Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease

Keiichiro Matoba, Yusuke Takeda, Yosuke Nagai, Daiji Kawanami, Kazunori Utsunomiya, Rimei Nishimura, Keiichiro Matoba, Yusuke Takeda, Yosuke Nagai, Daiji Kawanami, Kazunori Utsunomiya, Rimei Nishimura

Abstract

Diabetic kidney disease (DKD) remains the leading cause of end-stage renal disease (ESRD) and is therefore a major burden on the healthcare system. Patients with DKD are highly susceptible to developing cardiovascular disease, which contributes to increased morbidity and mortality rates. While progress has been made to inhibit the acceleration of DKD, current standards of care reduce but do not eliminate the risk of DKD. There is growing appreciation for the role of inflammation in modulating the process of DKD. The focus of this review is on providing an overview of the current status of knowledge regarding the pathologic roles of inflammation in the development of DKD. Finally, we summarize recent therapeutic advances to prevent DKD, with a focus on the anti-inflammatory effects of newly developed agents.

Keywords: diabetic kidney disease; diabetic nephropathy; inflammation; signaling cascade.

Conflict of interest statement

Kazunori Utsunomiya has received research support from Terumo, Novo Nordisk Pharma, Taisho Pharmaceutical, Böehringer Ingelheim, Kyowa Hakko Kirin, Sumitomo Dainippon Pharma, and Ono Pharmaceutical as well as speaker honoraria from Tanabe Pharma, Sanofi Kabushiki Kaisya, Sumitomo Dainippon Pharma, Eli Lilly, and Böehringer Ingelheim. Rimei Nishimura has received speaker honoraria from Astellas Pharma, Nippon Boehringer Ingelheim, Eli Lilly Japan Kabushiki Kaisya, Kissei Pharmaceutical, Medtronic Japan, MSD, Novartis Pharma Kabushiki Kaisya, Novo Nordisk Pharma, Sanofi Kabushiki Kaisya, and Takeda Pharmaceutical and contract research fees for collaborative research with the Japan Diabetes Foundation.

Figures

Figure 1
Figure 1
In the diabetic kidney, advanced glycation end products (AGEs) and oxidative stress activate a variety of signaling cascades to induce monocyte infiltration. In addition, chemokines drive inflammation, leading to macrophage-mediated tissue injury. DKD, Diabetic kidney disease; RAGE, receptor for AGE; VCAM1, vascular cell adhesion molecule 1; ICAM1, intercellular adhesion molecule 1; JAK-STAT, Janus kinase/signal transducer and activator of transcription; NF-κB, Nuclear factor Κb; Nrf2, nuclear factor-2 erythroid related factor 2; TNF-α, tumor necrosis factor α; TGF-β, transforming growth factor β.

