Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans

Lena J Heung, Tobias M Hohl, Lena J Heung, Tobias M Hohl

Abstract

Cryptococcus neoformans is a leading cause of invasive fungal infections among immunocompromised patients. However, the cellular constituents of the innate immune response that promote clearance versus progression of infection upon respiratory acquisition of C. neoformans remain poorly defined. In this study, we found that during acute C. neoformans infection, CCR2+ Ly6Chi inflammatory monocytes (IM) rapidly infiltrate the lungs and mediate fungal trafficking to lung-draining lymph nodes. Interestingly, this influx of IM is detrimental to the host, since ablating IM or impairing their recruitment to the lungs improves murine survival and reduces fungal proliferation and dissemination. Using a novel conditional gene deletion strategy, we determined that MHC class II expression by IM did not mediate their deleterious impact on the host. Furthermore, although ablation of IM reduced the number of lymphocytes, innate lymphoid cells, and eosinophils in the lungs, the effects of IM were not dependent on these cells. We ascertained that IM in the lungs upregulated transcripts associated with alternatively activated (M2) macrophages in response to C. neoformans, consistent with the model that IM assume a cellular phenotype that is permissive for fungal growth. We also determined that conditional knockout of the prototypical M2 marker arginase 1 in IM and deletion of the M2-associated transcription factor STAT6 were not sufficient to reverse the harmful effects of IM. Overall, our findings indicate that C. neoformans can subvert the fungicidal potential of IM to enable the progression of infection through a mechanism that is not dependent on lymphocyte priming, eosinophil recruitment, or downstream M2 macrophage polarization pathways. These results give us new insight into the plasticity of IM function during fungal infections and the level of control that C. neoformans can exert on host immune responses.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Inflammatory monocytes promote detrimental host…
Fig 1. Inflammatory monocytes promote detrimental host responses to Cryptococcus neoformans.
(A) IM in the lungs of C57BL/6 (WT) mice after intratracheal (i.t.) challenge with C. neoformans strain H99 relative to naive mice (dotted line). Data were pooled from eight independent experiments (n = 6–26 total mice per timepoint). (B) Diphtheria toxin (DT) was administered intraperitoneally (i.p.) as illustrated to ablate IM in CCR2-DTR mice. (C) Kaplan-Meier survival curve of WT littermate controls (white circles) and CCR2-DTR mice (black circles) after administration of DT and H99. Data were pooled from two independent experiments (n = 10 total mice per group). (D-F) CFU in (D) lung, (E) mediastinal lymph node (LN), and (F) brain homogenates from WT and CCR2-DTR mice at indicated timepoints. Data were pooled from nine independent experiments (n = 7–27 total mice per group per timepoint). *, P < 0.05. **, P < 0.01. ***, P < 0.001. ****, P < 0.0001.
Fig 2. Trafficking of inflammatory monocytes to…
Fig 2. Trafficking of inflammatory monocytes to the lungs regulates detrimental immune responses.
(A) IM in the lungs of WT mice (white circles) and CCR2-/- mice (gray circles) on day 14 after i.t. challenge with H99. Data are from one experiment (n = 6 mice per group). (B) Kaplan-Meier survival curve of WT and CCR2-/- mice challenged with H99. Data were pooled from two independent experiments (n = 10–12 total mice per group). (C) CFU in the lungs of WT and CCR2-/- mice on day 14 p.i. Data are from one experiment (n = 6 mice per group). **, P < 0.01.
Fig 3. Generation and validation of a…
Fig 3. Generation and validation of a CCR2-Cre mouse.
(A) Schematic of the modification of a BAC containing the endogenous CCR2 locus in order to insert the Cre recombinase gene, a stop codon, and a frameshift mutation downstream of the CCR2 promoter. (B) Representative flow plots and histograms of tdRFP expression by IM in the bone marrow, blood and lung of naive CCR2-Cre Rosa26flSTOP-tdRFP mice. The dotted lines in the histograms represent naive Rosa26flSTOP-tdRFP control mice.
Fig 4. Inflammatory monocytes regulate the presence…
Fig 4. Inflammatory monocytes regulate the presence of other immune cells in the lungs.
Natural killer cells, innate lymphoid cells, CD4+ T cells, and eosinophils in the lungs of WT mice (white circles) and CCR2-DTR mice (black circles) challenged with H99 were ennumerated on days 7 and 14 p.i. Data were pooled from four independent experiments (n = 5–14 total mice per group). **, P < 0.01. ****, P < 0.0001.
