Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers

Firas Kobeissy, Abir Kobaisi, Wenjing Peng, Chloe Barsa, Mona Goli, Ahmad Sibahi, Samer El Hayek, Samar Abdelhady, Muhammad Ali Haidar, Mirna Sabra, Matej Orešič, Giancarlo Logroscino, Stefania Mondello, Ali H Eid, Yehia Mechref, Firas Kobeissy, Abir Kobaisi, Wenjing Peng, Chloe Barsa, Mona Goli, Ahmad Sibahi, Samer El Hayek, Samar Abdelhady, Muhammad Ali Haidar, Mirna Sabra, Matej Orešič, Giancarlo Logroscino, Stefania Mondello, Ali H Eid, Yehia Mechref

Abstract

The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.

Keywords: glycosylation; neurodegenerative diseases; neuropsychiatric disorders; post-translational modifications; proteomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A depiction of the nomenclature, topology, and glycosylation patterns of N- and O-glycans. (A) Linkage of N-acetylglucosamine to asparagine amino acid via an N-linked bond, followed by linkage of N-acetylgalactosamine to serine or threonine amino acids via an O-linked bond. The glycoprotein shown is a transmembrane protein. The possible bonds formed between glycan residues are illustrated. (B) The three possible types of N-linked glycosylation products, depicted through transmembrane proteins. GlcNAc: N-acetylglucosamine; Man: mannose; Gal: galactose; NeuNAc/Sia: N-acetylneuraminic acid/sialic acid; Fuc: fucose.
Figure 2
Figure 2
Correlation between glycosylation changes and CNS diseases. (A) Depiction of the consequences of glycosylation defects occurring in the different lobes of the human brain. (B) Characterization of consequences of altered glycosylation based on the type of neurological or psychiatric disease formed.
Figure 3
Figure 3
An overview of the after-effects of TBI on the neurological components of the brain, ultimately leading to aberrant glycosylation as shown by MS-based glycoproteomics. TBI: traumatic brain injury, MS: mass spectrometry.
Figure 4
Figure 4
The process of glycosylation of normal PrP and the effect of deficiency in glycosylation or conversion of PrPC to PrPSc. (A) In normal conditions, nascent PrP undergo glycosylation which occurs in the Endoplasmic Reticulum (ER), then it matures in the Golgi apparatus and eventually reaches the plasma with the aid of GPI anchor. However, when glycosylation deficiency occurs, the nascent PrP becomes insoluble aggregates which leads to early or late apoptosis (green label). (B) Mature PrPC at the level of the plasma may interact with PrPSc, and this would lead to a conversion and accumulation of PrPSc which in turn would increase the level of cytotoxicity due to the presence of this prions disease.