References

    1. Adler A.I., Stevens R.J., Manley S.E., Bilous R.W., Cull C.A., Holman R.R., UKPDS GROUP Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64) Kidney Int. 2003;63:225–232. doi: 10.1046/j.1523-1755.2003.00712.x.
    1. Goldfine A.B., Shoelson S.E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest. 2017;127:83–93. doi: 10.1172/JCI88884.
    1. Simo-Servat O., Simo R., Hernandez C. Circulating Biomarkers of Diabetic Retinopathy: An Overview Based on Physiopathology. J. Diabetes Res. 2016;2016:5263798. doi: 10.1155/2016/5263798.
    1. Paeschke S., Paeschke S., Baum P., Toyka K.V., Blüher M., Koj S., Klöting N., Bechmann I., Thiery J., Kosacka J., et al. The Role of Iron and Nerve Inflammation in Diabetes Mellitus Type 2-Induced Peripheral Neuropathy. Neuroscience. 2019;406:496–509. doi: 10.1016/j.neuroscience.2019.03.005.
    1. Xu L., Lin X., Guan M., Zeng Y., Liu Y. Verapamil Attenuated Prediabetic Neuropathy in High-Fat Diet-Fed Mice through Inhibiting TXNIP-Mediated Apoptosis and Inflammation. Oxid Med. Cell Longev. 2019;2019:1896041. doi: 10.1155/2019/1896041.
    1. Doupis J., Lyons T.E., Wu S., Gnardellis C., Dinh T., Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J. Clin. Endocrinol Metab. 2009;94:2157–2163. doi: 10.1210/jc.2008-2385.
    1. Pop-Busui R., Ang L., Holmes C., Gallagher K., Feldman E.L. Inflammation as a Therapeutic Target for Diabetic Neuropathies. Curr. Diab. Rep. 2016;16:29. doi: 10.1007/s11892-016-0727-5.
    1. Ganesh Yerra V., Negi G., Sharma S.S., Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappaB pathways in diabetic neuropathy. Redox Biol. 2013;1:394–397. doi: 10.1016/j.redox.2013.07.005.
    1. Tian S., Chen S.Y. Macrophage polarization in kidney diseases. Macrophage (Houst) 2015;2:e679.
    1. Klessens C.Q.F., Zandbergen M., Wolterbeek R., Bruijn J.A., Rabelink T.J., Bajema I.M., IJpelaar D.H.T. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transpl. 2017;32:1322–1329. doi: 10.1093/ndt/gfw260.
    1. Usui H.K., Shikata K., Sasaki M., Okada S., Matsuda M., Shikata Y., Ogawa D., Kido Y., Nagase R., Yozai K., et al. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes. 2007;56:363–372. doi: 10.2337/db06-0359.
    1. Landis R.C., Quimby K.R., Greenidge A.R. M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets. Curr. Pharm. Des. 2018;24:2241–2249. doi: 10.2174/1381612824666180716163845.
    1. Devaraj S., Tobias P., Kasinath B.S., Ramsamooj R., Afify A., Jialal I. Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb. Vasc. Biol. 2011;31:1796–1804. doi: 10.1161/ATVBAHA.111.228924.
    1. Clausen P., Jacobsen P., Rossing K., Jensen J.S., Parving H.H., Feldt-Rasmussen B. Plasma concentrations of VCAM-1 and ICAM-1 are elevated in patients with Type 1 diabetes mellitus with microalbuminuria and overt nephropathy. Diabet Med. 2000;17:644–649. doi: 10.1046/j.1464-5491.2000.00347.x.
    1. Hojs R., Ekart R., Bevc S., Hojs N. Markers of Inflammation and Oxidative Stress in the Development and Progression of Renal Disease in Diabetic Patients. Nephron. 2016;133:159–162. doi: 10.1159/000447434.
    1. Liu J.J., Yeoh L.Y., Sum C.F., Tavintharan S., Ng X.W., Liu S., Lee S.B., Tang W.E., Lim S.C., SMART2D study Vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1, is associated with diabetic kidney disease in Asians with type 2 diabetes. J. Diabetes Complicat. 2015;29:707–712. doi: 10.1016/j.jdiacomp.2015.02.011.
    1. Lim A.K., Tesch G.H. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012;2012:146154. doi: 10.1155/2012/146154.
    1. Okada S., Shikata K., Matsuda M., Ogawa D., Usui H., Kido Y., Nagase R., Wada J., Shikata Y., Makino H. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes. 2003;52:2586–2593. doi: 10.2337/diabetes.52.10.2586.
    1. Nadkarni G.N., Rao V., Ismail-Beigi F., Fonseca V.A., Shah S.V., Simonson M.S., Cantley L., Devarajan P., Parikh C.R., Coca S.G. Association of Urinary Biomarkers of Inflammation, Injury, and Fibrosis with Renal Function Decline: The ACCORD Trial. Clin. J. Am. Soc. Nephrol. 2016;11:1343–1352. doi: 10.2215/CJN.12051115.
    1. Satirapoj B., Dispan R., Radinahamed P., Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol. 2018;19:246. doi: 10.1186/s12882-018-1043-x.
