The effect of remote ischaemic conditioning on blood pressure response: A systematic review and meta-analysis

Biggie Baffour-Awuah, Gudrun Dieberg, Melissa J Pearson, Neil A Smart, Biggie Baffour-Awuah, Gudrun Dieberg, Melissa J Pearson, Neil A Smart

Abstract

Background: Previous work has evaluated the effect of remote ischaemic conditioning (RIC) in a number of clinical conditions (e.g. cardiac surgery and acute kidney injury), but only one analysis has examined blood pressure (BP) changes. While individual studies have reported the effects of acute bouts and repeated RIC exposure on resting BP, efficacy is equivocal. We conducted a systematic review and meta-analysis to evaluate the effects of acute and repeat RIC on BP.

Methods: A systematic search was performed using PubMed, Web of Science, EMBASE, and Cochrane Library of Controlled Trials up until October 31, 2020. Additionally, manual searches of reference lists were performed. Studies that compared BP responses after exposing participants to either an acute bout or repeated cycles of RIC with a minimum one-week intervention period were considered.

Results: Eighteen studies were included in this systematic review, ten examined acute effects while eight investigated repeat effects of RIC. Mean differences (MD) for outcome measures from acute RIC studies were: systolic BP 0.18 mmHg (95%CI -0.95, 1.31; p = 0.76), diastolic BP -0.43 mmHg (95%CI -2.36, 1.50; p = 0.66), MAP -1.73 mmHg (95%CI -3.11, -0.34; p = 0.01) and HR -1.15 bpm (95%CI -2.92, 0.62; p = 0.20). Only MAP was significantly reduced. Repeat RIC exposure showed non-significant change in systolic BP -3.23 mmHg (95%CI -6.57, 0.11; p = 0.06) and HR -0.16 bpm (95%CI -7.08, 6.77; p = 0.96) while diastolic BP -2.94 mmHg (95%CI -4.08, -1.79; p < 0.00001) and MAP -3.21 mmHg (95%CI -4.82, -1.61; p < 0.0001) were significantly reduced.

Conclusions: Our data suggests repeated, but not acute, RIC produced clinically meaningful reductions in diastolic BP and MAP.

Keywords: Acute remote ischaemic conditioning; BP, blood pressure; Blood pressure; CABG, coronary artery bypass grafting; CI, confidence interval; HR, heart rate; MD, mean difference; RIC; RIC, Remote ischaemic conditioning; Repeat remote ischaemic conditioning; SD, standard deviation; T2DM, type 2 diabetes mellitus; VEGF, vascular endothelial growth factor.

Conflict of interest statement

None of the authors declare any conflicts of interest.

© 2021 Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram.
Fig. 2
Fig. 2
Changes in systolic and diastolic BP, MAP and HR after acute RIC exposure. Forest plots showing the effects of acute RIC exposure on systolic BP (A), diastolic BP (B), MAP (C) and HR (D). A p-value

Fig. 3

Changes in systolic and diastolic…

Fig. 3

Changes in systolic and diastolic BP, MAP and HR after repeat RIC exposure.…

Fig. 3
Changes in systolic and diastolic BP, MAP and HR after repeat RIC exposure. Forest plots showing the effects of repeat RIC exposure on systolic blood pressure (A) and diastolic BP (B), MAP (C) and HR (D). A p-value
Similar articles
Cited by
References
    1. Marek-Trzonkowska N., Kwieczyńska A., Reiwer-Gostomska M., Koliński T., Molisz A., Siebert J. Arterial hypertension is characterized by imbalance of pro-angiogenic versus anti-angiogenic factors. PloS One. 2015;10(5) doi: 10.1371/journal.pone.0126190. - DOI - PMC - PubMed
    1. GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788. doi: 10.1016/s0140-6736(18)32203-7. - DOI - PMC - PubMed
    1. Harrap S.B., Lung T., Chalmers J. New blood pressure guidelines pose difficult choices for Australian physicians. Circ. Res. 2019;124(7):975–977. doi: 10.1161/CIRCRESAHA.118.314637. - DOI - PubMed
    1. Nguyen B., Bauman A., Ding D. Association between lifestyle risk factors and incident hypertension among middle-aged and older Australians. Prev. Med. 2019;118:73–80. doi: 10.1016/j.ypmed.2018.10.007. - DOI - PubMed
    1. Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Himmelfarb C.D., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2018;71(19):e127–e248. doi: 10.1016/j.jacc.2017.11.006. - DOI - PubMed
Show all 75 references
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 3
Fig. 3
Changes in systolic and diastolic BP, MAP and HR after repeat RIC exposure. Forest plots showing the effects of repeat RIC exposure on systolic blood pressure (A) and diastolic BP (B), MAP (C) and HR (D). A p-value

