Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

Thomas Groennebaek, Kristian Vissing, Thomas Groennebaek, Kristian Vissing

Abstract

Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

Keywords: bioenergetics; blood flow restricted exercise; mitochondria; mitochondrial protein synthesis; mitochondrial volume density; strength training.

References

    1. Abadi A., Glover E. I., Isfort R. J., Raha S., Safdar A., Yasuda N., et al. . (2009). Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS ONE 4:e6518. 10.1371/journal.pone.0006518
    1. ACSM (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41, 687–708. 10.1249/MSS.0b013e3181915670
    1. Ahtiainen J. P., Walker S., Silvennoinen M., Kyrolainen H., Nindl B. C., Hakkinen K., et al. . (2015). Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis. Eur. J. Appl. Physiol. 115, 1835–1845. 10.1007/s00421-015-3155-3
    1. Balakrishnan V. S., Rao M., Menon V., Gordon P. L., Pilichowska M., Castaneda F., et al. . (2010). Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 996–1002. 10.2215/CJN.09141209
    1. Bell G. J., Syrotuik D., Martin T. P., Burnham R., Quinney H. A. (2000). Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur. J. Appl. Physiol. 81, 418–427. 10.1007/s004210050063
    1. Bohe J., Low A., Wolfe R. R., Rennie M. J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J. Physiol. 552(Pt. 1), 315–324. 10.1113/jphysiol.2003.050674
    1. Burd N. A., Andrews R. J., West D. W., Little J. P., Cochran A. J., Hector A. J., et al. . (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 590, 351–362. 10.1113/jphysiol.2011.221200
    1. Burd N. A., West D. W., Staples A. W., Atherton P. J., Baker J. M., Moore D. R., et al. . (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033. 10.1371/journal.pone.0012033
    1. Busch R., Kim Y. K., Neese R. A., Schade-Serin V., Collins M., Awada M., et al. . (2006). Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 1760, 730–744. 10.1016/j.bbagen.2005.12.023
    1. Chilibeck P. D., Syrotuik D. G., Bell G. J. (1999). The effect of strength training on estimates of mitochondrial density and distribution throughout muscle fibres. Eur. J. Appl. Physiol. Occup. Physiol. 80, 604–609. 10.1007/s004210050641
    1. Coffey V. G., Zhong Z., Shield A., Canny B. J., Chibalin A. V., Zierath J. R., et al. . (2006). Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 20, 190–192. 10.1096/fj.05-4809fje
    1. Combes A., Dekerle J., Webborn N., Watt P., Bougault V., Daussin F. N. (2015). Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol. Rep. 3:e12462. 10.14814/phy2.12462
    1. Di Donato D. M., West D. W., Churchward-Venne T. A., Breen L., Baker S. K., Phillips S. M. (2014). Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am. J. Physiol. Endocrinol. Metab. 306, E1025–E1032. 10.1152/ajpendo.00487.2013
    1. Donges C. E., Burd N. A., Duffield R., Smith G. C., West D. W., Short M. J., et al. . (2012). Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J. Appl. Physiol. (1985) 112, 1992–2001. 10.1152/japplphysiol.00166.2012
    1. Drake J. C., Peelor F. F., III., Biela L. M., Watkins M. K., Miller R. A., Hamilton K. L., et al. . (2013). Assessment of mitochondrial biogenesis and mTORC1 signaling during chronic rapamycin feeding in male and female mice. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1493–1501. 10.1093/gerona/glt047
    1. Dufner D. A., Bederman I. R., Brunengraber D. Z., Rachdaoui N., Ismail-Beigi F., Siegfried B. A., et al. . (2005). Using 2H2O to study the influence of feeding on protein synthesis: effect of isotope equilibration in vivo vs. in cell culture. Am. J. Physiol. Endocrinol. Metab. 288, E1277–E1283. 10.1152/ajpendo.00580.2004
    1. Farup J., de Paoli F., Bjerg K., Riis S., Ringgard S., Vissing K. (2015). Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand. J. Med. Sci. Sports 25, 754–763. 10.1111/sms.12396
    1. Gorostiaga E. M., Navarro-Amezqueta I., Calbet J. A., Hellsten Y., Cusso R., Guerrero M., et al. . (2012). Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS ONE 7:e40621. 10.1371/journal.pone.0040621
    1. Gram M., Vigelso A., Yokota T., Hansen C. N., Helge J. W., Hey-Mogensen M., et al. . (2014). Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp. Gerontol. 58, 269–278. 10.1016/j.exger.2014.08.013
    1. Green H., Goreham C., Ouyang J., Ball-Burnett M., Ranney D. (1999). Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am. J. Physiol. 276(2 Pt. 2), R591–596.
    1. Greggio C., Jha P., Kulkarni S. S., Lagarrigue S., Broskey N. T., Boutant M., et al. . (2017). Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311. 10.1016/j.cmet.2016.11.004
