Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis

Ali A Abdulkareem, Firas B Al-Taweel, Ali J B Al-Sharqi, Sarhang S Gul, Aram Sha, Iain L C Chapple, Ali A Abdulkareem, Firas B Al-Taweel, Ali J B Al-Sharqi, Sarhang S Gul, Aram Sha, Iain L C Chapple

Abstract

The primary etiological agent for the initiation and progression of periodontal disease is the dental plaque biofilm which is an organized aggregation of microorganisms residing within a complex intercellular matrix. The non-specific plaque hypothesis was the first attempt to explain the role of the dental biofilm in the pathogenesis of periodontal diseases. However, the introduction of sophisticated diagnostic and laboratory assays has led to the realisation that the development of periodontitis requires more than a mere increase in the biomass of dental plaque. Indeed, multispecies biofilms exhibit complex interactions between the bacteria and the host. In addition, not all resident microorganisms within the biofilm are pathogenic, since beneficial bacteria exist that serve to maintain a symbiotic relationship between the plaque microbiome and the host's immune-inflammatory response, preventing the emergence of pathogenic microorganisms and the development of dysbiosis. This review aims to highlight the development and structure of the dental plaque biofilm and to explore current literature on the transition from a healthy (symbiotic) to a diseased (dysbiotic) biofilm in periodontitis and the associated immune-inflammatory responses that drive periodontal tissue destruction and form mechanistic pathways that impact other systemic non-communicable diseases.

Keywords: Dental biofilm; dysbiosis; inflammation; periodontal disease; symbiosis.

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Figures

Figure 1.
Figure 1.
Biofilm formation and development in the oral cavity. a. acquired pellicle formation; b. initial attachment of early colonizers; c. maturation of biofilm and coaggregation of bacteria; D. dispersion of bacteria.
Figure 2.
Figure 2.
The association among subgingival species (adapted from Socransky et al. [13,27]). Presence of 40 subgingival species and the association among them in subgingival dental biofilm samples (n = 13,321) were analysed using checkerboard DNA-DNA hybridization and cluster analysis and community ordination techniques, respectively. The base of the pyramid represents the early colonizers, followed by the orange complex, which bridges the early colonizers with the red complex that dominates the biofilm at the advanced stages of periodontitis.
Figure 3.
Figure 3.
Components of dental biofilm with their functions and relation of chemical gradients to the depth of dental biofilm. DB: dental biofilm, G+ve: Gram-positive, G-ve; Gram-negative.
Figure 4.
Figure 4.
Bacterial virulence factors and metabolism.
Figure 5.
Figure 5.
Inflammation-Mediated Polymicrobial Emergence and Dysbiotic Exacerbation (IMPEDE) model. According to this proposed model, plaque-induced periodontitis is mainly derived from inflammation. This model consists of 5 stages: stage 1: gingivitis, stage 2: emergence of polymicrobial diversity in early periodontitis, stage 3: inflammation mediated dysbiosis and opportunistic infection, and stage 4: late stage of periodontitis. Adapted from Van Dyke et al., 2020 [147].
Figure 6.
Figure 6.
Neutrophils-induced inflammatory mechanisms involved in tissue destruction and bone loss. Neutrophils are recruited in a developmental endothelial locus (Del)-1-induced pathway into the gingival epithelium that fail to encounter the dysbiotic bacteria which invade the gingival connective tissue and interact with different host cells such as dendritic cells and γδ T cells. Host-bacterial interaction results in production of proinflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, IL-23, and IL-17. IL-17 has an activating influence on T helper (Th)-17 and B cells, which upon activation increase receptor activator of nuclear factor kappa-B ligand (RANKL) expression, which is also directly activated via the recruited extravasated neutrophils. RANKL drives the activation and maturation of osteoclast precursor to be an active osteoclast that predisposes to bone resorption. The recruited neutrophils have a tissue degradation effect through inducing the expression of matrix metalloproteinases (MMP) and cytotoxic substances such as reactive oxygen species (ROS). The microbial-innate-adaptive cell interactions demonstrate some of the main mechanisms involved in the continuity of inflammation if not resolved, leading to tissue destruction.