Fig 5. Inflammatory monocytes regulate detrimental immune…
Fig 5. Inflammatory monocytes regulate detrimental immune responses to C. neoformans independent of MHCII expression.
(A) Kaplan-Meier survival curve of MHCIIfl/fl control mice (white circles) and CCR2-Cre MHCIIfl/fl mice (black circles) challenged with H99. Data are from one experiment (n = 7–8 mice per group). (B) CFU in the lungs on day 14 p.i. Data are from one experiment (n = 4–6 mice per group).
Fig 6. Lymphocytes are not essential for…
Fig 6. Lymphocytes are not essential for the detrimental effects of inflammatory monocytes.
(A) Kaplan-Meier survival curve of RAG-/-γc-/- control mice (white triangles) and CCR2-DTR RAG-/-γc-/- mice (black triangles) challenged with H99. Data are from two independent experiments (n = 9–10 mice per group). (B) CFU in the lungs on day 7 p.i. Data are from two independent experiments (n = 9–11 mice per group). **, P < 0.01; ****, P < 0.0001.
Fig 7. Eosinophils do not regulate infectious…
Fig 7. Eosinophils do not regulate infectious outcomes after C. neoformans challenge.
(A) Kaplan-Meier survival curve of WT mice (white circles) or ΔdblGATA mice (black circles) challenged with H99. Data were pooled from two independent experiments (n = 12–13 total mice per group). (B) CFU in the lungs on days 7 and 14 p.i. Data were pooled from two independent experiments (n = 4 total mice per group).
Fig 8. Inflammatory monocytes upregulate M2 macrophage…
Fig 8. Inflammatory monocytes upregulate M2 macrophage markers in response to C. neoformans.
(A) Heat maps of the expression of M1 macrophage, M2 macrophage, and dendritic cell (DC) markers in pulmonary IM on days 5 and 10 p.i. relative to IM from naive mice. X = not detected. Data are from one experiment (n = 6–7 mice per timepoint). (B) Quantitative RT-PCR of pulmonary IM from naive mice or mice on day 10 p.i. Data are from one experiment (n = 3 mice per group). **, P < 0.01 and *, P < 0.05 by t-test.
Fig 9. Blocking M2 macrophage polarization pathways…
Fig 9. Blocking M2 macrophage polarization pathways does not reverse the detrimental effects of inflammatory monocytes.
(A) Kaplan-Meier survival curve of control Arg1flfl or fl/+ mice (white circles) and CCR2-Cre Arg1flfl mice (black circles). Data are from one experiment (n = 4–5 mice per group). (B) CFU in the lungs of Arg1flfl or fl/+ and CCR2-Cre Arg1flfl mice on days 7 and 14 p.i. Data are from two experiments (n = 4–5 mice per group). (C) Kaplan-Meier survival curve of control WT→ CD45.1+ bone marrow chimeras (white circles) and STAT6-/- → CD45.1+ bone marrow chimeras (gray circles). Data are pooled from two experiments (n = 8–9 total mice per group). (D) CFU in the lungs of WT→ CD45.1+ and STAT6-/-→ CD45.1+ bone marrow chimeras on days 7 and 14 p.i. Data are from two experiments (n = 4–5 mice per group).

References

    1. Heitman J, Kozel T. R., Kwon-Chung K. J., Perfect J. R. and Casadevall A. Cryptococcus: From Human Pathogen to Model Yeast 1 ed: ASM Press; 2010.
    1. Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368(14):1291–302. 10.1056/NEJMoa1110404
    1. Bratton EW, El Husseini N, Chastain CA, Lee MS, Poole C, Sturmer T, et al. Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS One. 2012;7(8):e43582 10.1371/journal.pone.0043582
    1. Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R, Du P, et al. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog. 2014;10(2):e1003940 10.1371/journal.ppat.1003940
    1. Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C, Mack M, et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 2009;6(5):470–81. 10.1016/j.chom.2009.10.007
    1. Wuthrich M, Ersland K, Sullivan T, Galles K, Klein BS. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity. 2012;36(4):680–92. 10.1016/j.immuni.2012.02.015
    1. Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis. 2014;209(1):109–19. 10.1093/infdis/jit413
    1. Szymczak WA, Deepe GS Jr. The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. J Immunol. 2009;183(3):1964–74. 10.4049/jimmunol.0901316
    1. Huffnagle GB, Lipscomb MF. Pulmonary cryptococcosis. Am J Pathol. 1992;141(6):1517–20.
    1. Chen GH, McNamara DA, Hernandez Y, Huffnagle GB, Toews GB, Olszewski MA. Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect Immun. 2008;76(6):2379–91. 10.1128/IAI.01143-07
    1. Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, et al. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol. 2008;181(1):610–20.
