Role of αβ T Cell Depletion in Prevention of Graft versus Host Disease

Haitham Abdelhakim, Hisham Abdel-Azim, Ayman Saad, Haitham Abdelhakim, Hisham Abdel-Azim, Ayman Saad

Abstract

Graft versus host disease (GVHD) represents a major complication of allogeneic hematopoietic stem cell transplantation (allo HCT). Graft cellular manipulation has been used to mitigate the risk of GVHD. The αβ T cells are considered the primary culprit for causing GVHD therefore depletion of this T cell subset emerged as a promising cellular manipulation strategy to overcome the human leukocyte antigen (HLA) barrier of haploidentical (haplo) HCT. This approach is also being investigated in HLA-matched HCT. In several studies, αβ T cell depletion HCT has been performed without pharmacologic GVHD prophylaxis, thus unleashing favorable effect of donor's natural killer cells (NK) and γδ T cells. This article will discuss the evolution of this method in clinical practice and the clinical outcome as described in different clinical trials.

Keywords: graft versus host disease; haploidentical transplant; αβ T cells.

Conflict of interest statement

Ayman Saad declares Royalty for licensing of intellectual property (Incysus Biomedical), grant support (American Porphyria foundation), consultant fees (Actinium Pharma Inc, New York, NY, USA), Research support (Astellas and Fate Therapeutics), and Honoraria (Alexion and Spectrum Pharmaceutical). Other authors have no conflict of interest.

Figures

Figure 1
Figure 1
Immune balance between donor and recipient lymphocytes showing favorable (black) and unfavorable (red) effects played by each side. GVT = graft versus tumor.
Figure 2
Figure 2
Key Component of the stem cell graft.
Figure 3
Figure 3
Immuno-magnetic microbead depletion process of the αβ T cells.

References

    1. Gragert L., Eapen M., Williams E., Freeman J., Spellman S., Baitty R., Hartzman R., Rizzo J.D., Horowitz M., Confer D., et al. HLA match likelihoods for hematopoietic stem-cell grafts in the US. registry. N. Engl. J. Med. 2014;371:339–348. doi: 10.1056/NEJMsa1311707.
    1. Gluckman E. Cord blood transplantation. Biol. Blood Marrow Transplant. 2006;12:808–812. doi: 10.1016/j.bbmt.2006.05.011.
    1. Wagner J.E., Gluckman E. Umbilical cord blood transplantation: The first 20 years. Semin. Hematol. 2010;47:3–12. doi: 10.1053/j.seminhematol.2009.10.011.
    1. Eapen M., Klein J.P., Sanz G.F., Spellman S., Ruggeri A., Anasetti C., Brown M., Champlin R.E., Garcia-Lopez J., Hattersely G., et al. Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: A retrospective analysis. Lancet Oncol. 2011;12:1214–1221. doi: 10.1016/S1470-2045(11)70260-1.
    1. Eapen M., Rubinstein P., Zhang M.J., Stevens C., Kurtzberg J., Scaradavou A., Loberiza F.R., Champlin R.E., Klein J.P., Horowitz M.M., et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: A comparison study. Lancet. 2007;369:1947–1954. doi: 10.1016/S0140-6736(07)60915-5.
    1. Locatelli F., Pende D., Maccario R., Mingari M.C., Moretta A., Moretta L. Haploidentical hemopoietic stem cell transplantation for the treatment of high-risk leukemias: How NK cells make the difference. Clin. Immunol. 2009;133:171–178. doi: 10.1016/j.clim.2009.04.009.
    1. Klingebiel T., Cornish J., Labopin M., Locatelli F., Darbyshire P., Handgretinger R., Balduzzi A., Owoc-Lempach J., Fagioli F., Or R., et al. Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: Impact of center size: An analysis on behalf of the acute leukemia and pediatric disease working parties of the european blood and marrow transplant group. Blood. 2010;115:3437–3446.
    1. Leung W., Campana D., Yang J., Pei D., Coustan-Smith E., Gan K., Rubnitz J.E., Sandlund J.T., Ribeiro R.C., Srinivasan A., et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood. 2011;118:223–230. doi: 10.1182/blood-2011-01-333070.
