Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum

Brad J Schoenfeld, Jozo Grgic, Derrick W Van Every, Daniel L Plotkin, Brad J Schoenfeld, Jozo Grgic, Derrick W Van Every, Daniel L Plotkin

Abstract

Loading recommendations for resistance training are typically prescribed along what has come to be known as the "repetition continuum", which proposes that the number of repetitions performed at a given magnitude of load will result in specific adaptations. Specifically, the theory postulates that heavy load training optimizes increases maximal strength, moderate load training optimizes increases muscle hypertrophy, and low-load training optimizes increases local muscular endurance. However, despite the widespread acceptance of this theory, current research fails to support some of its underlying presumptions. Based on the emerging evidence, we propose a new paradigm whereby muscular adaptations can be obtained, and in some cases optimized, across a wide spectrum of loading zones. The nuances and implications of this paradigm are discussed herein.

Keywords: high-load; hypertrophy; low-load; muscular endurance; strength.

Conflict of interest statement

The authors report no conflicts of interest in the preparation of this paper.

Figures

Figure 1
Figure 1
Schematic of the repetition continuum proposing that muscular adaptations are obtained in a load-specific manner. Repetition maximum (RM).
Figure 2
Figure 2
Summary of current evidence on load-specific adaptations from resistance training.

References

    1. Kraemer W.J., Ratamess N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004;36:674–688. doi: 10.1249/01.MSS.0000121945.36635.61.
    1. American College of Sports Medicine Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009;41:687–708. doi: 10.1249/MSS.0b013e3181915670. American College of Sports Medicine Position Stand.
    1. Haff G.G., Triplett N.T. Essentials of Strength and Conditioning. Human Kinetics; Champaign, IL, USA: 2015.
    1. DeLorme T.L. Restoration of muscle power by heavy resistance exercises. J. Bone Jt. Surg. 1945;27:645–667.
    1. Anderson T., Kearney J.T. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res. Q. Exerc. Sport. 1982;53:1–7. doi: 10.1080/02701367.1982.10605218.
    1. Stone M.H., Coulter S.P. Strength/endurance effects from three resistance training protocols with women. J. Strength Cond. Res. 1994;8:231–234.
    1. Stone M. Position/policy statement and literature review for the National Strength and Conditioning Association on “Explosive Exercise”. NSCA J. 1993;15:7–15.
    1. Jenkins N.D.M., Miramonti A.A., Hill E.C., Smith C.M., Cochrane-Snyman K.C., Housh T.J., Cramer J.T. Greater Neural Adaptations following High- vs. Low-Load Resistance Training. Front. Physiol. 2017;8:331. doi: 10.3389/fphys.2017.00331.
    1. Vigotsky A.D., Bryanton M.A., Nuckols G., Beardsley C., Contreras B., Evans J., Schoenfeld B.J. Biomechanical, Anthropometric, and Psychological Determinants of Barbell Back Squat Strength. J. Strength Cond. Res. 2019;33(Suppl. 1):S26–S35. doi: 10.1519/JSC.0000000000002535.
    1. Schoenfeld B.J., Grgic J., Ogborn D., Krieger J.W. Strength and Hypertrophy Adaptations between Low- vs. High-Load Resistance Training: A Systematic Review and Metaet-analysis. J. Strength Cond. Res. 2017;31:3508–3523. doi: 10.1519/JSC.0000000000002200.
    1. Csapo R., Alegre L.M. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand. J. Med. Sci. Sports. 2016;26:995–1006. doi: 10.1111/sms.12536.
    1. Mattocks K.T., Buckner S.L., Jessee M.B., Dankel S.J., Mouser J.G., Loenneke J.P. Practicing the Test Produces Strength Equivalent to Higher Volume Training. Med. Sci. Sports Exerc. 2017;49:1945–1954. doi: 10.1249/MSS.0000000000001300.