    1. Niewczas M.A., Gohda T., Skupien J., Smiles A.M., Walker W.H., Rosetti F., Cullere X., Eckfeldt J.H., Doria A., Mayadas T.N., et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 2012;23:507–515. doi: 10.1681/ASN.2011060627.
    1. Niewczas M.A., Pavkov M.E., Skupien J., Smiles A., Md Dom Z.I., Wilson J.M., Park J., Nair V., Schlafly A., Saulnier P.J., et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat. Med. 2019;25:805–813. doi: 10.1038/s41591-019-0415-5.
    1. Menne J., Eulberg D., Beyer D., Baumann M., Saudek F., Valkusz Z., Więcek A., Haller H., Emapticap Study Group C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant. 2017;32:307–315. doi: 10.1093/ndt/gfv459.
    1. Lenda D.M., Kikawada E., Stanley E.R., Kelley V.R. Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J. Immunol. 2003;170:3254–3262. doi: 10.4049/jimmunol.170.6.3254.
    1. Naito T., Yokoyama H., Moore K.J., Dranoff G., Mulligan R.C., Kelley V.R. Macrophage growth factors introduced into the kidney initiate renal injury. Mol. Med. 1996;2:297–312. doi: 10.1007/BF03401628.
    1. Matoba K., Kawanami D., Tsukamoto M., Kinoshita J., Ito T., Ishizawa S., Kanazawa Y., Yokota T., Murai N., Matsufuji S., et al. Rho-kinase regulation of TNF-alpha-induced nuclear translocation of NF-kappaB RelA/p65 and M-CSF expression via p38 MAPK in mesangial cells. Am. J. Physiol. Renal Physiol. 2014;307:F571–F580. doi: 10.1152/ajprenal.00113.2014.
    1. Lim A.K., Ma F.Y., Nikolic-Paterson D.J., Thomas M.C., Hurst L.A., Tesch G.H. Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia. 2009;52:1669–1679. doi: 10.1007/s00125-009-1399-3.
    1. Pichler R., Afkarian M., Dieter B.P., Tuttle K.R. Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol. 2017;312:F716–F731. doi: 10.1152/ajprenal.00314.2016.
    1. Sanajou D., Ghorbani Haghjo A., Argani H., Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur. J. Pharmacol. 2018;833:158–164. doi: 10.1016/j.ejphar.2018.06.001.
    1. Pérez-Morales R.E., Del Pino M.D., Valdivielso J.M., Ortiz A., Mora-Fernández C., Navarro-González J.F. Inflammation in Diabetic Kidney Disease. Nephron. 2018:1–5. doi: 10.1159/000493278.
    1. Toth-Manikowski S., Atta M.G. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. J. Diabetes Res. 2015;2015:697010. doi: 10.1155/2015/697010.
    1. Weigert C., Sauer U., Brodbeck K., Pfeiffer A., Häring H.U., Schleicher E.D. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J. Am. Soc. Nephrol. 2000;11:2007–2016.
    1. Nicholas S.B., Liu J., Kim J., Ren Y., Collins A.R., Nguyen L., Hsueh W.A. Critical role for osteopontin in diabetic nephropathy. Kidney Int. 2010;77:588–600. doi: 10.1038/ki.2009.518.
    1. Tuttle K.R., Brosius III F.C., Adler S.G., Kretzler M., Mehta R.L., Tumlin J.A., Tanaka Y., Haneda M., Liu J., Silk M.E., et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 2018;33:1950–1959. doi: 10.1093/ndt/gfx377.
    1. Brosius F.C., Ju W. The Promise of Systems Biology for Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018;25:202–213. doi: 10.1053/j.ackd.2017.10.012.
    1. Zhang H., Nair V., Saha J., Atkins K.B., Hodgin J.B., Saunders T.L., Myers M.G.Jr., Werner T., Kretzler M., Brosius F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 2017;92:909–921. doi: 10.1016/j.kint.2017.03.027.
    1. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 2016;7:11624. doi: 10.1038/ncomms11624.
    1. Lazaro I., Lopez-Sanz L., Bernal S., Oguiza A., Recio C., Melgar A., Jimenez-Castilla L., Egido J., Madrigal-Matute J., Gomez-Guerrero C. Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front. Pharmacol. 2018;9:819. doi: 10.3389/fphar.2018.00819.
    1. Zheng H., Whitman S.A., Wu W., Wondrak G.T., Wong P.K., Fang D., Zhang D.D. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011;60:3055–3066. doi: 10.2337/db11-0807.
    1. Pergola P.E., Raskin P., Toto R.D., Meyer C.J., Huff J.W., Grossman E.B., Krauth M., Ruiz S., Audhya P., Christ-Schmidt H., et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 2011;365:327–336. doi: 10.1056/NEJMoa1105351.
    1. Matoba K., Kawanami D., Okada R., Tsukamoto M., Kinoshita J., Ito T., Ishizawa S., Kanazawa Y., Yokota T., Murai N., et al. Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1alpha. Kidney Int. 2013;84:545–554. doi: 10.1038/ki.2013.130.