    1. Dvorak C.C., Gilman A.L., Horn B., Oon C.Y., Dunn E.A., Baxter-Lowe L.A., Cowan M.J. Haploidentical related-donor hematopoietic cell transplantation in children using megadoses of clinimacs-selected CD34(+) cells and a fixed CD3(+) dose. Bone Marrow Transplant. 2013;48:508–513. doi: 10.1038/bmt.2012.186.
    1. Lu D.P., Dong L., Wu T., Huang X.J., Zhang M.J., Han W., Chen H., Liu D.H., Gao Z.Y., Chen Y.H., et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–3073. doi: 10.1182/blood-2005-05-2146.
    1. Luznik L., O'Donnell P.V., Symons H.J., Chen A.R., Leffell M.S., Zahurak M., Gooley T.A., Piantadosi S., Kaup M., Ambinder R.F., et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008;14:641–650. doi: 10.1016/j.bbmt.2008.03.005.
    1. Aversa F., Tabilio A., Terenzi A., Velardi A., Falzetti F., Giannoni C., Iacucci R., Zei T., Martelli M.P., Gambelunghe C., et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–3955.
    1. Aversa F., Tabilio A., Velardi A., Cunningham I., Terenzi A., Falzetti F., Ruggeri L., Barbabietola G., Aristei C., Latini P., et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 1998;339:1186–1193. doi: 10.1056/NEJM199810223391702.
    1. Bolanos-Meade J., Fuchs E.J., Luznik L., Lanzkron S.M., Gamper C.J., Jones R.J., Brodsky R.A. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120:4285–4291. doi: 10.1182/blood-2012-07-438408.
    1. Anasetti C., Logan B.R., Lee S.J., Waller E.K., Weisdorf D.J., Wingard J.R., Cutler C.S., Westervelt P., Woolfrey A., Couban S., et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N. Engl. J. Med. 2012;367:1487–1496. doi: 10.1056/NEJMoa1203517.
    1. Bensinger W.I., Martin P.J., Storer B., Clift R., Forman S.J., Negrin R., Kashyap A., Flowers M.E., Lilleby K., Chauncey T.R., et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N. Engl. J. Med. 2001;344:175–181. doi: 10.1056/NEJM200101183440303.
    1. Horowitz M.M., Gale R.P., Sondel P.M., Goldman J.M., Kersey J., Kolb H.J., Rimm A.A., Ringden O., Rozman C., Speck B., et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562.
    1. Mackinnon S., Papadopoulos E.B., Carabasi M.H., Reich L., Collins N.H., Boulad F., Castro-Malaspina H., Childs B.H., Gillio A.P., Kernan N.A., et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: Separation of graft-versus-leukemia responses from graft-versus-host disease. Blood. 1995;86:1261–1268.
    1. Nakamura R., Bahceci E., Read E.J., Leitman S.F., Carter C.S., Childs R., Dunbar C.E., Gress R., Altemus R., Young N.S., et al. Transplant dose of CD34(+) and CD3(+) cells predicts outcome in patients with haematological malignancies undergoing T cell-depleted peripheral blood stem cell transplants with delayed donor lymphocyte add-back. Br. J. Haematol. 2001;115:95–104. doi: 10.1046/j.1365-2141.2001.02983.x.
    1. Barrett A.J., Mavroudis D., Tisdale J., Molldrem J., Clave E., Dunbar C., Cottler-Fox M., Phang S., Carter C., Okunnieff P., et al. T cell-depleted bone marrow transplantation and delayed T cell add-back to control acute GVHD and conserve a graft-versus-leukemia effect. Bone Marrow Transplant. 1998;21:543–551. doi: 10.1038/sj.bmt.1701131.
    1. Savani B.N., Rezvani K., Mielke S., Montero A., Kurlander R., Carter C.S., Leitman S., Read E.J., Childs R., Barrett A.J. Factors associated with early molecular remission after T cell-depleted allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood. 2006;107:1688–1695. doi: 10.1182/blood-2005-05-1897.
    1. Montero A., Savani B.N., Shenoy A., Read E.J., Carter C.S., Leitman S.F., Mielke S., Rezvani K., Childs R., Barrett A.J. T-cell depleted peripheral blood stem cell allotransplantation with T-cell add-back for patients with hematological malignancies: Effect of chronic GVHD on outcome. Biol. Blood Marrow Transplant. 2006;12:1318–1325. doi: 10.1016/j.bbmt.2006.08.034.