    1. Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. J Immunol. 2009;183(12):8044–53. 10.4049/jimmunol.0902823 .
    1. Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, et al. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol. 2011;178(1):198–211. 10.1016/j.ajpath.2010.11.006
    1. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol. 2000;164(4):2021–7. .
    1. Traynor TR, Herring AC, Dorf ME, Kuziel WA, Toews GB, Huffnagle GB. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol. 2002;168(9):4659–66. .
    1. Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL Jr. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J Immunol. 2012;189(8):4060–8. 10.4049/jimmunol.1103455
    1. Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Mueller M, Wormley FL Jr. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans. Infect Immun. 2015;83(12):4513–27. 10.1128/IAI.00935-15
    1. Leopold Wager CM, Hole CR, Campuzano A, Castro-Lopez N, Cai H, Caballero Van Dyke MC, et al. IFN-gamma immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. PLoS Pathog. 2018;14(10):e1007358 10.1371/journal.ppat.1007358
    1. Masso-Silva J, Espinosa V, Liu TB, Wang Y, Xue C, Rivera A. The F-Box protein Fbp1 shapes the immunogenic potential of Cryptococcus neoformans. MBio. 2018;9(1):e01828–17. 10.1128/mBio.01828-17
    1. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11(3):e1004701 10.1371/journal.ppat.1004701
    1. Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000;68(7):4225–37.
    1. Alvarez M, Burn T, Luo Y, Pirofski LA, Casadevall A. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol. 2009;9:51 10.1186/1471-2180-9-51
    1. Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16(21):2161–5. 10.1016/j.cub.2006.09.061 .
    1. Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast by macrophages. Curr Biol. 2006;16(21):2156–60. 10.1016/j.cub.2006.09.032 .
    1. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77(1):120–7. 10.1128/IAI.01065-08
    1. Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest. 2014;124(5):2000–8. 10.1172/JCI72950
    1. Shao XP, Mednick A, Alvarez M, van Rooijen N, Casadevall A, Goldman DL. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol. 2005;175(5):3244–51. .
    1. Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol. 2017;8:93 10.3389/fimmu.2017.00093
    1. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol. 2001;166(4):2173–7. .
    1. Rath M, Muller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532 10.3389/fimmu.2014.00532
    1. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013;4(3):e00264–13. 10.1128/mBio.00264-13
    1. Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, Murray PJ. Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol. 2004;172(12):7565–73. .
    1. Gray MJ, Poljakovic M, Kepka-Lenhart D, Morris SM Jr. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene. 2005;353(1):98–106. 10.1016/j.gene.2005.04.004 .
    1. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr., Broxmeyer HE, et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest. 1997;100(10):2552–61. 10.1172/JCI119798
    1. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7(3):311–7. 10.1038/ni1309 .
    1. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ. Faithful activation of an extra-bright red fluorescent protein in "knock-in" Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol. 2007;37(1):43–53. 10.1002/eji.200636745 .
    1. Mack M, Cihak J, Simonis C, Luckow B, Proudfoot AE, Plachy J, et al. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol. 2001;166(7):4697–704. .
    1. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215(1):249–62. 10.1084/jem.20170832
    1. Marwaha RK, Trehan A, Jayashree K, Vasishta RK. Hypereosinophilia in disseminated cryptococcal disease. Pediatr Infect Dis J. 1995;14(12):1102–3. .
    1. Pfeffer PE, Sen A, Das S, Sheaff M, Sivaramakrishnan A, Simcock DE, et al. Eosinophilia, meningitis and pulmonary nodules in a young woman. Thorax. 2010;65(12):1066, 85. 10.1136/thx.2010.140350 .
    1. Yamaguchi H, Komase Y, Ikehara M, Yamamoto T, Shinagawa T. Disseminated cryptococcal infection with eosinophilia in a healthy person. J Infect Chemother. 2008;14(4):319–24. 10.1007/s10156-008-0618-z .
    1. Epstein R, Cole R, Hunt KK Jr. Pleural effusion secondary to pulmonary cryptococcosis. Chest. 1972;61(3):296–8. .
    1. Jensen WA, Rose RM, Hammer SM, Karchmer AW. Serologic diagnosis of focal pneumonia caused by Cryptococcus neoformans. Am Rev Respir Dis. 1985;132(1):189–91. 10.1164/arrd.1985.132.1.189 .
