Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats

Hailey A Parry, Wesley C Kephart, Petey W Mumford, Matthew A Romero, C Brooks Mobley, Yufeng Zhang, Michael D Roberts, Andreas N Kavazis, Hailey A Parry, Wesley C Kephart, Petey W Mumford, Matthew A Romero, C Brooks Mobley, Yufeng Zhang, Michael D Roberts, Andreas N Kavazis

Abstract

Ketogenic diets (KD) consist of high fat, moderate protein and low carbohydrates. Studies have suggested that KD may influence oxidative stress by affecting mitochondrial quantity and/or quality, and perhaps lengthen lifespan. Therefore, we determined the effects of KD on multi-organ mitochondria volume and oxidative stress markers in rats. Ten month-old male Fisher 344 rats (n = 8 per group) were provided with one of two isocaloric diets: standard chow (SC) or KD. Rats were euthanized if: a) vitality scores exceeded a score of 16, b) rapid weight loss, or c) veterinarian deemed euthanasia necessary. The median lifespan of rats was higher in KD (762 days) compared to SC (624 days). Citrate synthase activity (i.e. estimate of mitochondria volume) was higher in the liver (p = 0.034) and gastrocnemius (p = 0.041) of KD compared to SC. Liver superoxide dismutase 1 and catalase antioxidant protein levels were higher in KD, albeit not significant (p = 0.094 and p = 0.062, respectively). No significant differences in protein levels of other antioxidants or markers of lipid and protein oxidative damage were observed in either the gastrocnemius, liver, or brain. In summary, KD increased mitochondria volume in liver and gastrocnemius and median lifespan in rats. Additionally, our data show that the increase in mitochondrial volume occurred without changes in oxidative damage or antioxidant protein levels in the gastrocnemius, liver, or brain.

Keywords: Metabolism; Nutrition; Physiology.

Figures

Fig. 1
Fig. 1
Body and organ masses. n = 8 per group. No significant differences were detected for body mass (A) (p = 0.507), liver (B) (p = 0.314), gastrocnemius (C) (p = 0.509), right inguinal adipose tissue (D) (p = 0.475), mesenteric adipose tissue (E) (p = 0.384), or omental adipose tissue (F) (p = 0.228) between SC and KD rats.
Fig. 2
Fig. 2
Citrate synthase activity. n = 8 per group. * KD rats had significantly higher liver (A) (p = 0.034) and gastrocnemius (B) (p = 0.041) citrate synthase activity than SC rats. No significant difference was detected for brain (C) citrate synthase activity (p = 0.679).
Fig. 3
Fig. 3
Antioxidant proteins and markers of oxidative damage in liver. n = 8 per group. A trend observed was detected for SOD1 (A) (p = 0.094) and CAT (D) (p = 0.062). No significance was observed for SOD2 (B) (p = 0.315) and GPX (C) (p = 0.473) or the two markers of oxidative damage, 4-HNE (E) (p = 0.276) and OxyBlot (F) (p = 0.197). Representative western blot images are shown to the right of each bar graph. Full images of western blots are presented in supplementary Fig. 1 and 2.
Fig. 4
Fig. 4
Antioxidant proteins and markers of oxidative damage in the gastrocnemius. n = 8 per group. No significant differences were detected for SOD1 (A) (p = 0.769), SOD2 (B) (p = 0.834), CAT (C) (p = 0.539), and GPX (D) (p = 0.186) or the two markers of oxidative damage, 4-HNE (E) (p = 0.455) and OxyBlot (F) (p = 0.197). Representative western blot images are shown to the right of each bar graph. Full images of western blots are presented in supplementary Fig. 1 and 2.
Fig. 5
Fig. 5
Antioxidant proteins and markers of oxidative damage in brain. n = 8 per group. No significant differences were detected for SOD1 (A) (p = 0.234), SOD2 (B) (p = 0.570), CAT (C) (p = 0.125), and GPX (D) (p = 0.135) or the two markers of oxidative damage, 4-HNE (E) (p = 0.452) and OxyBlot (F) (p = 0.625). Representative western blot images are shown to the right of each bar graph. Full images of western blots are presented in supplementary Fig. 1 and 2.
Supplementary Figure 1
Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 2