    1. Powles R.L., Morgenstern G.R., Kay H.E., McElwain T.J., Clink H.M., Dady P.J., Barrett A., Jameson B., Depledge M.H., Watson J.G., et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1:612–615. doi: 10.1016/S0140-6736(83)91793-2.
    1. Beatty P.G., Clift R.A., Mickelson E.M., Nisperos B.B., Flournoy N., Martin P.J., Sanders J.E., Stewart P., Buckner C.D., Storb R., et al. Marrow transplantation from related donors other than HLA-identical siblings. N. Engl. J. Med. 1985;313:765–771. doi: 10.1056/NEJM198509263131301.
    1. Anasetti C., Amos D., Beatty P.G., Appelbaum F.R., Bensinger W., Buckner C.D., Clift R., Doney K., Martin P.J., Mickelson E., et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N. Engl. J. Med. 1989;320:197–204. doi: 10.1056/NEJM198901263200401.
    1. Aversa F., Terenzi A., Tabilio A., Falzetti F., Carotti A., Ballanti S., Felicini R., Falcinelli F., Velardi A., Ruggeri L., et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: A phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol. 2005;23:3447–3454. doi: 10.1200/JCO.2005.09.117.
    1. Antoine C., Muller S., Cant A., Cavazzana-Calvo M., Veys P., Vossen J., Fasth A., Heilmann C., Wulffraat N., Seger R., et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: Report of the european experience 1968–99. Lancet. 2003;361:553–560. doi: 10.1016/S0140-6736(03)12513-5.
    1. Bethge W.A., Faul C., Bornhauser M., Stuhler G., Beelen D.W., Lang P., Stelljes M., Vogel W., Hagele M., Handgretinger R., et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: An update. Blood Cells Mol. Dis. 2008;40:13–19. doi: 10.1016/j.bcmd.2007.07.001.
    1. Federmann B., Bornhauser M., Meisner C., Kordelas L., Beelen D.W., Stuhler G., Stelljes M., Schwerdtfeger R., Christopeit M., Behre G., et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: A phase II study. Haematologica. 2012;97:1523–1531. doi: 10.3324/haematol.2011.059378.
    1. Ho V.T., Kim H.T., Li S., Hochberg E.P., Cutler C., Lee S.J., Fisher D.C., Milford E., Kao G., Daley H., et al. Partial CD8+ T-cell depletion of allogeneic peripheral blood stem cell transplantation is insufficient to prevent graft-versus-host disease. Bone Marrow Transplant. 2004;34:987–994. doi: 10.1038/sj.bmt.1704690.
    1. Bleakley M., Heimfeld S., Loeb K.R., Jones L.A., Chaney C., Seropian S., Gooley T.A., Sommermeyer F., Riddell S.R., Shlomchik W.D. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J. Clin. Invest. 2015;125:2677–2689. doi: 10.1172/JCI81229.
    1. Bacigalupo A., Lamparelli T., Bruzzi P., Guidi S., Alessandrino P.E., di Bartolomeo P., Oneto R., Bruno B., Barbanti M., Sacchi N., et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 Randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO) Blood. 2001;98:2942–2947. doi: 10.1182/blood.V98.10.2942.
    1. Chakraverty R., Orti G., Roughton M., Shen J., Fielding A., Kottaridis P., Milligan D., Collin M., Crawley C., Johnson P., et al. Impact of in vivo alemtuzumab dose before reduced intensity conditioning and HLA-identical sibling stem cell transplantation: Pharmacokinetics, gvhd, and immune reconstitution. Blood. 2010;116:3080–3088. doi: 10.1182/blood-2010-05-286856.
    1. Solomon S.R., Sizemore C.A., Sanacore M., Zhang X., Brown S., Holland H.K., Morris L.E., Bashey A. Total body irradiation-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Biol. Blood Marrow Transplant. 2015;21:1299–1307. doi: 10.1016/j.bbmt.2015.03.003.
    1. Kanakry C.G., Tsai H.L., Bolanos-Meade J., Smith B.D., Gojo I., Kanakry J.A., Kasamon Y.L., Gladstone D.E., Matsui W., Borrello I., et al. Single-agent gvhd prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched bmt for aml, all, and mds. Blood. 2014;124:3817–3827. doi: 10.1182/blood-2014-07-587477.