Figure 7.
Figure 7.
Porphyromonas gingivalis enhancing dysbiosis through uncoupling of inflammation from bactericidal activity of the phagocytic cells. P. gingivalis interacts with Toll-like receptor (TLR2), and acts on complement component 5 (C5) through P. gingivalis-associated arginine gingipains (HRgpA and RgpB) to produce C5a and C5b. C5a ligand then interacts with its specific complement C5a receptor (C5ar1) that together are co-activated with TLR2 on the surface of phagocytic cells. The cross-reactivity of both receptors could induce myeloid differentiation primary response 88 (MYD88)-induced inflammation or be blocked if MyD88 is inactivated. However, the same cross-reactivity of TLR2-C5aR1 complex could bypass MyD88 and induce the phosphoinositide 3-kinases (PI3K) pathway that may induce inflammation in phagocytic cells. In a similar manner, the activated PI3K could inhibit bacterial phagocytosis/apoptosis and supress phagolysosomal maturation, enhancing bacterial persistence. The latter mechanism is dependent on increased concentration of C5a beyond a threshold level (100 nM). The insurance of bacterial survival while inducing inflammation results in increased inflammophilic pathobionts and enhances dysbiosis.
Figure 8.
Figure 8.
Porphyromonas gingivalis-induced chemokine paralysis. The activated Toll-like receptors (TLR), following interaction with oral pathobionts such as Fusobacterium nucleatum, induce proinflammatory signaling mechanisms. The invading keystone pathogen (P. gingivalis) can suppress interleukin (IL)-8 production through dephosphorylation of S536 residue of p65 subunit of nuclear factor kappa B (NF-kB) by the activity of serine phosphatase B (SerB), disrupting neutrophil recruitment. Similarly, the expression of chemokine CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (ITAC) could be inhibited through blocking the signal transducer and activator of transcription 1 (STAT1)-interferon regulatory factor 1 (IRF1) pathway by P. gingivalis, leading to T cell imbalance, including TH17 activation (IL-6, IL-23) and TH1 suppression (IL-12). These immune subversion mechanisms lead to enhanced inflammatory responses and dysbiosis.

References

    1. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–19.
    1. Baeza M, Morales A, Cisterna C, et al. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci. 2020;28:e20190248.
    1. Chapple IL, Genco R. Diabetes and periodontal diseases: consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. J Periodontol. 2013;84(4 Suppl):S106–112.
    1. Hirschfeld J, Chapple IL. Periodontitis and systemic diseases: clinical evidence and biological plausibility. Berlin: Quintessenz Verlag; 2021.
    1. Bui FQ, Almeida-da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42(1):27–35. DOI:10.1016/j.bj.2018.12.001
    1. Ohki T, Itabashi Y, Kohno T, et al. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction. Am Heart J. 2012;163(2):164–167. DOI:10.1016/j.ahj.2011.10.012
    1. Linden GJ, McClean K, Young I, et al. Persistently raised C-reactive protein levels are associated with advanced periodontal disease. J Clin Periodontol. 2008;35(9):741–747.
    1. Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35(4):277–290.
    1. Botelho J, Machado V, Leira Y, et al. Economic burden of periodontitis in the United States and Europe: an updated estimation. J Periodontol. 2022;93(3):373–379.
    1. Loesche WJ. Chemotherapy of dental plaque infections. Oral Sci Rev. 1976;9:65–107.
    1. Theilade E. The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol. 1986;13(10):905–911.
    1. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263–271.
    1. Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–144.
    1. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology (Reading). 2003;149(Pt 2):279–294.
    1. Listgarten MA. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J Periodontol. 1976;47(1):1–18.
    1. Listgarten MA, Mayo HE, Tremblay R. Development of dental plaque on epoxy resin crowns in man. A light and electron microscopic study. J Periodontol. 1975;46(1):10–26.
    1. Lai CH, Listgarten MA, Rosan B. Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase-labeled antibody: localization of Streptococcus sanguis in intact dental plaque. Infect Immun. 1975;11(1):200–210.