References

    1. Marek-Trzonkowska N., Kwieczyńska A., Reiwer-Gostomska M., Koliński T., Molisz A., Siebert J. Arterial hypertension is characterized by imbalance of pro-angiogenic versus anti-angiogenic factors. PloS One. 2015;10(5) doi: 10.1371/journal.pone.0126190.
    1. GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788. doi: 10.1016/s0140-6736(18)32203-7.
    1. Harrap S.B., Lung T., Chalmers J. New blood pressure guidelines pose difficult choices for Australian physicians. Circ. Res. 2019;124(7):975–977. doi: 10.1161/CIRCRESAHA.118.314637.
    1. Nguyen B., Bauman A., Ding D. Association between lifestyle risk factors and incident hypertension among middle-aged and older Australians. Prev. Med. 2019;118:73–80. doi: 10.1016/j.ypmed.2018.10.007.
    1. Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Himmelfarb C.D., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2018;71(19):e127–e248. doi: 10.1016/j.jacc.2017.11.006.
    1. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., De Simone G., Dominiczak A. 2018 ESC/ESH guidelines for the management of arterial hypertension. The task force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH) Eur. Heart J. 2018;39(33):3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Aucott L., Poobalan A., Smith W.C.S., Avenell A., Jung R., Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension. 2005;45(6):1035–1041. doi: 10.1161/01.HYP.0000165680.59733.d4.
    1. Selçuk K.T., Çevik C., Mercan Y., Koca H. Hypertensive patients' adherence to pharmacological and non-pharmacological treatment methods, in Turkey. Int. J. Community Med. Public Health. 2017;4(8):2648–2657. doi: 10.18203/2394-6040.ijcmph20173308.
    1. Stevens V.J., Obarzanek E., Cook N.R., Lee I.-M., Appel L.J., West D.S., Milas N.C., Mattfeldt-Beman M., Belden L., Bragg C. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann. Intern. Med. 2001;134(1):1–11. doi: 10.7326/0003-4819-134-1-200101020-00007.
    1. Carraca E.V., Mackenbach J.D., Lakerveld J., Rutter H., Oppert J.M., De Bourdeaudhuij I., Compernolle S., Roda C., Bardos H., Teixeira P.J. Lack of interest in physical activity - individual and environmental attributes in adults across Europe: the SPOTLIGHT project. Prev. Med. 2018;111:41–48. doi: 10.1016/j.ypmed.2018.02.021.
    1. Moschny A., Platen P., Klaaßen-Mielke R., Trampisch U., Hinrichs T. Barriers to physical activity in older adults in Germany: a cross-sectional study. Int. J. Behav. Nutr. Phys. Activ. 2011;8(1):121. doi: 10.1186/1479-5868-8-121.
    1. Reichert F.F., Barros A.J., Domingues M.R., Hallal P.C. The role of perceived personal barriers to engagement in leisure-time physical activity. Am. J. Publ. Health. 2007;97(3):515–519. doi: 10.2105/AJPH.2005.070144.
    1. Schutzer K.A., Graves B.S. Barriers and motivations to exercise in older adults. Prev. Med. 2004;39(5):1056–1061. doi: 10.1016/j.ypmed.2004.04.003.
    1. Trost S.G., Owen N., Bauman A.E., Sallis J.F., Brown W. Correlates of adults' participation in physical activity: review and update. Med. Sci. Sports Exerc. 2002;34(12):1996–2001. doi: 10.1249/01.MSS.0000038974.76900.92.
    1. Shen M., Gao J., Li J., Su J. Effect of ischaemic exercise training of a normal limb on angiogenesis of a pathological ischaemic limb in rabbits. Clin. Sci. (Lond.) 2009;117(5):201–208. doi: 10.1042/cs20080212.
    1. Epps J., Dieberg G., Smart N.A. Repeat remote ischaemic pre-conditioning for improved cardiovascular function in humans: a systematic review. Int. J. Cardiol. Heart Vasc. 2016;11:55–58. doi: 10.1016/j.ijcha.2016.03.003.