    1. Bertaina A., Pitisci A., Sinibaldi M., Algeri M. T cell-depleted and T cell-replete HLA-haploidentical stem cell transplantation for non-malignant disorders. Curr. Hematol. Malig. Rep. 2017;12:68–78. doi: 10.1007/s11899-017-0364-3.
    1. Korngold R., Sprent J. T cell subsets and graft-versus-host disease. Transplantation. 1987;44:335–339. doi: 10.1097/00007890-198709000-00002.
    1. Zhang C., Todorov I., Zhang Z., Liu Y., Kandeel F., Forman S., Strober S., Zeng D. Donor CD4+ T and B cells in transplants induce chronic graft-versus-host disease with autoimmune manifestations. Blood. 2006;107:2993–3001. doi: 10.1182/blood-2005-09-3623.
    1. Shlomchik W.D. Graft-versus-host disease. Nat. Rev. Immunol. 2007;7:340–352. doi: 10.1038/nri2000.
    1. Vantourout P., Hayday A. Six-of-the-best: Unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 2013;13:88–100. doi: 10.1038/nri3384.
    1. Bonneville M., Scotet E. Human Vγ9Vδ2 T cells: Promising new leads for immunotherapy of infections and tumors. Curr. Opin. Immunol. 2006;18:539–546. doi: 10.1016/j.coi.2006.07.002.
    1. Lamb L.S., Jr., Gee A.P., Hazlett L.J., Musk P., Parrish R.S., O’Hanlon T.P., Geier S.S., Folk R.S., Harris W.G., McPherson K., et al. Influence of T cell depletion method on circulating γδ T cell reconstitution and potential role in the graft-versus-leukemia effect. Cytotherapy. 1999;1:7–19. doi: 10.1080/0032472031000141295.
    1. Mehta J., Singhal S., Gee A.P., Chiang K.Y., Godder K., Rhee Fv F., DeRienzo S., O’Neal W., Lamb L., Henslee-Downey P.J. Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: Single-center experience of 201 patients. Bone Marrow Transplant. 2004;33:389–396. doi: 10.1038/sj.bmt.1704391.
    1. Murphy W.J., Parham P., Miller J.S. NK cells—From bench to clinic. Biol. Blood Marrow Transplant. 2012;18:S2–S7. doi: 10.1016/j.bbmt.2011.10.033.
    1. Moretta L., Locatelli F., Pende D., Marcenaro E., Mingari M.C., Moretta A. Killer IG-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117:764–771. doi: 10.1182/blood-2010-08-264085.
    1. Velardi A. Natural killer cell alloreactivity 10 years later. Curr. Opin. Hematol. 2012;19:421–426. doi: 10.1097/MOH.0b013e3283590395.
    1. Cooley S., Trachtenberg E., Bergemann T.L., Saeteurn K., Klein J., Le C.T., Marsh S.G., Guethlein L.A., Parham P., Miller J.S., et al. Donors with group b kir haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113:726–732. doi: 10.1182/blood-2008-07-171926.
    1. Leung W., Iyengar R., Turner V., Lang P., Bader P., Conn P., Niethammer D., Handgretinger R. Determinants of antileukemia effects of allogeneic NK cells. J. Immun. 2004;172:644–650. doi: 10.4049/jimmunol.172.1.644.
    1. Pende D., Marcenaro S., Falco M., Martini S., Bernardo M.E., Montagna D., Romeo E., Cognet C., Martinetti M., Maccario R., et al. Anti-leukemia activity of alloreactive nk cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: Evaluation of the functional role of activating kir and redefinition of inhibitory KIR specificity. Blood. 2009;113:3119–3129. doi: 10.1182/blood-2008-06-164103.
    1. Clausen J., Bohm A., Strassl I., Stiefel O., Buxhofer-Ausch V., Machherndl-Spandl S., Konig J., Schmidt S., Steitzer H., Danzer M., et al. HLA-C KIR-ligands determine the impact of anti-thymocyte globulin (ATG) on graft versus host and graft versus leukemia effects following hematopoietic stem cell transplantation. Biomedicines. 2017;5 doi: 10.3390/biomedicines5020013.