    1. Larsen T, Fiehn NE. Dental biofilm infections - an update. APMIS. 2017;125(4):376–384.
    1. Odanaka H, Obama T, Sawada N, et al. Comparison of protein profiles of the pellicle, gingival crevicular fluid, and saliva: possible origin of pellicle proteins. Biological Res. 2020;53(1):3.
    1. Kolenbrander P, Andersen R, Clemans D, et al. Potential role of functionally similar coaggregation mediators in bacterial succession. Dental plaque revisited: oral biofilms in health and disease. Cardiff, United Kingdom: Bioline; 1999. pp. 171–186.
    1. Kolenbrander PE, Andersen RN, Moore LV. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol. 1990;56(12):3890–3894.
    1. Kolenbrander PE, Parrish KD, Andersen RN, et al. Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect Immun. 1995;63(12):4584–4588.
    1. Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2(5):435–444.
    1. Hannig C, Hannig M. The oral cavity–a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig. 2009;13(2):123–139.
    1. Jakubovics NS, Goodman SD, Mashburn-Warren L, et al. The dental plaque biofilm matrix. Periodontol 2000. 2021;86(1):32–56.
    1. Mieher JL, Larson MR, Schormann N, et al. Glucan binding protein C of Streptococcus mutans mediates both Sucrose-Independent and Sucrose-dependent adherence. Infect Immun. 2018;86(7):e00146–18.
    1. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000. 2002;28(1):12–55.
    1. Handley PS, Carter PL, Fielding J. Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol. 1984;157(1):64–72.
    1. Handley PS, Carter PL, Wyatt JE, et al. Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun. 1985;47(1):217–227.
    1. Yoshimura F, Takahashi K, Nodasaka Y, et al. Purification and characterization of a novel type of fimbriae from the oral anaerobe Bacteroides gingivalis. J Bacteriol. 1984;160(3):949–957.
    1. Handley PS. Structure, composition and functions of surface structures on oral bacteria. Biofouling. 1990;2(3):239–264.
    1. Devine DA, Gmür R, Handley PS. Ultrastructure, serogrouping and localization of surface antigens of Bacteroides intermedius. J Gen Microbiol. 1989;135(4):967–979.
    1. Hogg SD, Handley PS, Embery G. Surface fibrils may be responsible for the salivary glycoprotein-mediated aggregation of the oral bacterium Streptococcus sanguis. Arch Oral Biol. 1981;26(11):945–949.
    1. Heilmann C, Hussain M, Peters G, et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997;24(5):1013–1024.
    1. McKenney D, Hübner J, Muller E, et al. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun. 1998;66(10):4711–4720.
    1. Foster JS, Kolenbrander PE. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol. 2004;70(7):4340–4348.
    1. Kolenbrander PE, Andersen RN, Blehert DS, et al. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505. table of contents. 10.1128/MMBR.66.3.486-505.2002.
    1. Ritz HL. Microbial population shifts in developing human dental plaque. Arch Oral Biol. 1967;12(12):1561–1568.
    1. Gibbons RJ, Hay DI, Cisar JO, et al. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect Immun. 1988;56(11):2990–2993.
    1. Kolenbrander PE, London J. Ecological significance of coaggregation among oral bacteria. Adv Microb Ecol. 1992;12:183–217. Springer.
    1. Socransky SS, Haffajee AD, Smith C, et al. Relation of counts of microbial species to clinical status at the sampled site. J Clin Periodontol. 1991;18(10):766–775.
    1. Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 2010;89(3):205–218.
    1. Lawrence JR, Scharf B, Packroff G, et al. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol. 2002;44(3):199–207.
    1. Choi YC, Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol. 2003;47(5):69–76.
    1. Ymele-Leki P, Ross JM. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl Environ Microbiol. 2007;73(6):1834–1841.
    1. Stoodley P, Wilson S, Hall-Stoodley L, et al. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol. 2001;67(12):5608–5613.
    1. Wilson S, Hamilton MA, Hamilton GC, et al. Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2004;70(10):5847–5852.
    1. Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol. 2005;57(5):1210–1223.
