(1):93–100.
    1. Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmunity Reviews. 2015;14(7):633–640. doi: 10.1016/j.autrev.2015.03.002.
    1. Fuchs T. A., Abed U., Goosmann C., et al. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology. 2007;176(2):231–241. doi: 10.1083/jcb.200606027.
    1. Logters T., Margraf S., Altrichter J., et al. The clinical value of neutrophil extracellular traps. Medical Microbiology and Immunology. 2009;198(4):211–219. doi: 10.1007/s00430-009-0121-x.
    1. Brinkmann V., Reichard U., Goosmann C., et al. Neutrophil extracellular traps kill bacteria. Science (New York, N.Y.) 2004;303(5663):1532–1535. doi: 10.1126/science.1092385.
    1. Bianchi M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology. 2007;81(1):1–5. doi: 10.1189/jlb.0306164.
    1. Kessenbrock K., Krumbholz M., Schonermarck U., et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Medicine. 2009;15(6):623–625. doi: 10.1038/nm.1959.
    1. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Science Translational Medicine. 2013;5(178):p. 178ra140. doi: 10.1126/scitranslmed.3005580.
    1. Garcia-Romo G. S., Caielli S., Vega B., et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science Translational Medicine. 2011;3(73):p. 73ra20. doi: 10.1126/scitranslmed.3001201.
    1. Villanueva E., Yalavarthi S., Berthier C. C., et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. Journal of Immunology (Baltimore, Md. : 1950) 2011;187(1):538–552. doi: 10.4049/jimmunol.1100450.
    1. Borissoff J. I., Joosen I. A., Versteylen M. O., et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(8):2032–2040. doi: 10.1161/ATVBAHA.113.301627.
    1. Neeli I., Dwivedi N., Khan S., Radic M. Regulation of extracellular chromatin release from neutrophils. Journal of Innate Immunity. 2009;1(3):194–201. doi: 10.1159/000206974.
    1. Li Y., Liu B., Fukudome E. Y., et al. Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock. Surgery. 2011;150(3):442–451. doi: 10.1016/j.surg.2011.07.003.
    1. Witko-Sarsat V., Gausson V., Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney International Supplement. 2003;(84):S11–S14. doi: 10.1046/j.1523-1755.63.s84.47.x.
    1. Barrientos L., Marin-Esteban V., de Chaisemartin L., et al. An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Frontiers in Immunology. 2013;4:p. 166. doi: 10.3389/fimmu.2013.00166.
    1. Baetta R., Corsini A. Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis. 2010;210(1):1–13. doi: 10.1016/j.atherosclerosis.2009.10.028.
    1. Nahrendorf M., Swirski F. K. Immunology. Neutrophil-macrophage communication in inflammation and atherosclerosis. Science (New York, N.Y.) 2015;349(6245):237–238. doi: 10.1126/science.aac7801.
    1. Megens R. T., Vijayan S., Lievens D., et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thrombosis and Haemostasis. 2012;107(3):597–598. doi: 10.1160/TH11-09-0650.
    1. Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science (New York, N.Y.) 2015;349(6245):316–320. doi: 10.1126/science.aaa8064.
    1. Ding L., Zhang X., Zhao M., et al. An essential role of PDCD4 in progression and malignant proliferation of gastrointestinal stromal tumors. Medical Oncology (Northwood, London, England) 2012;29(3):1758–1764. doi: 10.1007/s12032-011-0042-6.
    1. Verkade M. A., van de Wetering J., Klepper M., Vaessen L. M., Weimar W., Betjes M. G. Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients. Kidney International. 2004;66(2):614–621. doi: 10.1111/j.1523-1755.2004.00781.x.
    1. Stewart J. H., Vajdic C. M., van Leeuwen M. T., et al. The pattern of excess cancer in dialysis and transplantation. Nephrology Dialysis Transplantation. 2009;24(10):3225–3231. doi: 10.1093/ndt/gfp331.
    1. Allen C., Thornton P., Denes A., et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. Journal of Immunology (Baltimore, Md.: 1950) 2012;189(1):381–392. doi: 10.4049/jimmunol.1200409.
    1. Beyrau M., Bodkin J. V., Nourshargh S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biology. 2012;2(11):p. 120134. doi: 10.1098/rsob.120134.
    1. Glorieux G., Vanholder R., Lameire N. Uraemic retention and apoptosis: what is the balance for the inflammatory status in uraemia? European Journal of Clinical Investigation. 2003;33(8):631–634. doi: 10.1046/j.1365-2362.2003.01204.x.

Source: PubMed

3
Suscribir