    1. Przyklenk K., Bauer B., Ovize M., Kloner R.A., Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–899. doi: 10.1161/01.cir.87.3.893.
    1. Heusch G., Botker H.E., Przyklenk K., Redington A., Yellon D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 2015;65(2):177–195. doi: 10.1016/j.jacc.2014.10.031.
    1. Madias J.E. Sustained blood pressure lowering effect of twice daily remote ischemic conditioning sessions in a normotensive/prehypertensive subject. Int. J. Cardiol. 2015;182:392–394. doi: 10.1016/j.ijcard.2014.12.159.
    1. Pell T.J., Baxter G.F., Yellon D.M., Drew G.M. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am. J. Physiol. 1998;275(5):H1542–H1547. doi: 10.1152/ajpheart.1998.275.5.H1542.
    1. Kharbanda R.K., Mortensen U.M., White P.A., Kristiansen S.B., Schmidt M.R., Hoschtitzky J.A., Vogel M., Sorensen K., Redington A.N., MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–2883. doi: 10.1161/01.cir.0000043806.51912.9b.
    1. Crimi G., Pica S., Raineri C., Bramucci E., De Ferrari G.M., Klersy C., Ferlini M., Marinoni B., Repetto A., Romeo M., Rosti V., Massa M., Raisaro A., Leonardi S., Rubartelli P., Oltrona Visconti L., Ferrario M. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial, JACC Cardiovasc. Interv. 2013;6(10):1055–1063. doi: 10.1016/j.jcin.2013.05.011.
    1. McLeod S.L., Iansavichene A., Cheskes S. Remote ischemic perconditioning to reduce reperfusion injury during acute ST-segment–elevation myocardial infarction: a systematic review and meta-analysis. J. Am. Heart Assoc. 2017;6(5) doi: 10.1161/JAHA.117.005522.
    1. Pilcher J.M., Young P., Weatherall M., Rahman I., Bonser R.S., Beasley R.W. A systematic review and meta-analysis of the cardioprotective effects of remote ischaemic preconditioning in open cardiac surgery. J. R. Soc. Med. 2012;105(10):436–445. doi: 10.1258/jrsm.2012.120049.
    1. Domanski M.J., Mahaffey K., Hasselblad V., Brener S.J., Smith P.K., Hillis G., Engoren M., Alexander J.H., Levy J.H., Chaitman B.R. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. J. Am. Med. Assoc. 2011;305(6):585–591. doi: 10.1001/jama.2011.99.
    1. Adabag A.S., Rector T., Mithani S., Harmala J., Ward H.B., Kelly R.F., Nguyen J.T., McFalls E.O., Bloomfield H.E. Prognostic significance of elevated cardiac troponin I after heart surgery. Ann. Thorac. Surg. 2007;83(5):1744–1750. doi: 10.1016/j.athoracsur.2006.12.049.
    1. Meng R., Ding Y., Asmaro K., Brogan D., Meng L., Sui M., Shi J., Duan Y., Sun Z., Yu Y., Jia J., Ji X. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics. 2015;12(3):667–677. doi: 10.1007/s13311-015-0358-6.
    1. Jean-St-Michel E., Manlhiot C., Li J., Tropak M., Michelsen M.M., Schmidt M.R., McCrindle B.W., Wells G.D., Redington A.N. Remote preconditioning improves maximal performance in highly trained athletes. Med. Sci. Sports Exerc. 2011;43(7):1280–1286. doi: 10.1249/MSS.0b013e318206845d. (Remote ischemic preconditioning)(Report)
    1. Cruz R.S.d.O., Aguiar R.A.d., Turnes T., Pereira K.L., Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J. Appl. Physiol. 2015;119(9):961–967. doi: 10.1152/japplphysiol.00498.2015.
    1. Cruz R.S.d.O., Aguiar R.A.d, Turnes T., Salvador A.F., Caputo F. Effects of ischemic preconditioning on short-duration cycling performance. Appl. Physiol. Nutr. Metabol. 2016;41:825+. doi: 10.1139/apnm-2015-0646.
    1. Chotiyarnwong C., Nair K., Angelini L., Buckley E., Mazza C., Heyes D., Ramiz R., Baster K., Ismail A., Das J., Ali A., Lindert R., Sharrack B., Price S., Paling D. Effect of remote ischaemic preconditioning on walking in people with multiple sclerosis: double-blind randomised controlled trial. BMJ Neurology Open. 2020;2(1) doi: 10.1136/bmjno-2019-000022.