    1. Ma L, Conover M, Lu H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathog. 2009;5(3):e1000354.
    1. Jakubovics NS, Goodman SD, Mashburn‐warren L, et al. The dental plaque biofilm matrix. Periodontol 2000. 2021;86(1):32–56.
    1. Marsh P. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–211.
    1. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–5017. DOI:10.1128/JB.00542-10
    1. Earle KA, Billings G, Sigal M, et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe. 2015;18(4):478–488. DOI:10.1016/j.chom.2015.09.002
    1. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
    1. Zhou X, Li Y. Atlas of oral microbiology: from healthy microflora to disease. Singapore: Springer Nature; 2021.
    1. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.
    1. Costerton JW, Lewandowski Z. The biofilm lifestyle. Adv Dent Res. 1997;11(1):192–195.
    1. Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431(16):2957–2969.
    1. Borisy GG, Valm AM. Spatial scale in analysis of the dental plaque microbiome. Periodontol 2000. 2021;86(1):97–112.
    1. Sakanaka A, Kuboniwa M, Hashino E, et al. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci Rep. 2017;7(1):42818.
    1. Akcalı A, Lang NP. Dental calculus: the calcified biofilm and its role in disease development. Periodontol 2000. 2018;76(1):109–115.
    1. Ebersole JL, Dawson ID, Emecen‐huja P, et al. The periodontal war: microbes and immunity. Periodontol 2000. 2017;75(1):52–115. DOI:10.1111/prd.12222
    1. Xu W, Zhou W, Wang H, et al. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol. 2020;120:45–84.
    1. Hashimoto M, Ogawa S, Asai Y, et al. Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin. FEMS Microbiol Lett. 2003;226(2):267–271.
    1. Maeda K, Nagata H, Yamamoto Y, et al. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect Immun. 2004;72(3):1341–1348. DOI:10.1128/IAI.72.3.1341-1348.2004
    1. Park Y, Simionato MR, Sekiya K, et al. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect Immun. 2005;73(7):3983–3989. DOI:10.1128/IAI.73.7.3983-3989.2005
    1. Sojar HT, Genco RJ. Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae. FEMS Immunol Med Microbiol. 2005;45(1):25–30.
    1. Das T, Sharma PK, Krom BP, et al. Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of Ionic strength and substratum hydrophobicity. Langmuir. 2011;27(16):10113–10118.
    1. Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90(11):1271–1278.
    1. Wollenberg A, Oppel T, Schottdorf E-M, et al. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol. 2002;118(2):327–334.
    1. Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis–strategies used in a polymicrobial community in a heme‐limited host environment. Mol Oral Microbiol. 2017;32(1):1–23.
    1. Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17(7):505–516.
    1. Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol. 2002;291(8):605–614.
    1. Salyers AA, Whitt DD, Whitt DD. Bacterial pathogenesis: a molecular approach. Washington, DC: aSM press; 1994.
    1. Canale-Parola E. Motility and chemotaxis of spirochetes. Annu Rev Microbiol. 1978;32(1):69–99.
    1. Fenno JC, McBride BC. Virulence factors of oral treponemes. Anaerobe. 1998;4(1):1–17.
    1. Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann Rev Genet. 2002;36(1):47–73.
    1. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontol 2000. 2011;55(1):16–35.
    1. Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?”. J Dent Res. 2015;94(12):1628–1637.
    1. Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host? J Clin Periodontol. 2011;38:28–35.
    1. Dahlen G, Basic A, Bylund J. Importance of virulence factors for the persistence of oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease. J Clin Med. 2019;8(9):1339.
    1. Singh A, Wyant T, Anaya-Bergman C, et al. The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect Immun. 2011;79(11):4533–4542. DOI:10.1128/IAI.05016-11
    1. Dias IH, Marshall L, Lambert PA, et al. Gingipains from Porphyromonas gingivalis increase the chemotactic and respiratory burst-priming properties of the 77-amino-acid interleukin-8 variant. Infect Immun. 2008;76(1):317–323.
    1. Kobayashi-Sakamoto M, Isogai E, Hirose K. Porphyromonas gingivalis modulates the production of interleukin 8 and monocyte chemotactic protein 1 in human vascular endothelial cells. Curr Microbiol. 2003;46(2):0109–0114.
