Bioelectrical impedance phase angle as a prognostic indicator in breast cancer

Digant Gupta, Carolyn A Lammersfeld, Pankaj G Vashi, Jessica King, Sadie L Dahlk, James F Grutsch, Christopher G Lis, Digant Gupta, Carolyn A Lammersfeld, Pankaj G Vashi, Jessica King, Sadie L Dahlk, James F Grutsch, Christopher G Lis

Abstract

Background: Bioelectrical impedance analysis (BIA) is an easy-to-use, non-invasive, and reproducible technique to evaluate changes in body composition and nutritional status. Phase angle, determined by bioelectrical impedance analysis (BIA), detects changes in tissue electrical properties and has been hypothesized to be a marker of malnutrition. Since malnutrition can be found in patients with breast cancer, we investigated the prognostic role of phase angle in breast cancer.

Methods: We evaluated a case series of 259 histologically confirmed breast cancer patients treated at Cancer Treatment Centers of America. Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle independent of stage at diagnosis and prior treatment history. Survival was calculated as the time interval between the date of first patient visit to the hospital and the date of death from any cause or date of last contact/last known to be alive.

Results: Of 259 patients, 81 were newly diagnosed at our hospital while 178 had received prior treatment elsewhere. 56 had stage I disease at diagnosis, 110 had stage II, 46 had stage III and 34 had stage IV. The median age at diagnosis was 49 years (range 25-74 years). The median phase angle score was 5.6 (range = 1.5-8.9). Patients with phase angle < or = 5.6 had a median survival of 23.1 months (95% CI: 14.2 to 31.9; n = 129), while those > 5.6 had 49.9 months (95% CI: 35.6 to 77.8; n = 130); the difference being statistically significant (p = 0.031). Multivariate Cox modeling, after adjusting for stage at diagnosis and prior treatment history found that every one unit increase in phase angle score was associated with a relative risk of 0.82 (95% CI: 0.68 to 0.99, P = 0.041). Stage at diagnosis (p = 0.006) and prior treatment history (p = 0.001) were also predictive of survival independent of each other and phase angle.

Conclusion: This study demonstrates that BIA-derived phase angle is an independent prognostic indicator in patients with breast cancer. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with breast cancer.

Figures

Figure 1
Figure 1
Survival stratified by phase angle categories with cutoff of 5.6. Each drop in a probability curve indicates one or more events in that group. Vertical lines indicate censored patients, i.e., those who reached the end of their follow-up without experiencing death.