    1. Madias J.E. Effect of serial arm ischemic preconditioning sessions on the systemic blood pressure of a normotensive subject. Med. Hypotheses. 2011;76(4):503–506. doi: 10.1016/j.mehy.2010.12.002.
    1. Madias J.E., Koulouridis I. Effect of repeat twice daily sessions of remote ischemic conditioning over the course of one week on blood pressure of a normotensive/prehypertensive subject. Int. J. Cardiol. 2014;176(3):1076–1077. doi: 10.1016/j.ijcard.2014.07.132.
    1. Deng Q.-W., Xia Z.-Q., Qiu Y.-X., Wu Y., Liu J.-X., Li C., Liu K.-X. Clinical benefits of aortic cross-clamping versus limb remote ischemic preconditioning in coronary artery bypass grafting with cardiopulmonary bypass: a meta-analysis of randomized controlled trials. J. Surg. Res. 2015;193(1):52–68. doi: 10.1016/j.jss.2014.10.007.
    1. Piercy K.L., Troiano R.P., Ballard R.M., Carlson S.A., Fulton J.E., Galuska D.A., George S.M., Olson R.D. The physical activity guidelines for Americans. J. Am. Med. Assoc. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854.
    1. Sardar P., Chatterjee S., Kundu A., Samady H., Owan T., Giri J., Nairooz R., Selzman C.H., Heusch G., Gersh B.J., Abbott J.D., Mukherjee D., Fang J.C. Remote ischemic preconditioning in patients undergoing cardiovascular surgery: evidence from a meta-analysis of randomized controlled trials. Int. J. Cardiol. 2016;221:34–41. doi: 10.1016/j.ijcard.2016.06.325.
    1. Takagi H., Manabe H., Kawai N., Goto S.-n., Umemoto T. Review and meta-analysis of randomized controlled clinical trials of remote ischemic preconditioning in cardiovascular surgery. Am. J. Cardiol. 2008;102(11):1487–1488. doi: 10.1016/j.amjcard.2008.07.036.
    1. Takagi H., Umemoto T. Remote ischemic preconditioning for cardiovascular surgery: an updated meta-analysis of randomized trials. Vasc. Endovasc. Surg. 2011;45(6):511–513. doi: 10.1177/1538574410379654.
    1. Wang S., Li H., He N., Sun Y., Guo S., Liao W., Liao Y., Chen Y., Bin J. Impact of remote ischaemic preconditioning on major clinical outcomes in patients undergoing cardiovascular surgery: a meta-analysis with trial sequential analysis of 32 randomised controlled trials. Int. J. Cardiol. 2017;227:882–891. doi: 10.1016/j.ijcard.2016.11.278.
    1. Xie J., Zhang X., Xu J., Zhang Z., Klingensmith N.J., Liu S., Pan C., Yang Y., Qiu H. Effect of remote ischemic preconditioning on outcomes in adult cardiac surgery: a systematic review and meta-analysis of randomized controlled studies. Anesth. Analg. 2018;127(1):30–38. doi: 10.1213/ANE.0000000000002674.
    1. Zhou C., Jeon Y., Meybohm P., Zarbock A., Young P.J., Li L., Hausenloy D.J. Renoprotection by remote ischemic conditioning during elective coronary revascularization: a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2016;222:295–302. doi: 10.1016/j.ijcard.2016.07.176.
    1. Zhou C., Liu Y., Yao Y., Zhou S., Fang N., Wang W., Li L. β-blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J. Cardiothorac. Vasc. Anesth. 2013;27(2):305–311. doi: 10.1053/j.jvca.2012.09.028.
    1. King N., Dieberg G., Smart N.A. Remote ischaemic pre-conditioning does not affect clinical outcomes following coronary Artery bypass grafting. a systematic review and meta-analysis. Clin. Trials Regul. Sci. Cardiol. 2016;17(C):1. doi: 10.1016/j.ctrsc.2016.03.001. (Author abstract)
