Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls - a cross-sectional cohort study

Hanna B Åhman, Ylva Cedervall, Lena Kilander, Vilmantas Giedraitis, Lars Berglund, Kevin J McKee, Erik Rosendahl, Martin Ingelsson, Anna Cristina Åberg, Hanna B Åhman, Ylva Cedervall, Lena Kilander, Vilmantas Giedraitis, Lars Berglund, Kevin J McKee, Erik Rosendahl, Martin Ingelsson, Anna Cristina Åberg

Abstract

Background: Discrimination between early-stage dementia and other cognitive impairment diagnoses is central to enable appropriate interventions. Previous studies indicate that dual-task testing may be useful in such differentiation. The objective of this study was to investigate whether dual-task test outcomes discriminate between groups of individuals with dementia disorder, mild cognitive impairment, subjective cognitive impairment, and healthy controls.

Methods: A total of 464 individuals (mean age 71 years, 47% women) were included in the study, of which 298 were patients undergoing memory assessment and 166 were cognitively healthy controls. Patients were grouped according to the diagnosis received: dementia disorder, mild cognitive impairment, or subjective cognitive impairment. Data collection included participants' demographic characteristics. The patients' cognitive test results and diagnoses were collected from their medical records. Healthy controls underwent the same cognitive tests as the patients. The mobility test Timed Up-and-Go (TUG single-task) and two dual-task tests including TUG (TUGdt) were carried out: TUGdt naming animals and TUGdt months backwards. The outcomes registered were: time scores for TUG single-task and both TUGdt tests, TUGdt costs (relative time difference between TUG single-task and TUGdt), number of different animals named, number of months recited in correct order, number of animals per 10 s, and number of months per 10 s. Logistic regression models examined associations between TUG outcomes pairwise between groups.

Results: The TUGdt outcomes "animals/10 s" and "months/10 s" discriminated significantly (p < 0.001) between individuals with an early-stage dementia diagnosis, mild cognitive impairment, subjective cognitive impairment, and healthy controls. The TUGdt outcome "animals/10 s" showed an odds ratio of 3.3 (95% confidence interval 2.0-5.4) for the groups dementia disorders vs. mild cognitive impairment. TUGdt cost outcomes, however, did not discriminate between any of the groups.

Conclusions: The novel TUGdt outcomes "words per time unit", i.e. "animals/10 s" and "months/10 s", demonstrate high levels of discrimination between all investigated groups. Thus, the TUGdt tests in the current study could be useful as complementary tools in diagnostic assessments. Future studies will be focused on the predictive value of TUGdt outcomes concerning dementia risk for individuals with mild cognitive impairment or subjective cognitive impairment.

Keywords: Dementia; Dual-task; Gait; Mild cognitive impairment; Subjective cognitive impairment.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of inclusion and exclusion. aOther diagnoses: Malignant neoplasm of frontal lobe (n = 1); Unspecified personality and behavioural disorder due to known physiological condition (n = 1); Disorientation, unspecified (n = 1); Major depressive disorder, single episode, unspecified (n = 1); Idiopathic normal pressure hydrocephalus (n = 1); Multiple sclerosis (n = 1). bAlzheimer’s disease (n = 50); Other dementia disorders (n = 36). cMild cognitive impairment. dSubjective cognitive impairment
Fig. 2
Fig. 2
Distribution of results for TUGdt “animals/10 s” during Timed Up-and-Go dual-task naming animals. Horizontal lines on the graph show median values. TUGdt = Timed Up-and-Go dual-task; MCI = Mild cognitive impairment; SCI = Subjective cognitive impairment
Fig. 3
Fig. 3
Forest plot of logistic regression models. MCI = mild cognitive impairment; SCI = subjective cognitive impairment; TUG = Timed Up-and-Go; TUGdt = Timed Up-and-Go dual-task; TUGdt NA = Timed Up-and-Go dual-task naming animals; TUGdt MB = Timed Up-and-Go dual-task months backwards. Models are adjusted for participant age, gender, and educational level. Standardized odds ratios measure risk increase per one standard deviation increase of the predictor or *risk increase per one standard deviation decrease of the predictor. aStatistically significant if p < 0.05. bStatistically significant with Bonferroni adjustment if p < 0.0167