    1. Ogasawara R., Loenneke J.P., Thiebaud R.S., Abe T. Low-Load Bench Press Training to Fatigue Results in Muscle Hypertrophy Similar to High-Load Bench Press Training. Int. J. Clin. Med. 2013;4:114–121. doi: 10.4236/ijcm.2013.42022.
    1. Rana S.R., Chleboun G.S., Gilders R.M., Hagerman F.C., Herman J.R., Hikida R.S., Kushnick M.R., Staron R.S., Toma K. Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. J. Strength Cond. Res. 2008;22:119–127. doi: 10.1519/JSC.0b013e31815f30e7.
    1. Kerr D., Morton A., Dick I., Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J. Bone Miner. Res. 1996;11:218–225. doi: 10.1002/jbmr.5650110211.
    1. Morton R.W., Oikawa S.Y., Wavell C.G., Mazara N., McGlory C., Quadrilatero J., Baechler B.L., Baker S.K., Phillips S.M. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J. Appl. Physiol. 2016;121:129–138. doi: 10.1152/japplphysiol.00154.2016.
    1. Schoenfeld B.J., Peterson M.D., Ogborn D., Contreras B., Sonmez G.T. Effects of Low- Versus High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015;29:2954–2963. doi: 10.1519/JSC.0000000000000958.
    1. Young W.B. Transfer of strength and power training to sports performance. Int. J. Sports Physiol. Perform. 2006;1:74–83. doi: 10.1123/ijspp.1.2.74.
    1. Campos G.E.R., Luecke T.J., Wendeln H.K., Toma K., Hagerman F.C., Murray T.F., Ragg K.E., Ratamess N.A., Kraemer W.J., Staron R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002;88:50–60. doi: 10.1007/s00421-002-0681-6.
    1. Schoenfeld B.J., Ratamess N.A., Peterson M.D., Contreras B., Tiryaki-Sonmez G., Alvar B.A. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J. Strength Cond. Res. 2014;28:2909–2918. doi: 10.1519/JSC.0000000000000480.
    1. Schoenfeld B.J., Contreras B., Vigotsky A.D., Peterson M. Differential Effects of Heavy Versus Moderate Loads on Measures of Strength and Hypertrophy in Resistance-Trained Men. J. Sports Sci. Med. 2016;15:715–722.
    1. Mangine G.T., Hoffman J.R., Gonzalez A.M., Townsend J.R., Wells A.J., Jajtner A.R., Beyer K.S., Boone C.H., Miramonti A.A., Wang R., et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol. Rep. 2015;3 doi: 10.14814/phy2.12472.
    1. Chestnut J., Docherty D. The effects of 4 and 10 repetition maximum weight-training protocols on neuromuscular adaptations in untrained men. J. Strength Cond. Res. 1999;13:353–359.
    1. Klemp A., Dolan C., Quiles J.M., Blanco R., Zoeller R.F., Graves B.S., Zourdos M.C. Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Appl. Physiol. Nutr. Metab. 2016;41:699–705. doi: 10.1139/apnm-2015-0707.
    1. Spitz R.W., Bell Z.W., Wong V., Yamada Y., Song J.S., Buckner S.L., Abe T., Loenneke J.P. Strength testing or strength training: Considerations for future research. Physiol. Meas. 2020;41:09TR01. doi: 10.1088/1361-6579/abb1fa.
    1. Schoenfeld B.J., Vigotsky A.D., Grgic J., Haun C., Contreras B., Delcastillo K., Francis A., Cote G., Alto A. Do the anatomical and physiological properties of a muscle determine its adaptive response to different loading protocols? Physiol. Rep. 2020;8:e14427. doi: 10.14814/phy2.14427.
    1. Aagaard P., Simonsen E.B., Trolle M., Bangsbo J., Klausen K. Specificity of training velocity and training load on gains in isokinetic knee joint strength. Acta Physiol. Scand. 1996;156:123–129. doi: 10.1046/j.1365-201X.1996.438162000.x.