References

    1. Gupta L., Khandelwal D., Kalra S., Gupta P., Dutta D., Aggarwal S. Ketogenic diet in endocrine disorders: current perspectives. J. Postgrad. Med. 2017;63:242–251.
    1. Kossoff E.H., Rho J.M. Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics. 2009;6:406–414.
    1. Wylie-Rosett J., Aebersold K., Conlon B., Isasi C.R., Ostrovsky N.W. Health effects of low-carbohydrate diets: where should new research go? Curr. Diab. Rep. 2013;13:271–278.
    1. Baranano K.W., Hartman A.L. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr. Treat. Options Neurol. 2008;10:410–419.
    1. Bough K.J., Valiyil R., Han F.T., Eagles D.A. Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Res. 1999;35:21–28.
    1. Cervenka M.C., Henry-Barron B.J., Kossoff E.H. Is there a role for diet monotherapy in adult epilepsy? Epilepsy Behav. Case Rep. 2017;7:6–9.
    1. Brehm B.J., Seeley R.J., Daniels S.R., D'Alessio D.A. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J. Clin. Endocrinol. Metab. 2003;88:1617–1623.
    1. Gardner C.D., Kiazand A., Alhassan S., Kim S., Stafford R.S., Balise R.R., Kraemer H.C., King A.C. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA. 2007;297:969–977.
    1. Jabekk P.T., Moe I.A., Meen H.D., Tomten S.E., Hostmark A.T. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr. Metab. (Lond) 2010;7:17.
    1. Shai I., Schwarzfuchs D., Henkin Y., Shahar D.R., Witkow S., Greenberg I., Golan R., Fraser D., Bolotin A., Vardi H., Tangi-Rozental O., Zuk-Ramot R., Sarusi B., Brickner D., Schwartz Z., Sheiner E., Marko R., Katorza E., Thiery J., Fiedler G.M., Bluher M., Stumvoll M., Stampfer M.J., Dietary Intervention Randomized Controlled Trial G Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008;359:229–241.
    1. Paoli A., Grimaldi K., D'Agostino D., Cenci L., Moro T., Bianco A., Palma A. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J. Int. Soc. Sports Nutr. 2012;9:34.
    1. Volek J., Sharman M., Gomez A., Judelson D., Rubin M., Watson G., Sokmen B., Silvestre R., French D., Kraemer W. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr. Metab. (Lond) 2004;1:13.
    1. Volek J.S., Freidenreich D.J., Saenz C., Kunces L.J., Creighton B.C., Bartley J.M., Davitt P.M., Munoz C.X., Anderson J.M., Maresh C.M., Lee E.C., Schuenke M.D., Aerni G., Kraemer W.J., Phinney S.D. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65:100–110.
    1. Hyatt H.W., Kephart W.C., Holland A.M., Mumford P., Mobley C.B., Lowery R.P., Roberts M.D., Wilson J.M., Kavazis A.N. A ketogenic diet in rodents elicits improved mitochondrial adaptations in response to resistance exercise training compared to an isocaloric western diet. Front. Physiol. 2016;7:533.
    1. Kulak D., Polotsky A.J. Should the ketogenic diet be considered for enhancing fertility? Maturitas. 2013;74:10–13.
    1. Roberts M.N., Wallace M.A., Tomilov A.A., Zhou Z., Marcotte G.R., Tran D., Perez G., Gutierrez-Casado E., Koike S., Knotts T.A., Imai D.M., Griffey S.M., Kim K., Hagopian K., McMackin M.Z., Haj F.G., Baar K., Cortopassi G.A., Ramsey J.J., Lopez-Dominguez J.A. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 2017;26:539–546 e535.
    1. Bokov A., Chaudhuri A., Richardson A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 2004;125:811–826.
    1. Sohal R.S., Ku H.H., Agarwal S., Forster M.J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 1994;74:121–133.
    1. Kephart W.C., Mumford P.W., Mao X., Romero M.A., Hyatt H.W., Zhang Y., Mobley C.B., Quindry J.C., Young K.C., Beck D.T., Martin J.S., McCullough D.J., D'Agostino D.P., Lowery R.P., Wilson J.M., Kavazis A.N., Roberts M.D. The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats. Nutrients. 2017;9
    1. Newman J.C., Covarrubias A.J., Zhao M., Yu X., Gut P., Ng C.P., Huang Y., Haldar S., Verdin E. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 2017;26 547-557 e548.
    1. Douris N., Melman T., Pecherer J.M., Pissios P., Flier J.S., Cantley L.C., Locasale J.W., Maratos-Flier E. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim. Biophys. Acta. 2015;1852:2056–2065.
    1. Phillips P.M., Jarema K.A., Kurtz D.M., MacPhail R.C. An observational assessment method for aging laboratory rats. J. Am. Assoc. Lab Anim. Sci. 2010;49:792–799.
    1. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254.
    1. Trounce I.A., Kim Y.L., Jun A.S., Wallace D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509.
    1. Gasior M., Rogawski M.A., Hartman A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 2006;17:431–439.
    1. Noakes M., Foster P.R., Keogh J.B., James A.P., Mamo J.C., Clifton P.M. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr. Metab. (Lond) 2006;3:7.
    1. Paoli A., Rubini A., Volek J.S., Grimaldi K.A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013;67:789–796.
    1. Greco T., Glenn T.C., Hovda D.A., Prins M.L. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J. Cere.b Blood Flow Metab. 2016;36:1603–1613.
    1. Jarrett S.G., Milder J.B., Liang L.P., Patel M. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 2008;106:1044–1051.
    1. Sullivan P.G., Rippy N.A., Dorenbos K., Concepcion R.C., Agarwal A.K., Rho J.M. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann. Neurol. 2004;55:576–580.
    1. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300.
    1. Commoner B., Townsend J., Pake G.E. Free radicals in biological materials. Nature. 1954;174:689–691.
    1. Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., Hey-Mogensen M. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012;590:3349–3360.
    1. Iossa S., Mollica M.P., Lionetti L., Crescenzo R., Botta M., Liverini G. Skeletal muscle oxidative capacity in rats fed high-fat diet. Int. J. Obes. Relat. Metab. Disord. 2002;26:65–72.
    1. Jorgensen T., Grunnet N., Quistorff B. One-year high fat diet affects muscle-but not brain mitochondria. J. Cereb. Blood Flow Metab. 2015;35:943–950.
    1. Kennedy A.R., Pissios P., Otu H., Roberson R., Xue B., Asakura K., Furukawa N., Marino F.E., Liu F.F., Kahn B.B., Libermann T.A., Maratos-Flier E. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 2007;292:E1724–1739.

Source: PubMed

3
Suscribir