Prevalence and prognosis of respiratory pendelluft phenomenon in mechanically ventilated ICU patients with acute respiratory failure: a retrospective cohort study

Yi Chi, Zhanqi Zhao, Inéz Frerichs, Yun Long, Huaiwu He, Yi Chi, Zhanqi Zhao, Inéz Frerichs, Yun Long, Huaiwu He

Abstract

Background: Respiratory pendelluft phenomenon, defined as intrapulmonary gas redistribution caused by asynchronous alveolar ventilation, could be potentially harmful by inducing lung injury. The aim of the present study was to investigate its prevalence and prognosis in intensive care unit (ICU) patients with acute respiratory failure (ARF).

Methods: This was a retrospective observational study on 200 mechanically ventilated ARF patients treated in a tertiary ICU. The presence of pendelluft was determined using electrical impedance tomography (EIT) within 48 h after admission. Its amplitude was defined as the impedance difference between the sum of all regional tidal impedance variation and the global tidal impedance variation. A value above 2.5% (the 95th percentile from 30 healthy volunteers) was considered confirmative for its occurrence.

Results: Pendelluft was found in 61 patients (39 in 94 patients with spontaneous breathing, 22 in 106 receiving controlled ventilation), with an overall prevalence of 31%. Existence of spontaneous breathing and higher global inhomogeneity index were associated with pendelluft. Patients with pendelluft had a longer ICU length of stay [10 (6, 14) vs. 7 (4, 11) days; median (lower, upper quartile); p = 0.022] and shorter 14-day ventilator-free days [8 (1, 10) vs. 10 (6, 12) days; p = 0.015]. Subgroup survival analysis suggested the association between pendelluft and longer ventilation duration, which was significant only in patients with PaO2/FiO2 ratio below 200 mmHg (log-rank p = 0.042). ICU mortality did not differ between the patients with and without pendelluft.

Conclusions: Respiratory pendelluft occurred often in our study group and it was associated with longer ventilation duration. Early recognition of this phenomenon should trigger interventions aimed at alleviating pendelluft.

Keywords: Acute respiratory failure; Intensive care unit; Mechanical ventilation; Pendelluft.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Exploration of correlation between PEEP and pendelluft amplitude in A P/F ratio below 150 mmHg and B presence of spontaneous breathing, respectively
Fig. 2
Fig. 2
Kaplan–Meier 14-day probability of discontinuation from ventilation curve for patients with (blue) or without pendelluft (red) in A the overall study population, B in patients with PaO2/FiO2 ratio below 200 mmHg and C between 200 and 300 mmHg
Fig. 3
Fig. 3
Relationship between pendelluft amplitude and risk ratio for ventilation discontinuation in the study population. 2.5% amplitude of pendelluft was set as the reference

