Impact of neoadjuvant androgen deprivation therapy on magnetic resonance imaging features in prostate cancer before radiotherapy

Ulrika Björeland, Tufve Nyholm, Joakim Jonsson, Mikael Skorpil, Lennart Blomqvist, Sara Strandberg, Katrine Riklund, Lars Beckman, Camilla Thellenberg-Karlsson, Ulrika Björeland, Tufve Nyholm, Joakim Jonsson, Mikael Skorpil, Lennart Blomqvist, Sara Strandberg, Katrine Riklund, Lars Beckman, Camilla Thellenberg-Karlsson

Abstract

Background and purpose: In locally advanced prostate cancer (PC), androgen deprivation therapy (ADT) in combination with whole prostate radiotherapy (RT) is the standard treatment. ADT affects the prostate as well as the tumour on multiparametric magnetic resonance imaging (MRI) with decreased PC conspicuity and impaired localisation of the prostate lesion. Image texture analysis has been suggested to be of aid in separating tumour from normal tissue. The aim of the study was to investigate the impact of ADT on baseline defined MRI features in prostate cancer with the goal to investigate if it might be of use in radiotherapy planning.

Materials and methods: Fifty PC patients were included. Multiparametric MRI was performed before, and three months after ADT. At baseline, a tumour volume was delineated on apparent diffusion coefficient (ADC) maps with suspected tumour content and a reference volume in normal prostatic tissue. These volumes were transferred to MRIs after ADT and were analysed with first-order -and invariant Haralick -features.

Results: At baseline, the median value and several of the invariant Haralick features of ADC, showed a significant difference between tumour and reference volumes. After ADT, only ADC median value could significantly differentiate the two volumes.

Conclusions: Invariant Haralick -features could not distinguish between baseline MRI defined PC and normal tissue after ADT. First-order median value remained significantly different in tumour and reference volumes after ADT, but the difference was less pronounced than before ADT.

Keywords: Androgen deprivation; GLCM; Prostate; Texture; mpMRI.

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ulrika Björeland, Lars Beckman, Sara Strandberg, Mikael Skorpil, Katrin Riklund and Camilla Thellenberg-Karlsson declare that they have no conflict of interest. Joakim Jonsson and Tufve Nyholm are shareholders in NONPI Medical AB. Lennart Blomqvist is cofounder of Collective Minds Radiology (www.cmrad.com).

© 2021 The Author(s).

Figures

Fig. 1
Fig. 1
Fiducial markers in CT (top row) and T2w MRI (bottom row) after ADT in three different locations. Fiducial markers are inserted after ADT. VOIs indicate the tumour VOI and reference VOI registered with r + DIR techniques from ADC at baseline.
Fig. 2
Fig. 2
Multiparametric MRI (ADC, T2w and Ktrans from DCE MRI) from a patient in the study. a-c are baseline, and d-f are post-ADT. White arrows indicate registration order. PSA at baseline: 48 ng/ml, PSA post ADT: 0.1 ng/ml. a) ADC at baseline: Tumour VOI = 0.5 × 10−3 mm2/s, Reference VOI = 1.5 × 10−3 mm2/s. b) T2w at baseline, volumes: CTV = 55 cm3, Tumour VOI = 2.9 cm3, Reference VOI = 5.7 cm3. c) Ktrans at baseline: Tumour VOI = 0.11 min−1, Reference VOI = 0.02 min−1. d) ADC after ADT: Tumour VOI = 1.0 × 10−3 mm2/s, Reference VOI = 1.0 × 10−3 mm2/s. e) T2w after ADT, volumes: CTV = 35 cm3, Tumour VOI = 1.4 cm3, Reference VOI = 4.3 cm3. f) Ktrans after ADT: Tumour VOI = 0.02 min−1, Reference VOI = 0.03 min−1.
Fig. 3
Fig. 3
Median values in box plot representation before and after ADT for different imaging occasions and different modalities. The result from comparison between different VOIs by Wilcoxon Signed Rank test with significance levels: Not Significant –, * (p = 0.8 ± 0.1 × 10−3 mm2/s, Tumour VOI after ADT = 0.9 ± 0.1 × 10−3 mm2/s, Reference VOI at baseline = 1.2 ± 0.2 × 10−3 mm2/s and Reference VOI after ADT = 1.0 ± 0.1 × 10−3 mm2/s. Median Ktrans: Tumour VOI at baseline VOI = 0.12 ± 0.07 min−1, Tumour VOI after ADT = 0.04 ± 0.02 min−1, Reference VOI at baseline = 0.08 ± 0.05 min−1 and Reference VOI after ADT = 0.04 ± 0.04 min−1.