    1. Van Roie E., Delecluse C., Coudyzer W., Boonen S., Bautmans I. Strength training at high versus low external resistance in older adults: Effects on muscle volume, muscle strength, and force-velocity characteristics. Exp. Gerontol. 2013;48:1351–1361. doi: 10.1016/j.exger.2013.08.010.
    1. Van Roie E., Bautmans I., Boonen S., Coudyzer W., Kennis E., Delecluse C. Impact of external resistance and maximal effort on force-velocity characteristics of the knee extensors during strengthening exercise: A randomized controlled experiment. J. Strength Cond. Res. 2013;27:1118–1127. doi: 10.1519/JSC.0b013e3182606e35.
    1. Hisaeda H., Miyagawa K., Kuno S., Fukunaga T., Muraoka I. Influence of two different modes of resistance training in female subjects. Ergonomics. 1996;39:842–852. doi: 10.1080/00140139608964505.
    1. Jessee M.B., Buckner S.L., Mouser J.G., Mattocks K.T., Dankel S.J., Abe T., Bell Z.W., Bentley J.P., Loenneke J.P. Muscle Adaptations to High-Load Training and Very Low-Load Training with and without Blood Flow Restriction. Front. Physiol. 2018;9:1448. doi: 10.3389/fphys.2018.01448.
    1. Haun C.T., Vann C.G., Roberts B.M., Vigotsky A.D., Schoenfeld B.J., Roberts M.D. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front. Physiol. 2019;10:247. doi: 10.3389/fphys.2019.00247.
    1. Hagstrom A.D., Marshall P.W., Halaki M., Hackett D.A. The Effect of Resistance Training in Women on Dynamic Strength and Muscular Hypertrophy: A Systematic Review with Meta-analysis. Sports Med. 2020;50:1075–1093. doi: 10.1007/s40279-019-01247-x.
    1. Schoenfeld B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010;24:2857–2872. doi: 10.1519/JSC.0b013e3181e840f3.
    1. Hackett D.A., Johnson N.A., Chow C.M. Training practices and ergogenic aids used by male bodybuilders. J. Strength Cond. Res. 2013;27:1609–1617. doi: 10.1519/JSC.0b013e318271272a.
    1. Schoenfeld B.J. Postexercise hypertrophic adaptations: A reexamination of the hormone hypothesis and its applicability to resistance training program design. J. Strength Cond. Res. 2013;27:1720–1730. doi: 10.1519/JSC.0b013e31828ddd53.
    1. Kumar V., Selby A., Rankin D., Patel R., Atherton P., Hildebrandt W., Williams J., Smith K., Seynnes O., Hiscock N., et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 2009;587:211–217. doi: 10.1113/jphysiol.2008.164483.
    1. Holm L., van Hall G., Rose A.J., Miller B.F., Doessing S., Richter E.A., Kjaer M. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010;298:E257–E269. doi: 10.1152/ajpendo.00609.2009.
    1. Burd N.A., West D.W., Staples A.W., Atherton P.J., Baker J.M., Moore D.R., Holwerda A.M., Parise G., Rennie M.J., Baker S.K., et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE. 2010;5:e12033. doi: 10.1371/journal.pone.0012033.
    1. Popov D.V., Lysenko E.A., Bachinin A.V., Miller T.F., Kurochkina N.S., Kravchenko I.V., Furalyov V.A., Vinogradova O.L. Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve. 2015;51:434–442. doi: 10.1002/mus.24314.
    1. Lysenko E.A., Popov D.V., Vepkhvadze T.F., Sharova A.P., Vinogradova O.L. Signaling responses to high and moderate load strength exercise in trained muscle. Physiol. Rep. 2019;7:e14100. doi: 10.14814/phy2.14100.
    1. Lasevicius T., Schoenfeld B.J., Silva-Batista C., Barros T.S., Aihara A.Y., Brendon H., Longo A.R., Tricoli V., Peres B.A., Teixeira E.L. Muscle Failure Promotes Greater Muscle Hypertrophy in Low-Load but Not in High-Load Resistance Training. J. Strength Cond. Res. 2019 doi: 10.1519/JSC.0000000000003454.