    1. Haller T., Ortner M., Gnaiger E. (1994). A respirometer for investigating oxidative cell metabolism: toward optimization of respiratory studies. Anal. Biochem. 218, 338–342. 10.1006/abio.1994.1188
    1. Hawley S. A., Selbert M. A., Goldstein E. G., Edelman A. M., Carling D., Hardie D. G. (1995). 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186–27191.
    1. Hoppeler H., Howald H., Conley K., Lindstedt S. L., Claassen H., Vock P., et al. . (1985). Endurance training in humans: aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. (1985) 59, 320–327.
    1. Irving B. A., Lanza I. R., Henderson G. C., Rao R. R., Spiegelman B. M., Nair K. S. (2015). Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J. Clin. Endocrinol. Metab. 100, 1654–1663. 10.1210/jc.2014-3081
    1. Jacobs R. A., Lundby C. (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J. Appl. Physiol. (1985) 114, 344–350. 10.1152/japplphysiol.01081.2012
    1. Jahoor F., Zhang X. J., Baba H., Sakurai Y., Wolfe R. R. (1992). Comparison of constant infusion and flooding dose techniques to measure muscle protein synthesis rate in dogs. J. Nutr. 122, 878–887.
    1. Jubrias S. A., Esselman P. C., Price L. B., Cress M. E., Conley K. E. (2001). Large energetic adaptations of elderly muscle to resistance and endurance training. J. Appl. Physiol. (1985) 90, 1663–1670.
    1. Karabulut M., Leal J. A., Jr., Garcia S. D., Cavazos C., Bemben M. (2014). Tissue oxygenation, strength and lactate response to different blood flow restrictive pressures. Clin. Physiol. Funct. Imaging 34, 263–269. 10.1111/cpf.12090
    1. Kim J. Y., Hickner R. C., Cortright R. L., Dohm G. L., Houmard J. A. (2000). Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044.
    1. Kirkwood S. P., Munn E. A., Brooks G. A. (1986). Mitochondrial reticulum in limb skeletal muscle. Am. J. Physiol. 251(3 Pt. 1), C395–C402.
    1. Kon M., Ohiwa N., Honda A., Matsubayashi T., Ikeda T., Akimoto T., et al. . (2014). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep. 2:e12033. 10.14814/phy2.12033
    1. Kuznetsov A. V., Veksler V., Gellerich F. N., Saks V., Margreiter R., Kunz W. S. (2008). Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat. Protoc. 3, 965–976. 10.1038/nprot.2008.61
    1. Larsen S., Nielsen J., Hansen C. N., Nielsen L. B., Wibrand F., Stride N., et al. . (2012). Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349–3360. 10.1113/jphysiol.2012.230185
    1. Lauver J. D., Cayot T. E., Rotarius T., Scheuermann B. W. (2017). The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. Eur. J. Appl. Physiol. 117, 1005–1015. 10.1007/s00421-017-3589-x
    1. Luthi J. M., Howald H., Claassen H., Rosler K., Vock P., Hoppeler H. (1986). Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int. J. Sports Med. 7, 123–127. 10.1055/s-2008-1025748
    1. MacDougall J. D., Sale D. G., Moroz J. R., Elder G. C., Sutton J. R., Howald H. (1979). Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med. Sci. Sports 11, 164–166.
    1. Meinild Lundby A. K., Jacobs R. A., Gehrig S., de Leur J., Hauser M., Bonne T. C., et al. (2017). Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol. 10.1111/apha.12905. [Epub ahead of print].
    1. Melov S., Tarnopolsky M. A., Beckman K., Felkey K., Hubbard A. (2007). Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2:e465. 10.1371/journal.pone.0000465
    1. Miller B. F., Hamilton K. L. (2012). A perspective on the determination of mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 302, E496–E499. 10.1152/ajpendo.00578.2011
    1. Miller B. F., Konopka A. R., Hamilton K. L. (2016). The rigorous study of exercise adaptations: why mRNA might not be enough. J. Appl. Physiol. (1985) 121, 594–596. 10.1152/japplphysiol.00137.2016
    1. Miller B. F., Wolff C. A., Peelor F. F., III., Shipman P. D., Hamilton K. L. (2015). Modeling the contribution of individual proteins to mixed skeletal muscle protein synthetic rates over increasing periods of label incorporation. J. Appl. Physiol. (1985) 118, 655–661. 10.1152/japplphysiol.00987.2014
    1. Mitchell C. J., Churchward-Venne T. A., West D. W., Burd N. A., Breen L., Baker S. K., et al. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. (1985) 113, 71–77. 10.1152/japplphysiol.00307.2012
    1. Nielsen J., Gejl K. D., Hey-Mogensen M., Holmberg H. C., Suetta C., Krustrup P., et al. . (2016). Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 595, 2839–2847. 10.1113/JP273040
    1. Perry C. G., Lally J., Holloway G. P., Heigenhauser G. J., Bonen A., Spriet L. L. (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 588(Pt/23), 4795–4810. 10.1113/jphysiol.2010.199448