    1. Baffour-Awuah B., Smart N., Dieberg G., Pearson M. 2020. The Effect of Repeat Remote Ischaemic Conditioning on Blood Pressure Response: a Systematic Review and Meta-Analysis.
    1. Schünemann H.J., Vist G.E., Higgins J.P., Santesso N., Deeks J.J., Glasziou P., Akl E.A., Guyatt G.H. Chapter 15: interpreting results and drawing conclusions. In: Higgins J., Thomas J., Chandler J., Cumpston M., Li T., Page M., Welch V., editors. Cochrane Handbook for Systematic Reviews of Interventions Version 6.0. John Wiley & Sons; Chichester (UK): 2019.
    1. Egger M., Smith G.D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629.
    1. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Review Manager (RevMan) [Computer Program] 2020.
    1. Jadad A.R., Moore R.A., Carroll D., Jenkinson C., Reynolds D.J.M., Gavaghan D.J., McQuay H.J. Assessing the quality of reports of randomized clinical trials: is blinding necessary?, Control. Clin. Trials. 1996;17(1):1–12. doi: 10.1016/0197-2456(95)00134-4.
    1. Guo Z.N., Guo W.T., Liu J., Chang J., Ma H., Zhang P., Zhang F.L., Han K., Hu H.H., Jin H. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology. 2019;93(1):e8–e19. doi: 10.1212/WNL.0000000000007732.
    1. Incognito A.V., Doherty C.J., Lee J.B., Burns M.J., Millar P.J. Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiol. Rep. 2017;5(14) doi: 10.14814/phy2.13342.
    1. Kepler T., Kuusik K., Lepner U., Starkopf J., Zilmer M., Eha J., Lieberg J., Vähi M., Kals J. The effect of remote ischaemic preconditioning on arterial stiffness in patients undergoing vascular surgery: a randomised clinical trial. Eur. J. Vasc. Endovasc. Surg. 2019;57(6):868–875. doi: 10.1016/j.ejvs.2018.12.002.
    1. Kuusik K., Kepler T., Zilmer M., Eha J., Vahi M., Kals J. Effects of remote ischaemic preconditioning on arterial stiffness in patients undergoing lower limb angiographic procedures: a randomised clinical trial. Eur. J. Vasc. Endovasc. Surg. 2019;58(6):875–882. doi: 10.1016/j.ejvs.2019.06.004.
    1. Li C., Li Y.S., Xu M., Wen S.H., Yao X., Wu Y., Huang C.Y., Huang W.Q., Liu K.X. Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: a randomized controlled trial. Anesthesiology. 2013;118(4):842–852. doi: 10.1097/ALN.0b013e3182850da5.
    1. Li C., Xu M., Wu Y., Li Y.S., Huang W.Q., Liu K.X. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia: a randomized controlled study. Anesthesiology. 2014;121(2):249–259. doi: 10.1097/aln.0000000000000266.
    1. Muller J., Taebling M., Oberhoffer R. Remote ischemic preconditioning has no short term effect on blood pressure, heart rate, and arterial stiffness in healthy young adults. Front. Physiol. 2019;10 doi: 10.3389/fphys.2019.01094.
    1. Zagidullin N., Scherbakova E., Safina Y., Zulkarneev R., Zagidullin S. The impact of remote ischemic preconditioning on arterial stiffness and heart rate variability in patients with angina pectoris. J. Clin. Med. 2016;5(7) doi: 10.3390/jcm5070060.
    1. Xu Y., Yu Q., Yang J., Yuan F., Zhong Y., Zhou Z., Wang N. Acute hemodynamic effects of remote ischemic preconditioning on coronary perfusion pressure and coronary collateral blood flow in coronary heart disease. Acta Cardiol. Sin. 2018;34(4):299–306. doi: 10.6515/ACS.201807_34(4).20180317A.
    1. Chen W., Ni J., Qiao Z., Wu Y., Lu L., Zheng J., Chen R., Lu X. Comparison of the clinical outcomes of two physiological ischemic training methods in patients with coronary heart disease. Open Med. 2019;14:224–233. doi: 10.1515/med-2019-0016.
    1. Jones H., Hopkins N., Bailey T.G., Green D.J., Cable N.T., Thijssen D.H. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am. J. Hypertens. 2014;27(7):918–925. doi: 10.1093/ajh/hpu004.