    1. Brewer GE, Wood FC. XII. Blastomycosis of the Spine: Double Lesion: Two Operations: Recovery. Ann Surg. 1908;48(6):889–96.
    1. Huffnagle GB, Boyd MB, Street NE, Lipscomb MF. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol. 1998;160(5):2393–400. .
    1. Feldmesser M, Casadevall A, Kress Y, Spira G, Orlofsky A. Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro. Infect Immun. 1997;65(5):1899–907.
    1. Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH, et al. Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect Immun. 2009;77(12):5389–99. 10.1128/IAI.00809-09
    1. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol. 2005;174(12):8017–26. .
    1. Holmer SM, Evans KS, Asfaw YG, Saini D, Schell WA, Ledford JG, et al. Impact of surfactant protein D, interleukin-5, and eosinophilia on cryptococcosis. Infect Immun. 2014;82(2):683–93. 10.1128/IAI.00855-13
    1. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002;195(11):1387–95. 10.1084/jem.20020656
    1. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 2002;3:7 10.1186/1471-2172-3-7
    1. Whyte CS, Bishop ET, Ruckerl D, Gaspar-Pereira S, Barker RN, Allen JE, et al. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol. 2011;90(5):845–54. 10.1189/jlb.1110644 .
    1. Babu S, Kumaraswami V, Nutman TB. Alternatively activated and immunoregulatory monocytes in human filarial infections. J Infect Dis. 2009;199(12):1827–37. 10.1086/599090
    1. Bakri Y, Sarrazin S, Mayer UP, Tillmanns S, Nerlov C, Boned A, et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood. 2005;105(7):2707–16. 10.1182/blood-2004-04-1448 .
    1. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. 10.1016/j.immuni.2010.05.007 .
    1. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61. 10.1038/nri3088 .
    1. Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun. 2014;82(3):937–48. 10.1128/IAI.01477-13
    1. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P, et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015;43(3):502–14. 10.1016/j.immuni.2015.08.010 .
    1. Xiong H, Keith JW, Samilo DW, Carter RA, Leiner IM, Pamer EG. Innate lymphocyte/Ly6C(hi) monocyte crosstalk promotes Klebsiella pneumoniae clearance. Cell. 2016;165(3):679–89. 10.1016/j.cell.2016.03.017
    1. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52. 10.1146/annurev.immunol.26.021607.090326
    1. Heng TS, Painter MW, Immunological Genome Project C. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9(10):1091–4. 10.1038/ni1008-1091 .
    1. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol. 2012;188(2):703–13. 10.4049/jimmunol.1101270 .
    1. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–8. 10.1038/nature12526
    1. Wiesner DL, Smith KD, Kashem SW, Bohjanen PR, Nielsen K. Different lymphocyte populations direct dichotomous eosinophil or neutrophil responses to pulmonary Cryptococcus infection. J Immunol. 2017;198(4):1627–37. 10.4049/jimmunol.1600821
    1. Garro AP, Chiapello LS, Baronetti JL, Masih DT. Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans infection. Immunology. 2011;134(2):198–213. 10.1111/j.1365-2567.2011.03479.x
    1. Garro AP, Chiapello LS, Baronetti JL, Masih DT. Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4(+) and CD8(+) T cells with a T-helper 1 profile. Immunology. 2011;132(2):174–87. 10.1111/j.1365-2567.2010.03351.x
    1. Yoon J, Ponikau JU, Lawrence CB, Kita H. Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J Immunol. 2008;181(4):2907–15.
    1. Lilly LM, Scopel M, Nelson MP, Burg AR, Dunaway CW, Steele C. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus. Infect Immun. 2014;82(3):1315–25. 10.1128/IAI.01172-13
    1. Guerra ES, Lee CK, Specht CA, Yadav B, Huang H, Akalin A, et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 2017;13(1):e1006175 10.1371/journal.ppat.1006175
    1. Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81–121. 10.1016/S0065-2776(08)01003-1
    1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. 10.1016/j.immuni.2014.06.008
    1. Ersland K, Wuthrich M, Klein BS. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe. 2010;7(6):474–87. 10.1016/j.chom.2010.05.010
    1. Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG. Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife. 2013;2:e01086 10.7554/eLife.01086
    1. Wagener J, MacCallum DM, Brown GD, Gow NA. Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. MBio. 2017;8(1):e01820–16. 10.1128/mBio.01820-16
    1. Chinen T, Qureshi MH, Koguchi Y, Kawakami K. Candida albicans suppresses nitric oxide (NO) production by interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Clin Exp Immunol. 1999;115(3):491–7. 10.1046/j.1365-2249.1999.00822.x
    1. Collette JR, Zhou H, Lorenz MC. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PLoS One. 2014;9(4):e96203 10.1371/journal.pone.0096203
    1. Schroppel K, Kryk M, Herrmann M, Leberer E, Rollinghoff M, Bogdan C. Suppression of type 2 NO-synthase activity in macrophages by Candida albicans. Int J Med Microbiol. 2001;290(8):659–68. 10.1016/S1438-4221(01)80003-5 .