    1. Mitchell C.J., Churchward-Venne T.A., Parise G., Bellamy L., Baker S.K., Smith K., Atherton P.J., Phillips S.M. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS ONE. 2014;9:e89431. doi: 10.1371/journal.pone.0089431.
    1. Wernbom M., Augustsson J., Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37:225–264. doi: 10.2165/00007256-200737030-00004.
    1. Straight C.R., Fedewa M.V., Toth M.J., Miller M.S. Improvements in skeletal muscle fiber size with resistance training are age-dependent in older adults: A systematic review and meta-analysis. J. Appl. Physiol. 2020;129:392–403. doi: 10.1152/japplphysiol.00170.2020.
    1. Schoenfeld B.J., Ogborn D., Krieger J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017;35:1073–1082. doi: 10.1080/02640414.2016.1210197.
    1. Peterson M.D., Pistilli E., Haff G.G., Hoffman E.P., Gordon P.M. Progression of volume load and muscular adaptation during resistance exercise. Eur. J. Appl. Physiol. 2011;111:1063–1071. doi: 10.1007/s00421-010-1735-9.
    1. Lopes C.R., Aoki M.S., Crisp A.H., de Mattos R.S., Lins M.A., da Mota G.R., Schoenfeld B.J., Marchetti P.H. The effect of different resistance training load schemes on strength and body composition in trained men. J. Hum. Kinet. 2017;1:177–186. doi: 10.1515/hukin-2017-0081.
    1. Holm L., Reitelseder S., Pedersen T.G., Doessing S., Petersen S.G., Flyvbjerg A., Andersen J.L., Aagaard P., Kjaer M. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J. Appl. Physiol. 2008;105:1454–1461. doi: 10.1152/japplphysiol.90538.2008.
    1. Schoenfeld B.J., Pope Z.K., Benik F.M., Hester G.M., Sellers J., Nooner J.L., Schnaiter J.A., Bond-Williams K.E., Carter A.S., Ross C.L., et al. Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance-trained men. J. Strength Cond. Res. 2016;30:1805–1812. doi: 10.1519/JSC.0000000000001272.
    1. McKendry J., Perez-Lopez A., McLeod M., Luo D., Dent J.R., Smeuninx B., Yu J., Taylor A.E., Philp A., Breen L. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Exp. Physiol. 2016;101:866–882. doi: 10.1113/EP085647.
    1. Grgic J., Schoenfeld B.J. Are the Hypertrophic Adaptations to High and Low-Load Resistance Training Muscle Fiber Type Specific? Front. Physiol. 2018;9:402. doi: 10.3389/fphys.2018.00402.
    1. Ahmetov I.I., Vinogradova O.L., Williams A.G. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int. J. Sport Nutr. Exerc. Metab. 2012;22:292–303. doi: 10.1123/ijsnem.22.4.292.
    1. Gundermann D. Ph.D. Thesis. The University of Texas Medical Branch; Galveston, TX, USA: 2016. Mechanisms of Blood Flow Restriction Exercise in Skeletal Muscle Adaptations.
    1. Jakobsgaard J.E., Christiansen M., Sieljacks P., Wang J., Groennebaek T., de Paoli F., Vissing K. Impact of blood flow-restricted bodyweight exercise on skeletal muscle adaptations. Clin. Physiol. Funct. Imaging. 2018;38:965–975. doi: 10.1111/cpf.12509.
    1. Bjornsen T., Wernbom M., Lovstad A., Paulsen G., D’Souza R.F., Cameron-Smith D., Flesche A., Hisdal J., Berntsen S., Raastad T. Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. J. Appl. Physiol. 2019;126:578–592. doi: 10.1152/japplphysiol.00397.2018.
    1. Bjornsen T., Wernbom M., Kirketeig A., Paulsen G., Samnøy L., Bækken L., Cameron-Smith D., Berntsen S., Raastad T. Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters. Med. Sci. Sports Exerc. 2019;51:288–298. doi: 10.1249/MSS.0000000000001775.