    1. Clausen J., Kircher B., Auberger J., Schumacher P., Grabmer C., Muhlbacher A., Gastl G., Nachbaur D. Bone marrow may be the preferable graft source in recipients homozygous for HLA-C group 2 ligands for inhibitory killer Ig-like receptors. Bone Marrow Transplant. 2012;47:791–798. doi: 10.1038/bmt.2011.187.
    1. Ruggeri L., Capanni M., Urbani E., Perruccio K., Shlomchik W.D., Tosti A., Posati S., Rogaia D., Frassoni F., Aversa F., et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100. doi: 10.1126/science.1068440.
    1. Viey E., Fromont G., Escudier B., Morel Y., Da Rocha S., Chouaib S., Caignard A. Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J. Immun. 2005;174:1338–1347. doi: 10.4049/jimmunol.174.3.1338.
    1. Qin G., Mao H., Zheng J., Sia S.F., Liu Y., Chan P.L., Lam K.T., Peiris J.S., Lau Y.L., Tu W. Phosphoantigen-expanded human γδ T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J. Infect. Dis. 2009;200:858–865. doi: 10.1086/605413.
    1. Hayday A.C. Γδ T cells and the lymphoid stress-surveillance response. Immunity. 2009;31:184–196. doi: 10.1016/j.immuni.2009.08.006.
    1. Meeh P.F., King M., O’Brien R.L., Muga S., Buckhalts P., Neuberg R., Lamb L.S., Jr. Characterization of the γδ T cell response to acute leukemia. Cancer Immunol. Immunother. 2006;55:1072–1080. doi: 10.1007/s00262-005-0094-6.
    1. Wilhelm M., Smetak M., Schaefer-Eckart K., Kimmel B., Birkmann J., Einsele H., Kunzmann V. Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells. J. Trans. Med. 2014;12:45. doi: 10.1186/1479-5876-12-45.
    1. Liu Z., Eltoum I.E., Guo B., Beck B.H., Cloud G.A., Lopez R.D. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immun. 2008;180:6044–6053. doi: 10.4049/jimmunol.180.9.6044.
    1. Beck B.H., Kim H.G., Kim H., Samuel S., Liu Z., Shrestha R., Haines H., Zinn K., Lopez R.D. Adoptively transferred ex vivo expanded γδ-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res. Treat. 2010;122:135–144. doi: 10.1007/s10549-009-0527-6.
    1. Lamb L.S., Jr., Henslee-Downey P.J., Parrish R.S., Godder K., Thompson J., Lee C., Gee A.P. Increased frequency of TCR γδ+ T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J. Hematother. 1996;5:503–509. doi: 10.1089/scd.1.1996.5.503.
    1. Godder K.T., Henslee-Downey P.J., Mehta J., Park B.S., Chiang K.Y., Abhyankar S., Lamb L.S. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007;39:751–757. doi: 10.1038/sj.bmt.1705650.
    1. Drobyski W.R., Hessner M.J., Klein J.P., Kabler-Babbitt C., Vesole D.H., Margolis D.A., Keever-Taylor C.A. T-cell depletion plus salvage immunotherapy with donor leukocyte infusions as a strategy to treat chronic-phase chronic myelogenous leukemia patients undergoing HLA-identical sibling marrow transplantation. Blood. 1999;94:434–441.
    1. Lamb L.S., Jr., Musk P., Ye Z., van Rhee F., Geier S.S., Tong J.J., King K.M., Henslee-Downey P.J. Human γδ+ T lymphocytes have in vitro graft vs. leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant. 2001;27:601–606. doi: 10.1038/sj.bmt.1702830.
    1. Drobyski W.R., Majewski D., Hanson G. Graft-facilitating doses of ex vivo activated γδ T cells do not cause lethal murine graft-vs.-host disease. Biol. Blood Marrow Transplant. 1999;5:222–230. doi: 10.1053/bbmt.1999.v5.pm10465102.
    1. Blazar B.R., Taylor P.A., Bluestone J.A., Vallera D.A. Murine γ/Δ-expressing T cells affect alloengraftment via the recognition of nonclassical major histocompatibility complex class Ib antigens. Blood. 1996;87:4463–4472.
    1. Drobyski W.R., Majewski D. Donor γδ T lymphocytes promote allogeneic engraftment across the major histocompatibility barrier in mice. Blood. 1997;89:1100–1109.