    1. Kawanami D., Matoba K., Utsunomiya K. Signaling pathways in diabetic nephropathy. Histol. Histopathol. 2016;31:1059–1067.
    1. Kawanami D., Matoba K., Okada R., Tsukamoto M., Kinoshita J., Ishizawa S., Kanazawa Y., Yokota T., Utsunomiya K. Fasudil inhibits ER stress-induced VCAM-1 expression by modulating unfolded protein response in endothelial cells. Biochem. Biophys. Res. Commun. 2013;435:171–175. doi: 10.1016/j.bbrc.2013.04.091.
    1. Kawanami D., Matoba K., Kanazawa Y., Ishizawa S., Yokota T., Utsunomiya K. Thrombin induces MCP-1 expression through Rho-kinase and subsequent p38MAPK/NF-kappaB signaling pathway activation in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2011;411:798–803. doi: 10.1016/j.bbrc.2011.07.031.
    1. Shimada H., Rajagopalan L.E. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65. J. Biol. Chem. 2010;285:12536–12542. doi: 10.1074/jbc.M109.099630.
    1. Zhao D., Kuhnt-Moore S., Zeng H., Wu J.S., Moyer M.P., Pothoulakis C. Neurotensin stimulates IL-8 expression in human colonic epithelial cells through Rho GTPase-mediated NF-kappa B pathways. Am. J. Physiol. Cell Physiol. 2003;284:C1397–C1404. doi: 10.1152/ajpcell.00328.2002.
    1. Meyer-Schwesinger C., Dehde S., von Ruffer C., Gatzemeier S., Klug P., Wenzel U.O., Stahl R.A., Thaiss F., Meyer T.N. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. Am. J. Physiol. Renal Physiol. 2009;296:F1088–F1099. doi: 10.1152/ajprenal.90746.2008.
    1. Takeda Y., Matoba K., Kawanami D., Nagai Y., Akamine T., Ishizawa S., Kanazawa Y., Yokota T., Utsunomiya K. ROCK2 Regulates Monocyte Migration and Cell to Cell Adhesion in Vascular Endothelial Cells. Int. J. Mol. Sci. 2019;20:1331. doi: 10.3390/ijms20061331.
    1. Tanaka T., Nishimura D., Wu R.C., Amano M., Iso T., Kedes L., Nishida H., Kaibuchi K., Hamamori Y. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J. Biol. Chem. 2006;281:15320–15329. doi: 10.1074/jbc.M510954200.
    1. Thomas M.C., Cherney D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–2107. doi: 10.1007/s00125-018-4669-0.
    1. Kawanami D., Matoba K., Takeda Y., Nagai Y., Akamine T., Yokota T., Sango K., Utsunomiya K. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. Int. J. Mol. Sci. 2017;18:1083. doi: 10.3390/ijms18051083.
    1. Wanner C., Inzucchi S.E., Lachin J.M., Fitchett D., von Eynatten M., Mattheus M., Johansen O.E., Woerle H.J., Broedl U.C., Zinman B., et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016;375:323–334. doi: 10.1056/NEJMoa1515920.
    1. Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J.L., Charytan D.M., Edwards R., Agarwal R., Bakris G., Bull S., et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744.
    1. Heerspink H.J.L., Perco P., Mulder S., Leierer J., Hansen M.K., Heinzel A., Mayer G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62:1154–1166. doi: 10.1007/s00125-019-4859-4.
    1. Garvey W.T., Van Gaal L., Leiter L.A., Vijapurkar U., List J., Cuddihy R., Ren J., Davies M.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–37. doi: 10.1016/j.metabol.2018.02.002.
    1. Tahara A., Takasu T., Yokono M., Imamura M., Kurosaki E. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice. Eur. J. Pharmacol. 2017;809:163–171. doi: 10.1016/j.ejphar.2017.05.019.
    1. Vallon V., Gerasimova M., Rose M.A., Masuda T., Satriano J., Mayoux E., Koepsell H., Thomson SC., Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 2014;306:F194–F204. doi: 10.1152/ajprenal.00520.2013.
    1. Xu L., Nagata N., Nagashimada M., Zhuge F., Ni Y., Chen G., Mayoux E., Kaneko S., Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine. 2017;20:137–149. doi: 10.1016/j.ebiom.2017.05.028.
    1. Maki T., Maeno S., Maeda Y., Yamato M., Sonoda N., Ogawa Y., Wakisaka M., Inoguchi T. Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: A possible role of SGLT2 in mesangial cells. Sci. Rep. 2019;9:4703. doi: 10.1038/s41598-019-41253-7.
    1. Muskiet M.H., Tonneijck L., Smits M.M., Kramer M.H., Diamant M., Joles J.A., van Raalte D.H. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes. Metab. 2016;18:178–185. doi: 10.1111/dom.12601.
    1. Kröller-Schön S., Knorr M., Hausding M., Oelze M., Schuff A., Schell R., Sudowe S., Scholz A., Daub S., Karbach S., et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res. 2012;96:140–149. doi: 10.1093/cvr/cvs246.