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.
    1. Sarhill N, Mahmoud FA, Christie R, Tahir A. Assessment of nutritional status and fluid deficits in advanced cancer. Am J Hosp Palliat Care. 2003;20:465–473. doi: 10.1177/104990910302000610.
    1. Barbosa-Silva MC, Barros AJ, Post CL, Waitzberg DL, Heymsfield SB. Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition. 2003;19:422–426. doi: 10.1016/S0899-9007(02)00932-2.
    1. Cox-Reijven PL, van Kreel B, Soeters PB. Bioelectrical impedance measurements in patients with gastrointestinal disease: validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am J Clin Nutr. 2003;78:1111–1119.
    1. Fredrix EW, Saris WH, Soeters PB, Wouters EF, Kester AD, von Meyenfeldt MF, Westerterp KR. Estimation of body composition by bioelectrical impedance in cancer patients. Eur J Clin Nutr. 1990;44:749–752.
    1. Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11:199–209.
    1. Pierce JP, Stefanick ML, Flatt SW, Natarajan L, Sternfeld B, Madlensky L, Al Delaimy WK, Thomson CA, Kealey S, Hajek R, Parker BA, Newman VA, Caan B, Rock CL. Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol. 2007;25:2345–2351. doi: 10.1200/JCO.2006.08.6819.
    1. Weitzen R, Tichler T, Kaufman B, Catane R, Shpatz Y. [Body weight, nutritional factors and physical activity--their influence on prognosis after breast cancer diagnosis] Harefuah. 2006;145:820–5, 861.
    1. McEligot AJ, Largent J, Ziogas A, Peel D, Anton-Culver H. Dietary fat, fiber, vegetable, and micronutrients are associated with overall survival in postmenopausal women diagnosed with breast cancer. Nutr Cancer. 2006;55:132–140. doi: 10.1207/s15327914nc5502_3.
    1. Goodwin PJ, Ennis M, Pritchard KI, Koo J, Trudeau ME, Hood N. Diet and breast cancer: evidence that extremes in diet are associated with poor survival. J Clin Oncol. 2003;21:2500–2507. doi: 10.1200/JCO.2003.06.121.
    1. Rock CL, Demark-Wahnefried W. Nutrition and survival after the diagnosis of breast cancer: a review of the evidence. J Clin Oncol. 2002;20:3302–3316. doi: 10.1200/JCO.2002.03.008.
    1. Bauer J, Capra S, Ferguson M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr. 2002;56:779–785. doi: 10.1038/sj.ejcn.1601412.
    1. Carney DE, Meguid MM. Current concepts in nutritional assessment. Arch Surg. 2002;137:42–45. doi: 10.1001/archsurg.137.1.42.
    1. Waitzberg DL, Correia MI. Nutritional assessment in the hospitalized patient. Curr Opin Clin Nutr Metab Care. 2003;6:531–538. doi: 10.1097/00075197-200309000-00006.
    1. Detsky AS, Baker JP, Mendelson RA, Wolman SL, Wesson DE, Jeejeebhoy KN. Evaluating the accuracy of nutritional assessment techniques applied to hospitalized patients: methodology and comparisons. JPEN J Parenter Enteral Nutr. 1984;8:153–159. doi: 10.1177/0148607184008002153.
    1. Nagano M, Suita S, Yamanouchi T. The validity of bioelectrical impedance phase angle for nutritional assessment in children. J Pediatr Surg. 2000;35:1035–1039. doi: 10.1053/jpsu.2000.7766.
    1. Marken Lichtenbelt WD, Westerterp KR, Wouters L, Luijendijk SC. Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. Am J Clin Nutr. 1994;60:159–166.
    1. Desport JC, Preux PM, Bouteloup-Demange C, Clavelou P, Beaufrere B, Bonnet C, Couratier PP. Validation of bioelectrical impedance analysis in patients with amyotrophic lateral sclerosis. Am J Clin Nutr. 2003;77:1179–1185.
    1. Adami GF, Marinari G, Gandolfo P, Cocchi F, Friedman D, Scopinaro N. The use of bioelectrical impedance analysis for monitoring body composition changes during nutritional support. Surg Today. 1993;23:867–870. doi: 10.1007/BF00311363.
    1. Azcue M, Fried M, Pencharz PB. Use of bioelectrical impedance analysis to measure total body water in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr. 1993;16:440–445.
    1. Chertow GM, Lowrie EG, Wilmore DW, Gonzalez J, Lew NL, Ling J, Leboff MS, Gottlieb MN, Huang W, Zebrowski B, . Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol. 1995;6:75–81.
    1. Fein PA, Gundumalla G, Jorden A, Matza B, Chattopadhyay J, Avram MM. Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients. Adv Perit Dial. 2002;18:195–199.
    1. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41:810–817.
    1. Pencharz PB, Azcue M. Use of bioelectrical impedance analysis measurements in the clinical management of malnutrition. Am J Clin Nutr. 1996;64:485S–488S.
    1. Pupim LB, Kent P, Ikizler TA. Bioelectrical impedance analysis in dialysis patients. Miner Electrolyte Metab. 1999;25:400–406. doi: 10.1159/000057482.
    1. Simons JP, Schols AM, Westerterp KR, ten Velde GP, Wouters EF. The use of bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. Am J Clin Nutr. 1995;61:741–745.
    1. Zarowitz BJ, Pilla AM. Bioelectrical impedance in clinical practice. DICP. 1989;23:548–555.
    1. Barbosa-Silva MC, Barros AJ. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care. 2005;8:311–317.
    1. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr. 1988;48:16–23.
    1. Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol. 2002;86:509–516. doi: 10.1007/s00421-001-0570-4.
    1. Faisy C, Rabbat A, Kouchakji B, Laaban JP. Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med. 2000;26:518–525. doi: 10.1007/s001340051198.
    1. Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996;50:2103–2108. doi: 10.1038/ki.1996.535.
    1. Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF, Lembcke B. Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9:20–25.
    1. Schwenk A, Ward LC, Elia M, Scott GM. Bioelectrical impedance analysis predicts outcome in patients with suspected bacteremia. Infection. 1998;26:277–282.
    1. Schwenk A, Beisenherz A, Romer K, Kremer G, Salzberger B, Elia M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr. 2000;72:496–501.
    1. Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr. 2004;92:957–962. doi: 10.1079/BJN20041292.
    1. Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, Hoffman S, Lis CG. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr. 2004;80:1634–1638.
    1. Toso S, Piccoli A, Gusella M, Menon D, Bononi A, Crepaldi G, Ferrazzi E. Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition. 2000;16:120–124. doi: 10.1016/S0899-9007(99)00230-0.
    1. Elia M. The bioimpedance 'craze'. Eur J Clin Nutr. 1993;47:825–827.
    1. Lukaski HC. Requirements for clinical use of bioelectrical impedance analysis (BIA) Ann N Y Acad Sci. 1999;873:72–76. doi: 10.1111/j.1749-6632.1999.tb09451.x.
    1. Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol. 2003;122:361–370. doi: 10.1002/ajpa.10301.
    1. Foster KR, Lukaski HC. Whole-body impedance--what does it measure? Am J Clin Nutr. 1996;64:388S–396S.
    1. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr. 1996;64:524S–532S.

Source: PubMed

3
Suscribir