    1. Wingrove JA, DiScipio R, Chen Z, et al. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem. 1992;267(26):18902–18907.
    1. Rudney JD, Chen R, Sedgewick GJ. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J Dent Res. 2005;84(1):59–63.
    1. Lee K, Roberts JS, Choi CH, et al. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence. 2018;9(1):845–859.
    1. Marttila E, Järvensivu A, Sorsa T, et al. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis. J Oral Microbiol. 2014;6(1):6. DOI:10.3402/jom.v6.24349
    1. Kajiya M, Komatsuzawa H, Papantonakis A, et al. Aggregatibacter actinomycetemcomitans Omp29 is associated with bacterial entry to gingival epithelial cells by F-actin rearrangement. PLoS ONE. 2011;6(4):e18287.
    1. Granato PA. The microbiota of humans and microbial virulence factors. Biol Saf Princ Pract. 2017;1–17.
    1. Schmitt CK, Meysick KC, O’brien AD. Bacterial toxins: friends or foes? Emerg Infect Dis. 1999;5(2):224.
    1. Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000. 2010;54(1):78–105.
    1. Lina G, Piémont Y, Godail-Gamot F, et al. Involvement of panton-valentine leukocidin—producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29(5):1128–1132.
    1. Tadepalli S, Stewart GC, Nagaraja T, et al. Human Fusobacterium necrophorum strains have a leukotoxin gene and exhibit leukotoxic activity. J Med Microbiol. 2008;57(2):225–231.
    1. Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel). 2011;3(3):242–259.
    1. Sundqvist G, Carlsson J, Herrmann B, et al. Degradation of human immunoglobulins G and M and complement factors C3 and C5 by black-pigmented Bacteroides. J Med Microbiol. 1985;19(1):85–94.
    1. Könönen E. Oral colonization by anaerobic bacteria during childhood: role in health and disease. Oral Dis. 1999;5(4):278–285.
    1. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975.
    1. Li Y, Caufield PW, Dasanayake AP, et al. Mode of delivery and other maternal factors influence the acquisition of Streptococcus mutans in infants. J Dent Res. 2005;84(9):806–811.
    1. Abiko Y, Sato T, Mayanagi G, et al. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. J Periodontal Res. 2010;45(3):389–395.
    1. Cephas KD, Kim J, Mathai RA, et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE. 2011;6(8):e23503.
    1. Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res. 1993;72(1):37–45.
    1. Gizani S, Papaioannou W, Haffajee AD, et al. Distribution of selected cariogenic bacteria in five different intra-oral habitats in young children. Int J Paediatr Dent. 2009;19(3):193–200.
    1. Crielaard W, Zaura E, Schuller AA, et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics. 2011;4:22.
    1. Keijser BJ, Zaura E, Huse SM, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11):1016–1020.
    1. Hajishengallis GN, Lamont RJ, Koo HM, et al. Oral microbiology and immunology. Hoboken, New Jersey: John Wiley & Sons; 2020.
    1. Galimanas V, Hall MW, Singh N, et al. Bacterial community composition of chronic periodontitis and novel oral sampling sites for detecting disease indicators. Microbiome. 2014;2:32.
    1. Stephen AS, Dhadwal N, Nagala V, et al. Interdental and subgingival microbiota may affect the tongue microbial ecology and oral malodour in health, gingivitis and periodontitis. J Periodontal Res. 2021;56(6):1174–1184.
    1. Göhler A, Samietz S, Schmidt CO, et al. Comparison of oral microbe quantities from tongue samples and subgingival pockets. Int J Dent. 2018;2018:2048390.
    1. Yeoh YK, Chan MH, Chen Z, et al. The human oral cavity microbiota composition during acute tonsillitis: a cross-sectional survey. BMC Oral Health. 2019;19(1):275.
    1. Georgalas C, Kanagalingam J, Zainal A, et al. The association between periodontal disease and peritonsillar infection: a prospective study. Otolaryngol Head Neck Surg. 2002;126(1):91–94.