References

    1. Harada K, Saoyama N, Izumi K, Hamaguchi N, Sasaki M, Inoue K. Experimental pendulum air in the flail chest. Jpn J Surg. 1983;13(3):219–226. doi: 10.1007/BF02469481.
    1. Vyshedskiy A, Murphy R. Pendelluft in chronic obstructive lung disease measured with lung sounds. Pulm Med. 2012;2012:139395.
    1. Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa EL, Tucci MR, Zin WA, Kavanagh BP, Amato MB. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188(12):1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Yoshida T, Roldan R, Beraldo MA, Torsani V, Gomes S, De Santis RR, Costa EL, Tucci MR, Lima RG, Kavanagh BP, et al. Spontaneous effort during mechanical ventilation: maximal injury with less positive end-expiratory pressure. Crit Care Med. 2016;44(8):e678–688. doi: 10.1097/CCM.0000000000001649.
    1. Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima CAS, Ramos OPS, Pereira SM, Kawaguchi N, Yamamoto H, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med. 2018;197(10):1285–1296. doi: 10.1164/rccm.201706-1244OC.
    1. Yoshida T, Nakahashi S, Nakamura MAM, Koyama Y, Roldan R, Torsani V, De Santis RR, Gomes S, Uchiyama A, Amato MBP, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med. 2017;196(5):590–601. doi: 10.1164/rccm.201610-1972OC.
    1. Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Coppadoro A, Grassi A, Giovannoni C, Rabboni F, Eronia N, Bronco A, Foti G, Fumagalli R, Bellani G. Occurrence of pendelluft under pressure support ventilation in patients who failed a spontaneous breathing trial: an observational study. Ann Intensive Care. 2020;10(1):39. doi: 10.1186/s13613-020-00654-y.
    1. Sang L, Zhao Z, Yun PJ, Frerichs I, Möller K, Fu F, Liu X, Zhong N, Li Y. Qualitative and quantitative assessment of pendelluft: a simple method based on electrical impedance tomography. Ann Transl Med. 2020;8(19):1216. doi: 10.21037/atm-20-4182.
    1. Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, Kallet RH. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199(3):333–341. doi: 10.1164/rccm.201804-0692OC.
    1. Otis AB, McKerrow CB, Bartlett RA, Mead J, McIlroy MB, Selver-Stone NJ, Radford EP., Jr Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol. 1956;8(4):427–443. doi: 10.1152/jappl.1956.8.4.427.
    1. He H, Chi Y, Long Y, Yuan S, Zhang R, Yang Y, Frerichs I, Möller K, Fu F, Zhao Z. Three broad classifications of acute respiratory failure etiologies based on regional ventilation and perfusion by electrical impedance tomography: a hypothesis-generating study. Ann Intensive Care. 2021;11(1):134. doi: 10.1186/s13613-021-00921-6.
    1. Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Lopes FA, Souza LAM, Bernardi JTN, Rocha CE, Figueiredo LC, Agostini A, Dragosavac D, Faez D. Pendelluft diagnosed from ventilator weaning indexes obtained through bioelectrical impedance tomography: a case report. Sao Paulo Med J. 2017;135(3):302–308. doi: 10.1590/1516-3180.2016.025514102016.
    1. Rossi FS, Costa ELV, Iope DDM, Pacce PH, Cestaro C, Braz LZ, Bousso A, Amato MB. Pendelluft detection using electrical impedance tomography in an infant. Keep those images in mind. Am J Respir Crit Care Med. 2019;200(11):1427–1429. doi: 10.1164/rccm.201902-0461IM.
    1. Gonçalves-Ferri WA, Rossi FS, Costa ELV, Correa L, Iope D, Pacce PD, Martins-Celini F, Bernardes A, Ribeiro M, Amato MBP. Lung recruitment and pendelluft resolution after less invasive surfactant administration in a preterm infant. Am J Respir Crit Care Med. 2020;202(5):766–769. doi: 10.1164/rccm.201912-2439LE.
    1. Enokidani Y, Uchiyama A, Yoshida T, Abe R, Yamashita T, Koyama Y, Fujino Y. Effects of ventilatory settings on pendelluft phenomenon during mechanical ventilation. Respir Care. 2021;66(1):1–10. doi: 10.4187/respcare.07880.
    1. Pellegrini M, Hedenstierna G, Larsson AS, Perchiazzi G. Inspiratory efforts, positive end-expiratory pressure, and external resistances influence intraparenchymal gas redistribution in mechanically ventilated injured lungs. Front Physiol. 2020;11:618640. doi: 10.3389/fphys.2020.618640.
    1. Tulaimat A, Trick WE. DiapHRaGM: a mnemonic to describe the work of breathing in patients with respiratory failure. PLoS ONE. 2017;12(7):e0179641. doi: 10.1371/journal.pone.0179641.
    1. Apigo M, Schechtman J, Dhliwayo N, Al Tameemi M, Gazmuri RJ. Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Crit Care. 2020;24(1):477. doi: 10.1186/s13054-020-03176-y.
    1. Borges JB, Morais CCA, Costa ELV. High PEEP may have reduced injurious transpulmonary pressure swings in the ROSE trial. Crit Care. 2019;23(1):404. doi: 10.1186/s13054-019-2689-x.
    1. Santini A, Mauri T, Dalla Corte F, Spinelli E, Pesenti A. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Crit Care. 2019;23(1):369. doi: 10.1186/s13054-019-2641-0.
    1. Karsten J, Stueber T, Voigt N, Teschner E, Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care. 2016;20:3. doi: 10.1186/s13054-015-1161-9.
    1. Becher T, Bußmeyer M, Lautenschläger I, Schädler D, Weiler N, Frerichs I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br J Anaesth. 2018;120(6):1219–1228. doi: 10.1016/j.bja.2018.02.030.

Source: PubMed

3
Suscribir