    1. Kawanishi Y., Passweg J., Drobyski W.R., Rowlings P., Cook-Craig A., Casper J., Pietryga D., Garbrecht F., Camitta B., Horowitz M., et al. Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 1997;19:1069–1077. doi: 10.1038/sj.bmt.1700807.
    1. Henslee P.J., Thompson J.S., Romond E.H., Doukas M.A., Metcalfe M., Marshall M.E., MacDonald J.S. T cell depletion of HLA and haploidentical marrow reduces graft-versus-host disease but it may impair a graft-versus-leukemia effect. Transplant. Proc. 1987;19:2701–2706.
    1. Lang P., Feuchtinger T., Teltschik H.M., Schwinger W., Schlegel P., Pfeiffer M., Schumm M., Lang A.M., Lang B., Schwarze C.P., et al. Improved immune recovery after transplantation of TCR αβ/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50:S6–S10. doi: 10.1038/bmt.2015.87.
    1. Carding S.R., Egan P.J. Γδ T cells: Functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002;2:336–345. doi: 10.1038/nri797.
    1. Saad A., Lamb L.S. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: Past, present and future. Bone Marrow Transplant. 2017 doi: 10.1038/bmt.2017.22.
    1. Frame J.N., Collins N.H., Cartagena T., Waldmann H., O’Reilly R.J., Dupont B., Kernan N.A. T cell depletion of human bone marrow. Comparison of campath-1 plus complement, anti-T cell ricin a chain immunotoxin, and soybean agglutinin alone or in combination with sheep erythrocytes or immunomagnetic beads. Transplantation. 1989;47:984–988. doi: 10.1097/00007890-198906000-00013.
    1. Champlin R.E., Passweg J.R., Zhang M.J., Rowlings P.A., Pelz C.J., Atkinson K.A., Barrett A.J., Cahn J.Y., Drobyski W.R., Gale R.P., et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: Advantage of T-cell antibodies with narrow specificities. Blood. 2000;95:3996–4003.
    1. Martin P.J., Hansen J.A., Thomas E.D. Preincubation of donor bone marrow cells with a combination of murine monoclonal anti-T-cell antibodies without complement does not prevent graft-versus-host disease after allogeneic marrow transplantation. J. Clin. Immunol. 1984;4:18–22. doi: 10.1007/BF00915282.
    1. Waid T.H., Thompson J.S., Siemionow M., Brown S.A. T10b9 monoclonal antibody: A short-acting nonstimulating monoclonal antibody that spares γδ T-cells and treats and prevents cellular rejection. Drug Des. Devel. Ther. 2009;3:205–212. doi: 10.2147/DDDT.S2750.
    1. Li Pira G., Malaspina D., Girolami E., Biagini S., Cicchetti E., Conflitti G., Broglia M., Ceccarelli S., Lazzaro S., Pagliara D., et al. Selective depletion of αβ T cells and B cells for human leukocyte antigen-haploidentical hematopoietic stem cell transplantation. A three-year follow-up of procedure efficiency. Bio. Blood Marrow Transplant. 2016;22:2056–2064. doi: 10.1016/j.bbmt.2016.08.006.
    1. Schumm M., Lang P., Bethge W., Faul C., Feuchtinger T., Pfeiffer M., Vogel W., Huppert V., Handgretinger R. Depletion of T-cell receptor α/β and CD19 positive cells from apheresis products with the clinimacs device. Cytotherapy. 2013;15:1253–1258. doi: 10.1016/j.jcyt.2013.05.014.
    1. Schumm M., Lang P., Taylor G., Kuci S., Klingebiel T., Buhring H.J., Geiselhart A., Niethammer D., Handgretinger R. Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the clinimacs device. J. Hematother. 1999;8:209–218. doi: 10.1089/106161299320488.
    1. Duong H.K., Savani B.N., Copelan E., Devine S., Costa L.J., Wingard J.R., Shaughnessy P., Majhail N., Perales M.A., Cutler C.S., et al. Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: Guidelines from the american society for blood and marrow transplantation. Biol. Blood Marrow Transplant. 2014;20:1262–1273. doi: 10.1016/j.bbmt.2014.05.003.