    1. Pesta D., Hoppel F., Macek C., Messner H., Faulhaber M., Kobel C., et al. . (2011). Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1078–R1087. 10.1152/ajpregu.00285.2011
    1. Petersen K. F., Dufour S., Befroy D., Garcia R., Shulman G. I. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671. 10.1056/NEJMoa031314
    1. Philp A., Schenk S., Perez-Schindler J., Hamilton D. L., Breen L., Laverone E., et al. (2015). Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise. J. Physiol. 593, 4275–4284. 10.1113/JP271219
    1. Picard M., Taivassalo T., Ritchie D., Wright K. J., Thomas M. M., Romestaing C., et al. . (2011). Mitochondrial structure and function are disrupted by standard isolation methods. PLoS ONE 6:e18317. 10.1371/journal.pone.0018317
    1. Ploutz L. L., Tesch P. A., Biro R. L., Dudley G. A. (1994). Effect of resistance training on muscle use during exercise. J. Appl. Physiol. (1985) 76, 1675–1681.
    1. Porter C., Reidy P. T., Bhattarai N., Sidossis L. S., Rasmussen B. B. (2015). Resistance exercise training alters mitochondrial function in human skeletal muscle. Med. Sci. Sports Exerc. 47, 1922–1931. 10.1249/MSS.0000000000000605
    1. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., et al. . (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766.
    1. Robinson M. M., Dasari S., Konopka A. R., Johnson M. L., Manjunatha S., Esponda R. R., et al. . (2017). Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592. 10.1016/j.cmet.2017.02.009
    1. Robinson M. M., Soop M., Sohn T. S., Morse D. M., Schimke J. M., Klaus K. A., et al. . (2014). High insulin combined with essential amino acids stimulates skeletal muscle mitochondrial protein synthesis while decreasing insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 99, E2574–E2583. 10.1210/jc.2014-2736
    1. Robinson M. M., Turner S. M., Hellerstein M. K., Hamilton K. L., Miller B. F. (2011). Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 25, 3240–3249. 10.1096/fj.11-186437
    1. Rontoyanni V. G., Nunez Lopez O., Fankhauser G. T., Cheema Z. F., Rasmussen B. B., Porter C. (2017). Mitochondrial bioenergetics in the metabolic myopathy accompanying peripheral artery disease. Front. Physiol. 8:141. 10.3389/fphys.2017.00141
    1. Rooyackers O. E., Adey D. B., Ades P. A., Nair K. S. (1996a). Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 93, 15364–15369.
    1. Rooyackers O. E., Kersten A. H., Wagenmakers A. J. (1996b). Mitochondrial protein content and in vivo synthesis rates in skeletal muscle from critically ill rats. Clin. Sci. 91, 475–481.
    1. Salvadego D., Domenis R., Lazzer S., Porcelli S., Rittweger J., Rizzo G., et al. . (2013). Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. J. Appl. Physiol. (1985) 114, 1527–1535. 10.1152/japplphysiol.00883.2012
    1. Smith K., Reynolds N., Downie S., Patel A., Rennie M. J. (1998). Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein. Am. J. Physiol. 275(1 Pt. 1), E73–78.
    1. Sparks L. M., Johannsen N. M., Church T. S., Earnest C. P., Moonen-Kornips E., Moro C., et al. . (2013). Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 98, 1694–1702. 10.1210/jc.2012-3874
    1. Tang J. E., Hartman J. W., Phillips S. M. (2006). Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl. Physiol. Nutr. Metab. 31, 495–501. 10.1139/h06-026
    1. Tanimoto M., Ishii N. (2006). Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J. Appl. Physiol. (1985) 100, 1150–1157. 10.1152/japplphysiol.00741.2005
    1. Tesch P. A., Thorsson A., Colliander E. B. (1990). Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply. Acta Physiol. Scand. 140, 575–580. 10.1111/j.1748-1716.1990.tb09035.x
    1. Vissing K., Andersen J. L., Schjerling P. (2005). Are exercise-induced genes induced by exercise? FASEB J. 19, 94–96. 10.1096/fj.04-2084fje
    1. Vissing K., McGee S., Farup J., Kjolhede T., Vendelbo M., Jessen N. (2013). Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand. J. Med. Sci. Sports 23, 355–366. 10.1111/j.1600-0838.2011.01395.x
    1. Wang N., Hikida R. S., Staron R. S., Simoneau J. A. (1993). Muscle fiber types of women after resistance training–quantitative ultrastructure and enzyme activity. Pflugers Arch. 424, 494–502.
    1. Wilkinson S. B., Phillips S. M., Atherton P. J., Patel R., Yarasheski K. E., Tarnopolsky M. A., et al. . (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 586, 3701–3717. 10.1113/jphysiol.2008.153916
    1. Wright D. C., Geiger P. C., Han D. H., Jones T. E., Holloszy J. O. (2007). Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282, 18793–18799. 10.1074/jbc.M611252200

Source: PubMed

3
Suscribir