    1. Burd N.A., Moore D.R., Mitchell C.J., Phillips S.M. Big claims for big weights but with little evidence. Eur. J. Appl. Physiol. 2012;113:267–268. doi: 10.1007/s00421-012-2527-1.
    1. Farup J., de Paoli F., Bjerg K., Riis S., Ringgard S., Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand. J. Med. Sci. Sports. 2015;25:754–763. doi: 10.1111/sms.12396.
    1. Ampomah K., Amano S., Wages N.P., Volz L., Clift R., Ludin A.F.M., Nakazawa M., Law T.D., Manini T.M., Thomas J.S., et al. Blood Flow-restricted Exercise Does Not Induce a Cross-Transfer of Effect: A Randomized Controlled Trial. Med. Sci. Sports Exerc. 2019;51:1817–1827. doi: 10.1249/MSS.0000000000001984.
    1. Hwang P.S., Willoughby D.S. Mechanisms Behind Blood Flow-Restricted Training and its Effect Toward Muscle Growth. J. Strength Cond. Res. 2019;33:S167–S179. doi: 10.1519/JSC.0000000000002384.
    1. Pearson S.J., Hussain S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45:187–200. doi: 10.1007/s40279-014-0264-9.
    1. Haun C.T., Mumford P.W., Roberson P.A., Romero M.A., Mobley C.B., Kephart W.C., Anderson R.G., Colquhoun R.J., Muddle T.W.D., Luera M.J., et al. Molecular, neuromuscular, and recovery responses to light versus heavy resistance exercise in young men. Physiol. Rep. 2017;5:e13457. doi: 10.14814/phy2.13457.
    1. Schoenfeld B.J., Contreras B., Willardson J.M., Fontana F., Tiryaki-Sonmez G. Muscle activation during low- versus high-load resistance training in well-trained men. Eur. J. Appl. Physiol. 2014;114:2491–2497. doi: 10.1007/s00421-014-2976-9.
    1. Schoenfeld B.J., Contreras B., Vigotsky A., Sonmez G.T., Fontana F. Upper body muscle activation during low- versus high-load resistance exercise in the bench press. Isokinet. Exerc. Sci. 2016;24:217–224. doi: 10.3233/IES-160620.
    1. Jenkins N.D., Housh T.J., Bergstrom H.C., Cochrane K.C., Hill E.C., Smith C.M., Johnson G.O., Schmidt R.J., Cramer J.T. Muscle activation during three sets to failure at 80 vs. 30% 1RM resistance exercise. Eur. J. Appl. Physiol. 2015;115:2335–2347. doi: 10.1007/s00421-015-3214-9.
    1. Morton R.W., Sonne M.W., Farias Zuniga A., Mohammad I.Y.Z., Jones A., McGlory C., Keir P.J., Potvin J.R., Phillips S.M. Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. J. Physiol. 2019;597:4601–4613. doi: 10.1113/JP278056.
    1. Vigotsky A.D., Halperin I., Lehman G.J., Trajano G.S., Vieira T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2018;8:985. doi: 10.3389/fphys.2017.00985.
    1. Muddle T.W.D., Colquhoun R.J., Magrini M.A., Luera M.J., DeFreitas J.M., Jenkins N.D.M. Effects of fatiguing, submaximal high- versus low-torque isometric exercise on motor unit recruitment and firing behavior. Physiol. Rep. 2018;6:e13675. doi: 10.14814/phy2.13675.
    1. Vinogradova O.L., Popov D.V., Netreba A.I., Tsvirkun D.V., Kurochkina N.S., Bachinin A.V., Bravyĭ I.R., Liubaeva E.V., Lysenko E.A., Miller T.F., et al. Optimization of training: Development of a new partial load mode of strength training. Fiziol. Cheloveka. 2013;39:71–85.