    1. Gattillo S., Marktel S., Rizzo L., Malato S., Malabarba L., Coppola M., Assanelli A., Milani R., De Freitas T., Corti C., et al. Plerixafor on demand in ten healthy family donors as a rescue strategy to achieve an adequate graft for stem cell transplantation. Transfusion. 2015;55:1993–2000. doi: 10.1111/trf.13059.
    1. Handgretinger R. Negative depletion of CD3(+) and TCR αβ+ T cells. Curr. Opin. Hematol. 2012;19:434–439. doi: 10.1097/MOH.0b013e3283582340.
    1. Handgretinger R. New approaches to graft engineering for haploidentical bone marrow transplantation. Semin. Oncol. 2012;39:664–673. doi: 10.1053/j.seminoncol.2012.09.007.
    1. Bertaina A., Merli P., Rutella S., Pagliara D., Bernardo M.E., Masetti R., Pende D., Falco M., Handgretinger R., Moretta F., et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and b cells in children with nonmalignant disorders. Blood. 2014;124:822–826. doi: 10.1182/blood-2014-03-563817.
    1. Balashov D., Shcherbina A., Maschan M., Trakhtman P., Skvortsova Y., Shelikhova L., Laberko A., Livshits A., Novichkova G., Maschan A. Single-center experience of unrelated and haploidentical stem cell transplantation with TCR αβ and CD19 depletion in children with primary immunodeficiency syndromes. Biol. Blood Marrow Transplant. 2015;21:1955–1962. doi: 10.1016/j.bbmt.2015.07.008.
    1. Maschan M., Shelikhova L., Ilushina M., Kurnikova E., Boyakova E., Balashov D., Persiantseva M., Skvortsova Y., Laberko A., Muzalevskii Y., et al. TCR-α/β and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51:668–674. doi: 10.1038/bmt.2015.343.
    1. Lang P.J., Schlegel P.G., Meisel R., Schulz A.S., Greil J., Bader P., Karitzky S., Holtkamp S., Siewert C., Schumm M., et al. TCR-α/β and CD19 depleted haploidentical stem cell transplantation following reduced intensity conditioning in children: First results of a prospective multicenter phase I/II clinical trial. Blood. 2016;128:6.
    1. Kaynar L., Demir K., Turak E.E., Ozturk C.P., Zararsiz G., Gonen Z.B., Gokahmetoglu S., Sivgin S., Eser B., Koker Y., et al. TCR αβ-depleted haploidentical transplantation results in adult acute leukemia patients. Hematology. 2017;22:136–144. doi: 10.1080/10245332.2016.1238182.
    1. Gonzalez M., Molina B., Deltoro N., Sevilla J., Ramírez M., Diaz M. Haploidentical hematopoietic stem cell transplantation (haplohsct) using TCRAB/CD19 depleted grafts in children with high-risk leukemia. Biol. Blood Marrow Transplant. 2017;23:S61–S62.
    1. Bhattacharyya R., Tan A.M., Chan M.Y., Jamuar S.S., Foo R., Iyer P. TCR αβ and CD19-depleted haploidentical stem cell transplant with reduced intensity conditioning for hoyeraal-hreidarsson syndrome with RTEL1 mutation. Bone Marrow Transplant. 2016;51:753–754. doi: 10.1038/bmt.2015.352.
    1. Kharya D.G., Doval D., Chaudhary D.R., Dhamija M., Khandelwal V., Lunkad S., Setia R., Handoo A., Sharma S. Haploidentical paternal TCR αβ and CD 19 depleted stem cell transplant for severe combined immunodeficiency with pneumocystis jiroveci pneumonia. Bone Marrow Transplant. 2015;50:S341.
    1. Sodani P., Isgro A., Marziali M., Gaziev J., Paciaroni K., Roveda A., Alfieri C., de Angelis G., Gallucci C., Torelli F., et al. From CD34 positive selection to negative depletion approaches of CD3 and T-cell receptor (TCR) αβ T lymphocytes in haploidentical transplant in thalassemia patients. Bone Marrow Transplant. 2013;48:S190.
    1. Di Stasi A., Tey S.K., Dotti G., Fujita Y., Kennedy-Nasser A., Martinez C., Straathof K., Liu E., Durett A.G., Grilley B., et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 2011;365:1673–1683. doi: 10.1056/NEJMoa1106152.

Source: PubMed

3
Suscribir