    1. Diener VN, Gay A, Soyka MB, et al. What is the influence of tonsillectomy on the level of periodontal pathogens on the tongue dorsum and in periodontal pockets. BMC Oral Health. 2018;18(1):62.
    1. Byun SH, Min C, Kim YB, et al. Analysis of chronic periodontitis in tonsillectomy patients: a longitudinal follow-up study using a national health screening cohort. Appl Sci. 2020;10(10):3663.
    1. Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. J Clin Periodontol. 2017;44(Suppl 18):S23–s38.
    1. Lu H, Zou P, Zhang Y, et al. The sampling strategy of oral microbiome. iMeta. 2022;1(2):e23.
    1. Ebersole JL. Humoral immune responses in gingival crevice fluid: local and systemic implications. Periodontol 2000. 2003;31:135–166.
    1. Olczak T, Simpson W, Liu X, et al. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev. 2005;29(1):119–144.
    1. Hajishengallis G, Lamont RJ. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol. 2014;44(2):328–338.
    1. Nyako EA, Watson CJ, Preston AJ. Determination of the pH of peri-implant crevicular fluid in successful and failing dental implant sites: a pilot study. Arch Oral Biol. 2005;50(12):1055–1059.
    1. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12–s22.
    1. Ter Steeg P, Van Der Hoeven J. Disease. Development of periodontal microflora on human serum. Microb Ecol Health Dis. 1989;2(1): 1–10.
    1. Grenier D. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect Immun. 1992;60(12):5298–5301.
    1. Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10(5):497–506.
    1. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–419.
    1. Baker PJ, Dixon M, Roopenian DC. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect Immun. 2000;68(10):5864–5868.
    1. Yost S, Duran-Pinedo AE, Teles R, et al. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7(1):27.
    1. Diaz PI, Hoare A, Hong BY. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc. 2016;44(7):421–435.
    1. Al-Kamel A, Baraniya D, Al-Hajj WA, et al. Subgingival microbiome of experimental gingivitis: shifts associated with the use of chlorhexidine and N-acetyl cysteine mouthwashes. J Oral Microbiol. 2019;11(1):1608141.
    1. Joseph S, Curtis MA. Microbial transitions from health to disease. Periodontol 2000. 2021;86(1):201–209.
    1. Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000. 2020;84(1):14–34.
    1. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–759.
    1. Kirst ME, Li EC, Alfant B, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol. 2015;81(2):783–793.
    1. Hasturk H, Kantarci A, Goguet-Surmenian E, et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol. 2007;179(10):7021–7029.
    1. Abusleme L, Dupuy AK, Dutzan N, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. Isme J. 2013;7(5):1016–1025.
    1. Abusleme L, Hoare A, Hong BY, et al. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000. 2021;86(1):57–78.
    1. Duran-Pinedo AE, Chen T, Teles R, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. Isme J. 2014;8(8):1659–1672.
    1. Bang J, Cimasoni G, Rosenbusch C, et al. Sodium, potassium and calcium contents of crevicular exudate: their relations to gingivitis and periodontitis. J Periodontol. 1973;44(12):770–774.
    1. Nassar M, Tabib Y, Capucha T, et al. GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proc Natl Acad Sci U S A. 2017;114(3):E337–e346.
    1. Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest. 2014;124(10):4190–4196.
    1. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–725.
    1. Griffen AL, Beall CJ, Campbell JH, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. Isme J. 2012;6(6):1176–1185.
    1. Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250:50–55.
    1. Colombo AP, Boches SK, Cotton SL, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol. 2009;80(9):1421–1432.
    1. Moutsopoulos NM, Chalmers NI, Barb JJ, et al. Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology. PLOS Pathog. 2015;11(3):e1004698.
    1. Roberts MW, Atkinson JC. Oral manifestations associated with leukocyte adhesion deficiency: a five-year case study. Pediatr Dent. 1990;12(2):107–111.
    1. Moutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med. 2014;6(229):229ra240.
    1. Van Dyke TE, Bartold PM, Reynolds EC. The nexus between Periodontal inflammation and Dysbiosis. Front Immunol. 2020;11:11.
    1. Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45(Suppl 20):S1–s8.