    1. Netreba A., Popov D., Bravyy Y., Lyubaeva E., Terada M., Ohira T., Okabe H., Vinogradova O., Ohira Y. Responses of knee extensor muscles to leg press training of various types in human. Ross Fiziol Zh Im I M Sechenova. 2013;99:406–416.
    1. Netreba A.I., Popov D.V., Liubaeva E.V., Bravyĭ I.R., Prostova A.B., Lemesheva I.S., Vinogradova O.L. Physiological effects of using the low intensity strength training without relaxation in single-joint and multi-joint movements. Ross Fiziol Zh Im I M Sechenova. 2007;93:27–38.
    1. Mitchell C.J., Churchward-Venne T.A., West D.D., Burd N.A., Breen L., Baker S.K., Phillips S.M. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. 2012;113:71–77. doi: 10.1152/japplphysiol.00307.2012.
    1. Lim C., Kim H.J., Morton R.W., Harris R., Phillips S.M., Jeong T.S., Kim C.K. Resistance Exercise-induced Changes in Muscle Phenotype Are Load Dependent. Med. Sci. Sports Exerc. 2019;51:2578–2585. doi: 10.1249/MSS.0000000000002088.
    1. Schuenke M.D., Herman J.R., Gliders R.M., Hagerman F.C., Hikida R.S., Rana S.R., Ragg K.E., Staron R.S. Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur. J. Appl. Physiol. 2012;112:3585–3595. doi: 10.1007/s00421-012-2339-3.
    1. Grgic J. The Effects of Low-Load vs. High-Load Resistance Training on Muscle Fiber Hypertrophy: A Meta-Analysis. J. Hum. Kinet. 2020;74:51–58.
    1. Counts B.R., Buckner S.L., Dankel S.J., Jessee M.B., Mattocks K.T., Mouser J.G., Laurentino G.C., Loenneke J.P. The acute and chronic effects of “NO LOAD” resistance training. Physiol. Behav. 2016;164 Pt A:345–352. doi: 10.1016/j.physbeh.2016.06.024.
    1. Lasevicius T., Ugrinowitsch C., Schoenfeld B.J., Roschel H., Tavares L.D., De Souza E.O., Laurentino G., Tricoli V. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur. J. Sport Sci. 2018;18:772–780. doi: 10.1080/17461391.2018.1450898.
    1. Buckner S.L., Jessee M.B., Dankel S.J., Mattocks K.T., Mouser J.G., Bell Z.W., Abe T., Bentley J.P., Loenneke J.P. Blood flow restriction does not augment low force contractions taken to or near task failure. Eur. J. Sport Sci. 2020;20:650–659. doi: 10.1080/17461391.2019.1664640.
    1. Fisher J.P., Steele J. Heavier and lighter load resistance training to momentary failure produce similar increases in strength with differing degrees of discomfort. Muscle Nerve. 2017;56:797–803. doi: 10.1002/mus.25537.
    1. Ribeiro A.S., Dos Santos E.D., Nunes J.P., Schoenfeld B.J. Acute Effects of Different Training Loads on Affective Responses in Resistance-trained Men. Int. J. Sports Med. 2019;40:850–855. doi: 10.1055/a-0997-6680.
    1. Deschenes M.R., Kraemer W.J. Performance and physiologic adaptations to resistance training. Am. J. Phys. Med. Rehabil. 2002;81(Suppl. 11):S3–S16. doi: 10.1097/00002060-200211001-00003.
    1. Dos Santos L., Ribeiro A.S., Cavalcante E.F., Nabuco H.C., Antunes M., Schoenfeld B.J., Cyrino E.S. Effects of Modified Pyramid System on Muscular Strength and Hypertrophy in Older Women. Int. J. Sports Med. 2018;39:613–618. doi: 10.1055/a-0634-6454.
    1. Fischetti F., Cataldi S., BonaVolontà V., FrancaVilla V.C., Panessa P., Messina G. Hypertrophic adaptations of lower limb muscles in response to three difference resistance training regimens. Acta Med. 2020;36:3235.