References

    1. Dementia: A Public Health Priority. []. Accessed 1 Nov 2019.
    1. World Alzheimer Report 2015: the Global Impact of Dementia. []. Accessed 1 Nov 2019.
    1. National Institute for Health Care Excellence . Dementia: Assessment, management and support for people living with dementia and their carers. London: National Institute for Health and Care Excellence (UK); 2018. Clinical Guidelines.
    1. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256(3):240–246.
    1. Reisberg B, Gauthier S. Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer's disease. Int Psychogeriatr. 2008;20(1):1–16.
    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–194.
    1. Mitchell AJ, Shiri-Feshki M. Temporal trends in the long term risk of progression of mild cognitive impairment: a pooled analysis. J Neurol Neurosurg Psychiatry. 2008;79(12):1386–1391.
    1. Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014;130(6):439–451.
    1. Laske C, Sohrabi HR, Frost SM, Lopez-de-Ipina K, Garrard P, Buscema M, Dauwels J, Soekadar SR, Mueller S, Linnemann C, et al. Innovative diagnostic tools for early detection of Alzheimer's disease. Alzheimers Dement. 2015;11(5):561–578.
    1. Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther. 2019;11(1):76.
    1. Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–428.
    1. Schretlen D, Pearlson GD, Anthony JC, Aylward EH, Augustine AM, Davis A, Barta P. Elucidating the contributions of processing speed, executive ability, and frontal lobe volume to normal age-related differences in fluid intelligence. J Int Neuropsychol Soc. 2000;6(1):52–61.
    1. Nyberg L, Maitland SB, Rönnlund M, Bäckman L, Dixon RA, Wahlin Å, Nilsson L-G. Selective adult age differences in an age-invariant multifactor model of declarative memory. Psychol Aging. 2003;18(1):149–160.
    1. Connolly A, Gaehl E, Martin H, Morris J, Purandare N. Underdiagnosis of dementia in primary care: variations in the observed prevalence and comparisons to the expected prevalence. Aging Ment Health. 2011;15(8):978–984.
    1. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364(23):2227–2234.
    1. Petersen RC. Mild Cognitive Impairment. Continuum (Minneapolis, Minn) 2016;22(2 Dementia):404–418.
    1. Hong YJ, Lee J-H. Subjective cognitive decline and Alzheimer's disease Spectrum disorder. Dement Neurocogn Disord. 2017;16(2):40–47.
    1. Cullen S, Borrie M, Carroll S, Sarquis-Adamson Y, Pieruccini-Faria F, McKay S, Montero-Odasso M. Are cognitive subtypes associated with dual-task gait performance in a clinical setting? J Alzheimers Dis. 2019;71:57–64.
    1. Nielsen MS, Simonsen AH, Siersma V, Hasselbalch SG, Hoegh P. The diagnostic and prognostic value of a dual-tasking paradigm in a memory clinic. J Alzheimers Dis. 2018;61(3):1189–1199.
    1. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329–342.
    1. Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC Geriatr. 2009;9:41.
    1. MacAulay RK, Wagner MT, Szeles D, Milano NJ. Improving sensitivity to detect mild cognitive impairment: cognitive load dual-task gait speed assessment. J Int Neuropsychol Soc. 2017;23(6):493–501.
    1. Borges Sde M, Radanovic M, Forlenza OV. Functional mobility in a divided attention task in older adults with cognitive impairment. J Mot Behav. 2015;47(5):378–385.
    1. Beauchet O, Dubost V, Aminian K, Gonthier R, Kressig RW. Dual-task-related gait changes in the elderly: does the type of cognitive task matter? J Mot Behav. 2005;37(4):259–264.
    1. Theill N, Martin M, Schumacher V, Bridenbaugh SA, Kressig RW. Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: the Basel motor-cognition dual-task paradigm. J Am Geriatr Soc. 2011;59(6):1012–1018.
    1. Camicioli R, Howieson D, Lehman S, Kaye J. Talking while walking: the effect of a dual task in aging and Alzheimer's disease. Neurology. 1997;48(4):955–958.
    1. Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer's disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012;35(1):96–100.
    1. Montero-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil. 2012;93(2):293–299.
    1. Hunter SW, Divine A, Frengopoulos C, Montero OM. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018;18(1):202.
    1. Beauchet O, Launay CP, Chabot J, Levinoff EJ, Allali G. Subjective memory impairment and gait variability in cognitively healthy individuals: results from a cross-sectional pilot study. J Alzheimers Dis. 2017;55(3):965–971.