References

    1. Barrett T., Gill A.B., Kataoka M.Y., Priest A.N., Joubert I., McLean M.A. DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: A feasibility study. Magn Reson Med. 2012;67:778–785. doi: 10.1002/mrm.23062.
    1. Kim A.Y., Kim C.K., Park S.Y., Park B.K. Diffusion-weighted imaging to evaluate for changes from androgen deprivation therapy in prostate cancer. Am J Roentgenol. 2014;203:W645–W650. doi: 10.2214/AJR.13.12277.
    1. Hötker A.M., Mazaheri Y., Zheng J., Moskowitz C.S., Berkowitz J., Lantos J.E. Prostate Cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI. Eur Radiol. 2015;25:2665–2672. doi: 10.1007/s00330-015-3688-1.
    1. Palacios D.A., Miyake M., Rosser C.J. Radiosensitisation in prostate cancer: Mechanisms and targets. BMC Urol. 2013;13:1. doi: 10.1186/1471-2490-13-4.
    1. Pucar D., Hricak H., Shukla-Dave A., Kuroiwa K., Drobnjak M., Eastham J. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys. 2007;69:62–69. doi: 10.1016/j.ijrobp.2007.03.065.
    1. Chopra S., Toi A., Taback N., Evans A., Haider M.A., Milosevic M. Pathological predictors for site of local recurrence after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012:82. doi: 10.1016/j.ijrobp.2011.05.035.
    1. Amini A., Westerly D.C., Waxweiler T.V., Ryan N., Raben D. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible? Med Dosim. 2015;40:256–261. doi: 10.1016/j.meddos.2015.02.002.
    1. ACR. Pi-Rads Version 2.1 2019.
    1. Koh D.-M., Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–1635. doi: 10.2214/AJR.06.1403.
    1. Borren A., Moman M.R., Groenendaal G., Boeken Kruger A.E., van Diest P.J., van der Groep P. Why prostate tumour delineation based on apparent diffusion coefficient is challenging: An exploration of the tissue microanatomy. Acta Oncol. 2013;52:1629–1636. doi: 10.3109/0284186X.2013.787164.
    1. Alonzi R., Padhani A.R., Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63:335–350. doi: 10.1016/j.ejrad.2007.06.028.
    1. Groenendaal G., van Vulpen M., Pereboom S.R., Poelma-Tap D., Korporaal J.G., Monninkhof E. The effect of hormonal treatment on conspicuity of prostate cancer: Implications for focal boosting radiotherapy. Radiother Oncol. 2012;103:233–238. doi: 10.1016/j.radonc.2011.12.007.
    1. Daniel M., Kuess P., Andrzejewski P., Nyholm T., Helbich T., Polanec S. Impact of androgen deprivation therapy on apparent diffusion coefficient and T2w MRI for histogram and texture analysis with respect to focal radiotherapy of prostate cancer. Strahlentherapie Und Onkol. 2019;195:402–411. doi: 10.1007/s00066-018-1402-3.
    1. Her E.J., Haworth A., Rowshanfarzad P., Ebert M.A. Progress towards patient-specific, spatially-continuous radiobiological dose prescription and planning in prostate cancer IMRT: An overview. Cancers (Basel) 2020:12. doi: 10.3390/cancers12040854.
    1. Patel N., Henry A., Scarsbrook A. The value of MR textural analysis in prostate cancer. Clin Radiol. 2019;74:876–885. doi: 10.1016/j.crad.2018.11.007.
    1. Stoyanova R., Takhar M., Tschudi Y., Ford J.C., Solórzano G., Erho N. Prostate cancer radiomics and the promise of radiogenomics. Transl Cancer Res. 2016;5:432–447. doi: 10.21037/tcr.2016.06.20.
    1. Peeken J.C., Bernhofer M., Wiestler B., Goldberg T., Cremers D., Rost B. Radiomics in radiooncology – Challenging the medical physicist. Phys Med. 2018;48:27–36. doi: 10.1016/j.ejmp.2018.03.012.
    1. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., van Stiphout R.G.P.M., Granton P. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–446. doi: 10.1016/j.ejca.2011.11.036.
    1. Yang F., Ford J.C., Dogan N., Padgett K.R., Breto A.L., Abramowitz M.C. Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol. 2018;7:445–458. doi: 10.21037/tau.2018.06.05.
    1. Haralick R., Shanmugam K., Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–621. doi: 10.1109/TSMC.1973.4309314.
    1. Wibmer A., Hricak H., Gondo T., Matsumoto K., Veeraraghavan H., Fehr D. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840–2850. doi: 10.1007/s00330-015-3701-8.
    1. Brynolfsson P., Nilsson D., Torheim T., Asklund T., Karlsson C.T., Trygg J. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci Rep. 2017;7:1–11. doi: 10.1038/s41598-017-04151-4.
    1. Löfstedt T., Brynolfsson P., Nyholm T., Garpebring A. Gray-level invariant Haralick texture features. PLoS One. 2019
    1. Klein S., Staring M., Murphy K., Viergever M.A., Pluim J. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205. doi: 10.1109/TMI.2009.2035616.
    1. Björeland U., Jonsson J., Alm M., Beckman L., Nyholm T., Thellenberg-Karlsson C. Inter-fraction movements of the prostate and pelvic lymph nodes during IGRT. J Radiat Oncol. 2018:1–10. doi: 10.1007/s13566-018-0366-3.
    1. Garpebring A., Brynolfsson P., Kuess P., Georg D., Helbich T.H., Nyholm T. Density estimation of grey-level co-occurrence matrices for image texture analysis. Phys Med Biol. 2018:63. doi: 10.1088/1361-6560/aad8ec.
    1. Joseph I.B.J.K., Nelson J.B., Denmeade S.R., Isaacs J.T. Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin Cancer Res. 1997;3:2507–2511.
    1. Lemaître G., Martí R., Freixenet J., Vilanova J.C., Walker P.M., Meriaudeau F. Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput Biol Med. 2015;60:8–31. doi: 10.1016/j.compbiomed.2015.02.009.

Source: PubMed

3
Suscribir