    1. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34(9):906–11. 10.1111/j.1440-1681.2007.04638.x
    1. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol. 1995;25(4):1101–4. 10.1002/eji.1830250436 .
    1. Barron L, Smith AM, El Kasmi KC, Qualls JE, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in Th2-dominated lung inflammation. PLoS One. 2013;8(4):e61961 10.1371/journal.pone.0061961
    1. Stenzel W, Muller U, Kohler G, Heppner FL, Blessing M, McKenzie AN, et al. IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. Am J Pathol. 2009;174(2):486–96. 10.2353/ajpath.2009.080598
    1. Muller U, Stenzel W, Kohler G, Werner C, Polte T, Hansen G, et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol. 2007;179(8):5367–77. .
    1. Muller U, Stenzel W, Piehler D, Grahnert A, Protschka M, Kohler G, et al. Abrogation of IL-4 receptor-alpha-dependent alternatively activated macrophages is sufficient to confer resistance against pulmonary cryptococcosis despite an ongoing T(h)2 response. Int Immunol. 2013;25(8):459–70. 10.1093/intimm/dxt003 .
    1. Heung LJ, Hohl TM. DAP12 inhibits pulmonary immune responses to Cryptococcus neoformans. Infect Immun. 2016;84(6):1879–86. 10.1128/IAI.00222-16
    1. Heung LJ. Innate immune responses to Cryptococcus. J Fungi (Basel). 2017;3(3):35 10.3390/jof3030035
    1. Hernandez-Santos N, Wiesner DL, Fites JS, McDermott AJ, Warner T, Wuthrich M, et al. Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection. Cell Host Microbe. 2018;23(4):511–22 e5. 10.1016/j.chom.2018.02.011
    1. Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN, Nielsen K. Titan cell production enhances the virulence of Cryptococcus neoformans. Infect Immun. 2012;80(11):3776–85. 10.1128/IAI.00507-12
    1. Mukaremera L, Lee KK, Wagener J, Wiesner DL, Gow NAR, Nielsen K. Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. Cell Surf. 2018;1:15–24. 10.1016/j.tcsw.2017.12.001
    1. Hashimoto K, Joshi SK, Koni PA. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis. 2002;32(2):152–3. .
    1. El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol. 2008;9(12):1399–406. 10.1038/ni.1671
    1. Karo JM, Schatz DG, Sun JC. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell. 2014;159(1):94–107. 10.1016/j.cell.2014.08.026
    1. de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol. 2003;33(2):314–25. 10.1002/immu.200310005 .
    1. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–67. Epub 1992/03/06. .
    1. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38. Epub 1995/03/01. .
    1. Serbina NV, Hohl TM, Cherny M, Pamer EG. Selective expansion of the monocytic lineage directed by bacterial infection. J Immunol. 2009;183(3):1900–10. 10.4049/jimmunol.0900612
    1. Gong S, Yang XW, Li C, Heintz N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 2002;12(12):1992–8. 10.1101/gr.476202
    1. Gong S, Yang XW. Modification of bacterial artificial chromosomes (BACs) and preparation of intact BAC DNA for generation of transgenic mice. Curr Protoc Neurosci. 2005;Chapter 5:Unit 5.21. 10.1002/0471142301.ns0521s31 .
    1. Johansson T, Broll I, Frenz T, Hemmers S, Becher B, Zeilhofer HU, et al. Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis. 2010;48(4):264–80. 10.1002/dvg.20612 .
    1. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996;4(3):313–9. .
    1. Jhingran A, Kasahara S, Hohl TM. Flow cytometry of lung and bronchoalveolar lavage fluid cells from mice challenged with Fluorescent Aspergillus Reporter (FLARE) conidia. Bio Protoc. 2016;6(18):e1927 10.21769/BioProtoc.1927
    1. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.
    1. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. 10.1093/bioinformatics/bts635
    1. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods. 2013;10(12):1185–91. 10.1038/nmeth.2722

Source: PubMed

3
Suscribir