    1. Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: Renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin. Sci. 2018;132:489–507. doi: 10.1042/CS20180031.
    1. Barbieri M., Rizzo M.R., Marfella R., Boccardi V., Esposito A., Pansini A., Paolisso G. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis. 2013;227:349–354. doi: 10.1016/j.atherosclerosis.2012.12.018.
    1. Higashijima Y., Tanaka T., Yamaguchi J., Tanaka S., Nangaku M. Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. Am. J. Physiol. Renal Physiol. 2015;308:F878–F887. doi: 10.1152/ajprenal.00590.2014.
    1. Pollock C., Stefánsson B., Reyner D., Rossing P., Sjöström C.D., Wheeler D.C., Langkilde A.M., Heerspink H.J.L. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7:429–441.
    1. Rosenstock J., Perkovic V., Johansen O.E., Cooper M.E., Kahn S.E., Marx N., Alexander J.H., Pencina M., Toto R.D., Wanner C., et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA. 2019;321:69–79. doi: 10.1001/jama.2018.18269.
    1. Kawanami D., Matoba K., Sango K., Utsunomiya K. Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence. Int. J. Mol. Sci. 2016;17:1223. doi: 10.3390/ijms17081223.
    1. Park C.W., Kim H.W., Ko S.H., Lim J.H., Ryu G.R., Chung H.W., Han S.W., Shin S.J., Bang B.K., Breyer M.D., et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 2017;18:1227–1238. doi: 10.1681/ASN.2006070778.
    1. Kodera R., Shikata K., Kataoka H.U., Takatsuka T., Miyamoto S., Sasaki M., Kajitani N., Nishishita S., Sarai K., Hirota D., et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54:965–978. doi: 10.1007/s00125-010-2028-x.
    1. Ferdinand K.C., White W.B., Calhoun D.A., Lonn E.M., Sager P.T., Brunelle R., Jiang H.H., Threlkeld R.J., Robertson K.E., Geiger M.J. Effects of the once-weekly glucagon-like peptide-1 receptor agonist dulaglutide on ambulatory blood pressure and heart rate in patients with type 2 diabetes mellitus. Hypertension. 2014;64:731–737. doi: 10.1161/HYPERTENSIONAHA.114.03062.
    1. Fujita H., Morii T., Fujishima H., Sato T., Shimizu T., Hosoba M., Tsukiyama K., Narita T., Takahashi T., Drucker D.J., et al. The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int. 2014;85:579–589. doi: 10.1038/ki.2013.427.
    1. Wu C., Qin N., Ren H., Yang M., Liu S., Wang Q. Metformin Regulating miR-34a Pathway to Inhibit Egr1 in Rat Mesangial Cells Cultured with High Glucose. Int. J. Endocrinol. 2018;2018:6462793. doi: 10.1155/2018/6462793.
    1. Vasamsetti S.B., Karnewar S., Kanugula A.K., Thatipalli A.R., Kumar J.M., Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis. Diabetes. 2015;64:2028–2041. doi: 10.2337/db14-1225.
    1. Guess A., Agrawal S., Wei C.C., Ransom R.F., Benndorf R., Smoyer W.E. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am. J. Physiol. Renal Physiol. 2010;299:F553–F845. doi: 10.1152/ajprenal.00161.2010.
    1. Utimura R., Fujihara C.K., Mattar A.L., Malheiros D.M., Noronha I.L., Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int. 2003;63:209–216. doi: 10.1046/j.1523-1755.2003.00736.x.
    1. Rodríguez-Iturbe B., Quiroz Y., Shahkarami A., Li Z., Vaziri N.D. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int. 2005;68:1041–1047. doi: 10.1111/j.1523-1755.2005.00496.x.
    1. Seo J.W., Kim Y.G., Lee S.H., Lee A., Kim D.J., Jeong K.H., Lee K.H., Hwang S.J., Woo J.S., Lim S.J., et al. Mycophenolate Mofetil Ameliorates Diabetic Nephropathy in db/db Mice. Biomed. Res. Int. 2015;2015:301627. doi: 10.1155/2015/301627.
    1. Eller K., Kirsch A., Wolf A.M., Sopper S., Tagwerker A., Stanzl U., Wolf D., Patsch W., Rosenkranz A.R., Eller P. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes. 2011;60:2954–2962. doi: 10.2337/db11-0358.
    1. Pena M.J., Mischak H., Heerspink H.J. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia. 2016;59:1819–1831. doi: 10.1007/s00125-016-4001-9.
    1. Verhave J.C., Bouchard J., Goupil R., Pichette V., Brachemi S., Madore F., Troyanov S. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: A prospective study. Diabetes Res. Clin. Pract. 2013;101:333–340. doi: 10.1016/j.diabres.2013.07.006.
    1. Woroniecka K.I., Park A.S., Mohtat D., Thomas D.B., Pullman J.M., Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60:2354–2369. doi: 10.2337/db10-1181.

Source: PubMed

3
Suscribir