    1. Schoenfeld B.J., Contreras B., Ogborn D., Galpin A., Krieger J., Sonmez G.T. Effects of varied versus constant loading zones on muscular adaptations in well-trained men. Int. J. Sports Med. 2016;37:442–447. doi: 10.1055/s-0035-1569369.
    1. Carvalho L., Junior R.M., Truffi G., Serra A., Sander R., De Souza E.O., Barroso R. Is stronger better? Influence of a strength phase followed by a hypertrophy phase on muscular adaptations in resistance-trained men. Res. Sports Med. 2020:1–11. doi: 10.1080/15438627.2020.1853546.
    1. Hunter S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. 2014;210:768–789. doi: 10.1111/apha.12234.
    1. Au J.S., Oikawa S.Y., Morton R.W., Macdonald M.J., Phillips S.M. Arterial Stiffness Is Reduced Regardless of Resistance Training Load in Young Men. Med. Sci. Sports Exerc. 2017;49:342–348. doi: 10.1249/MSS.0000000000001106.
    1. Dinyer T.K., Byrd M.T., Garver M.J., Rickard A.J., Miller W.M., Burns S., Clasey J.L., Bergstrom H.C. Low-Load vs. High-Load Resistance Training to Failure on One Repetition Maximum Strength and Body Composition in Untrained Women. J. Strength Cond. Res. 2019;33:1737–1744. doi: 10.1519/JSC.0000000000003194.
    1. Fink J., Kikuchi N., Yoshida S., Terada K., Nakazato K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus. 2016;5:698. doi: 10.1186/s40064-016-2333-z.
    1. Fink J., Kikuchi N., Nakazato K. Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clin. Physiol. Funct. Imaging. 2018;38:261–268. doi: 10.1111/cpf.12409.
    1. Franco C.M.C., Carneiro M.A.D.S., Alves L.T.H., Junior G.N.O., de Sousa J.F.R., Orsatti F.L. Lower-Load is More Effective Than Higher-Load Resistance Training in Increasing Muscle Mass in Young Women. J. Strength Cond. Res. 2019;33(Suppl. 1):S152–S158. doi: 10.1519/JSC.0000000000002970.
    1. Nobrega S.R., Ugrinowitsch C., Pintanel L., Barcelos C., Libardi C.A. Effect of Resistance Training to Muscle Failure vs. Volitional Interruption at High- and Low-Intensities on Muscle Mass and Strength. J. Strength Cond. Res. 2018;32:162–169. doi: 10.1519/JSC.0000000000001787.
    1. Ozaki H., Kubota A., Natsume T., Loenneke J.P., Abe T., Machida S., Naito H. Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: A pilot study. J. Sports Sci. 2018;36:691–696. doi: 10.1080/02640414.2017.1331042.
    1. Popov D.V., Tsvirkun D.V., Netreba A.I., Tarasova O.S., Prostova A.B., Larina I.M., Borovik A.S., Vinogradova O.L. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Hum. Physiol. 2006;32:609–614. doi: 10.1134/S0362119706050161.
    1. Stefanaki D.G.A., Dzulkarnain A., Gray S.R. Comparing the effects of low and high load resistance exercise to failure on adaptive responses to resistance exercise in young women. J. Sports Sci. 2019;37:1375–1380. doi: 10.1080/02640414.2018.1559536.
    1. Tanimoto M., Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J. Appl. Physiol. 2006;100:1150–1157. doi: 10.1152/japplphysiol.00741.2005.
    1. Tanimoto M., Sanada K., Yamamoto K., Kawano H., Gando Y., Tabata I., Ishii N., Miyachi M. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J. Strength Cond. Res. 2008;22:1926–1938. doi: 10.1519/JSC.0b013e318185f2b0.
    1. Weiss L.W., Coney H.D., Clark F.C. Differential functional adaptations to short-term low-, moderate- and high-repetition weight training. J. Strength Cond. Res. 1999;13:236–241.

Source: PubMed

3
Suscribir