    1. Jones H., Nyakayiru J., Bailey T.G., Green D.J., Cable N.T., Sprung V.S., Hopkins N.D., Thijssen D.H. Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur. J. Prev. Cardiol. 2015;22(8):1083–1087. doi: 10.1177/2047487314547657.
    1. Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T., Noma K., Yoshizumi M., Chayama K., Higashi Y. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells, Arterioscler. Thromb. Vasc. Biol. 2007;27(6):1403–1410. doi: 10.1161/ATVBAHA.107.143578.
    1. Maxwell J.D., Carter H.H., Hellsten Y., Miller G.D., Sprung V.S., Cuthbertson D.J., Thijssen D.H.J., Jones H. Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study. Eur. J. Endocrinol. 2019;181(6):659–669. doi: 10.1530/EJE-19-0378.
    1. Pryds K., Nielsen R., Jorsal A., Hansen M., Ringgaard S., Refsgaard J., Petersen A., Bøtker H., Schmidt M. Effect of long-term remote ischemic conditioning in patients with chronic ischemic heart failure. Basic Res. Cardiol. 2017;112(6):1–11. doi: 10.1007/s00395-017-0658-6.
    1. Banks L., Wells G.D., Clarizia N.A., Jean-St-Michel E., McKillop A.L., Redington A.N., McCrindle B.W. Short-term remote ischemic preconditioning is not associated with improved blood pressure and exercise capacity in young adults. Appl. Physiol. Nutr. Metabol. 2016;41(8):903–906. doi: 10.1139/apnm-2016-0024.
    1. Herrod P.J.J., Blackwell J.E.M., Moss B.F., Gates A., Atherton P.J., Lund J.N., Williams J.P., Phillips B.E. The efficacy of 'static' training interventions for improving indices of cardiorespiratory fitness in premenopausal females. Eur. J. Appl. Physiol. 2019;119(3):645–652. doi: 10.1007/s00421-018-4054-1.
    1. Hamer M. The anti-hypertensive effects of exercise. Sports Med. 2006;36(2):109–116. doi: 10.2165/00007256-200636020-00002.
    1. Cornelissen V.A., Buys R., Smart N.A. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J. Hypertens. 2013;31(4):639–648. doi: 10.1097/HJH.0b013e32835ca964.
    1. Blank S.G., Mann S.J., James G.D., West J.E., Pickering T.G. Isolated elevation of diastolic blood pressure. Hypertension. 1995;26(3):383–389. doi: 10.1161/01.HYP.26.3.383.
    1. Staley S B., Wei Q G., Amano S., Nolty A., Harrington M. C-09 diastolic blood pressure and executive function in healthy older adults. Arch. Clin. Neuropsychol. 2019;34(6) doi: 10.1093/arclin/acz034.171. 1036-1036.
    1. Yu Y., Li M., Zhou W., Wang T., Zhu L., Hu L., Bao H., Cheng X. Diastolic blood pressure achieved at target systolic blood pressure (120-140 mm Hg) and dabigatran-related bleeding in patients with nonvalvular atrial fibrillation: a real-world study. Anatol. J. Cardiol. 2020;24(4):267–273. doi: 10.14744/AnatolJCardiol.2020.11823.
    1. Baffour-Awuah B., Dieberg G., Pearson M.J., Smart N.A. Blood pressure control in older adults with hypertension: a systematic review with meta-analysis and meta-regression. IJCHy. 2020;6:100040. doi: 10.1016/j.ijchy.2020.100040.
    1. Flint A.C., Conell C., Ren X., Banki N.M., Chan S.L., Rao V.A., Melles R.B., Bhatt D.L. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N. Engl. J. Med. 2019;381(3):243–251. doi: 10.1056/NEJMoa1803180.
    1. Ogedegbe G., Pickering T. Principles and techniques of blood pressure measurement. Cardiol. Clin. 2010;28(4):571–586. doi: 10.1016/j.ccl.2010.07.006.
    1. Netea R.T., Lenders J.W.M., Smits P., Thien T. Both body and arm position significantly influence blood pressure measurement. J. Hum. Hypertens. 2003;17(7):459–462. doi: 10.1038/sj.jhh.1001573.

Source: PubMed

3
Suscribir