    1. Ahman HB, Giedraitis V, Cedervall Y, Lennhed B, Berglund L, McKee K, Kilander L, Rosendahl E, Ingelsson M, Aberg AC. Dual-task performance and Neurodegeneration: correlations between timed up-and-go dual-task test outcomes and Alzheimer's disease cerebrospinal fluid biomarkers. J Alzheimers Dis. 2019;71:75–83.
    1. Almeida OP, Almeida SA. Short versions of the geriatric depression scale: a study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. Int J Geriatr Psychiatry. 1999;14(10):858–865.
    1. Aberg AC, Lindmark B, Lithell H. Development and reliability of the general motor function assessment scale (GMF)--a performance-based measure of function-related dependence, pain and insecurity. Disabil Rehabil. 2003;25(9):462–472.
    1. Aberg AC, Lindmark B, Lithell H. Evaluation and application of the general motor function assessment scale in geriatric rehabilitation. Disabil Rehabil. 2003;25(7):360–368.
    1. Bohannon RW, Larkin PA, Cook AC, Gear J, Singer J. Decrease in timed balance test scores with aging. Phys Ther. 1984;64(7):1067–1070.
    1. Bohannon RW. Test-retest reliability of measurements of hand-grip strength obtained by dynamometry from older adults: a systematic review of research in the PubMed database. J Frailty Aging. 2017;6(2):83–87.
    1. Solomon PR, Brush M, Calvo V, Adams F, DeVeaux RD, Pendlebury WW, Sullivan DM. Identifying dementia in the primary care practice. Int Psychogeriatr. 2000;12(4):483–493.
    1. American Psychiatric Association . Diagnostic and statistical manual of mental disorders. 4. Alexandria: American Psychiatric Association; 1994.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–269.
    1. Chui HC, Victoroff JI, Margolin D, Jagust W, Shankle R, Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the state of California Alzheimer's disease diagnostic and treatment centers. Neurology. 1992;42(3 Pt 1):473–480.
    1. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on Frontotemporal dementia and Pick's disease. Arch Neurol. 2001;58(11):1803–1809.
    1. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. J Alzheimers Dis. 2006;9(3 Suppl):417–423.
    1. Podsiadlo D, Richardson S. The timed "up & go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148.
    1. Donoghue OA, Horgan NF, Savva GM, Cronin H, O'Regan C, Kenny RA. Association between timed up-and-go and memory, executive function, and processing speed. J Am Geriatr Soc. 2012;60(9):1681–1686.
    1. Cedervall Y, Stenberg AM, Åhman HB, Giedraitis V, Tinmark F, Berglund L, Halvorsen K, Ingelsson M, Rosendahl E, Åberg AC. Timed up-and-go dual-task testing in the assessment of cognitive function: a mixed methods observational study for development of the UDDGait protocol. Int J Environ Res Public Health. 2020;17(5):1715.
    1. Cedervall Y, Halvorsen K, Aberg AC. A longitudinal study of gait function and characteristics of gait disturbance in individuals with Alzheimer's disease. Gait Posture. 2014;39(4):1022–1027.
    1. Montero-Odasso M, Almeida QJ, Bherer L, Burhan AM, Camicioli R, Doyon J, Fraser S, Muir-Hunter S, Li KZH, Liu-Ambrose T, et al. Consensus on Shared Measures of Mobility and Cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA) J Gerontol A Biol Sci Med Sci. 2018;74:897–909.
    1. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–728.
    1. Gillain S, Warzee E, Lekeu F, Wojtasik V, Maquet D, Croisier JL, Salmon E, Petermans J. The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer's disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Ann Phys Rehabil Med. 2009;52(6):453–474.
    1. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M, Borrie MJ, Hachinski VC, Wells J, Riccio PM, Schapira M, Sejdic E, Camicioli RM, et al. Association of Dual-Task Gait with Incident Dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurology. 2017;74(7):857–865.
    1. Herman T, Giladi N, Hausdorff JM. Properties of the 'timed up and go' test: more than meets the eye. Gerontology. 2011;57(3):203–210.
    1. Henry JD, Crawford JR, Phillips LH. Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. Neuropsychologia. 2004;42(9):1212–1222.
    1. Meagher J, Leonard M, Donoghue L, O'Regan N, Timmons S, Exton C, Cullen W, Dunne C, Adamis D, Maclullich AJ, et al. Months backward test: a review of its use in clinical studies. World J Psychiatry. 2015;5(3):305–314.

Source: PubMed

3
Suscribir