    1. Meyle J, Dommisch H, Groeger S, et al. The innate host response in caries and periodontitis. J Clin Periodontol. 2017;44(12):1215–1225.
    1. Hasturk H, Kantarci A. Activation and resolution of periodontal inflammation and its systemic impact. Periodontol 2000. 2015;69(1):255–273.
    1. Sanz M, Beighton D, Curtis MA, et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol. 2017;44(Suppl 18):S5–s11.
    1. Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol. 2011;38(Suppl 11):49–59.
    1. Ryder MI. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontol 2000. 2010;53:124–137.
    1. Graves DT, Oates T, Garlet GP. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol. 2011;3:5304.
    1. Bosshardt DD, Lang NP. The junctional epithelium: from health to disease. J Dent Res. 2005;84(1):9–20.
    1. Ling MR, Chapple IL, Matthews JB. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 2015;21(7):714–725.
    1. Eskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–473.
    1. Chakravarti A, Raquil MA, Tessier P, et al. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood. 2009;114(8):1633–1644.
    1. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–776.
    1. Mitsdoerffer M, Lee Y, Jäger A, et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A. 2010;107(32):14292–14297.
    1. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, et al. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 2016;28(2):146–158.
    1. Daep CA, Novak EA, Lamont RJ, et al. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect Immun. 2011;79(1):67–74.
    1. Winter SE, Bäumler AJ. Dysbiosis in the inflamed intestine: chance favors the prepared microbe. Gut Microbes. 2014;5(1):71–73.
    1. Maekawa T, Krauss JL, Abe T, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15(6):768–778.
    1. Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal. 2010;3(109):ra11.
    1. Makkawi H, Hoch S, Burns E, et al. Porphyromonas gingivalis stimulates TLR2-PI3K signaling to escape immune clearance and induce bone resorption independently of MyD88. Front Cell Infect Microbiol. 2017;7:359.
    1. Morris AC, Brittan M, Wilkinson TS, et al. C5a-mediated neutrophil dysfunction is RhoA-dependent and predicts infection in critically ill patients. Blood. 2011;117(19):5178–5188.
    1. Takeuchi H, Hirano T, Whitmore SE, et al. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65. PLOS Pathogens. 2013;9(4):e1003326.
    1. Jauregui CE, Wang Q, Wright CJ, et al. Suppression of T-cell chemokines by Porphyromonas gingivalis. Infect Immun. 2013;81(7):2288–2295.
    1. Yanine N, Araya I, Brignardello-Petersen R, et al. Effects of probiotics in periodontal diseases: a systematic review. Clin Oral Investig. 2013;17(7):1627–1634.
    1. Keller MK, Brandsborg E, Holmstrøm K, et al. Effect of tablets containing probiotic candidate strains on gingival inflammation and composition of the salivary microbiome: a randomised controlled trial. Benef Microbes. 2018;9(3):487–494.
    1. Alanzi A, Honkala S, Honkala E, et al. Effect of Lactobacillus rhamnosus and Bifidobacterium lactis on gingival health, dental plaque, and periodontopathogens in adolescents: a randomised placebo-controlled clinical trial. Benef Microbes. 2018;9(4):593–602.
    1. Morales A, Carvajal P, Silva N, et al. Clinical effects of Lactobacillus rhamnosus in Non-Surgical treatment of chronic periodontitis: a randomized placebo-controlled trial with 1-year follow-up. J Periodontol. 2016;87(8):944–952.
    1. Morales A, Gandolfo A, Bravo J, et al. Microbiological and clinical effects of probiotics and antibiotics on nonsurgical treatment of chronic periodontitis: a randomized placebo- controlled trial with 9-month follow-up. J Appl Oral Sci. 2018;26:e20170075.
    1. Laleman I, Yilmaz E, Ozcelik O, et al. The effect of a streptococci containing probiotic in periodontal therapy: a randomized controlled trial. J Clin Periodontol. 2015;42(11):1032–1041.
    1. Sanz M, Herrera D, Kebschull M, et al. Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline. J Clin Periodontol. 2020;47(Suppl 22):4–60.

Source: PubMed

3
Suscribir