References

    1. Aslam B., Basit M., Nisar M.A., Khurshid M., Rasool M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017;55:182–196. doi: 10.1093/chromsci/bmw167.
    1. Ramazi S., Zahiri J. Posttranslational modifications in proteins: Resources, tools and prediction methods. Database (Oxford) 2021;2021:baab012. doi: 10.1093/database/baab012.
    1. Klionsky D.J., Abdelmohsen K., Abe A., Abedin M.J., Abeliovich H., Acevedo Arozena A., Adachi H., Adams C.M., Adams P.D., Adeli K., et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016;12:1–222. doi: 10.1080/15548627.2015.1100356.
    1. Ryslava H., Doubnerova V., Kavan D., Vanek O. Effect of posttranslational modifications on enzyme function and assembly. J. Proteom. 2013;92:80–109. doi: 10.1016/j.jprot.2013.03.025.
    1. Dong X., Mondello S., Kobeissy F., Talih F., Ferri R., Mechref Y. LC-MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder. Electrophoresis. 2018;39:3096–3103. doi: 10.1002/elps.201800316.
    1. Kobeissy F.H., Sadasivan S., Oli M.W., Robinson G., Larner S.F., Zhang Z., Hayes R.L., Wang K.K. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteom. Clin. Appl. 2008;2:1467–1483. doi: 10.1002/prca.200800011.
    1. Strumillo M., Beltrao P. Towards the computational design of protein post-translational regulation. Bioorg. Med. Chem. 2015;23:2877–2882. doi: 10.1016/j.bmc.2015.04.056.
    1. Karve T.M., Cheema A.K. Small changes huge impact: The role of protein posttranslational modifications in cellular homeostasis and disease. J. Amino Acids. 2011;2011:207691. doi: 10.4061/2011/207691.
    1. Ohtsubo K., Marth J.D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell. 2006;126:813–1004. doi: 10.1016/j.cell.2006.08.019.
    1. Wang W., Gopal S., Pocock R., Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules. 2019;24:4604. doi: 10.3390/molecules24244604.
    1. Vu L.D., Gevaert K., De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. Trends Plant Sci. 2018;23:1068–1080. doi: 10.1016/j.tplants.2018.09.004.
    1. Dewhurst H.M., Choudhury S., Torres M.P. Structural Analysis of PTM Hotspots (SAPH-ire)—A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Mol. Cell. Proteom. MCP. 2015;14:2285–2297. doi: 10.1074/mcp.M115.051177.
    1. Stowell S.R., Ju T., Cummings R.D. Protein glycosylation in cancer. Annu. Rev. Pathol. 2015;10:473–510. doi: 10.1146/annurev-pathol-012414-040438.
    1. Feizi T.E., Haltiwanger R.S. Editorial overview: Carbohydrate-protein interactions and glycosylation: Glycan synthesis and recognition: Finding the perfect partner in a sugar-coated life. Curr. Opin. Struct. Biol. 2015;34:vii–ix. doi: 10.1016/j.sbi.2015.10.005.
    1. Tzeng S.F., Tsai C.H., Chao T.K., Chou Y.C., Yang Y.C., Tsai M.H., Cha T.L., Hsiao P.W. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer. FASEB J. 2018;32:6869–6882. doi: 10.1096/fj.201800687.
    1. De Vreede G., Morrison H.A., Houser A.M., Boileau R.M., Andersen D., Colombani J., Bilder D. A Drosophila Tumor Suppressor Gene Prevents Tonic TNF Signaling through Receptor N-Glycosylation. Dev. Cell. 2018;45:595–605.e4. doi: 10.1016/j.devcel.2018.05.012.
    1. Oyama M., Kariya Y., Kariya Y., Matsumoto K., Kanno M., Yamaguchi Y., Hashimoto Y. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin. Biochem. J. 2018;475:1583–1595. doi: 10.1042/BCJ20170205.
    1. Singh C., Shyanti R.K., Singh V., Kale R.K., Mishra J.P.N., Singh R.P. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem. Biophys. Res. Commun. 2018;499:374–380. doi: 10.1016/j.bbrc.2018.03.169.
    1. Sperandio M., Gleissner C.A., Ley K. Glycosylation in immune cell trafficking. Immunol. Rev. 2009;230:97–113. doi: 10.1111/j.1600-065X.2009.00795.x.
    1. Veillon L., Huang Y., Peng W., Dong X., Cho B.G., Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis. 2017;38:2100–2114. doi: 10.1002/elps.201700042.
    1. Sola R.J., Griebenow K. Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 2009;98:1223–1245. doi: 10.1002/jps.21504.
    1. Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Darvill A.G., Kinoshita T., Packer N.H., Prestegard J.H., et al., editors. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2015.
    1. Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. Adv. Neurobiol. 2014;9:47–70. doi: 10.1007/978-1-4939-1154-7_3.
    1. Choi H.R., Shin J.W., Na J.I., Nam K.M., Lee H.S., Park K.C. Novel Antioxidant Tripeptide “ACQ” Can Prevent UV-Induced Cell Death and Preserve the Number of Epidermal Stem Cells. Oxid. Med. Cell Longev. 2015;2015:359740. doi: 10.1155/2015/359740.
    1. Kobata A. Glycobiology in the field of aging research--introduction to glycogerontology. Biochimie. 2003;85:13–24. doi: 10.1016/S0300-9084(03)00003-8.
    1. Grigorian A., Demetriou M. Manipulating cell surface glycoproteins by targeting N-glycan-galectin interactions. Methods Enzymol. 2010;480:245–266. doi: 10.1016/s0076-6879(10)80012-6.
    1. Schmaltz R.M., Hanson S.R., Wong C.H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 2011;111:4259–4307. doi: 10.1021/cr200113w.
    1. Schnaar R.L. Glycobiology simplified: Diverse roles of glycan recognition in inflammation. J. Leukoc. Biol. 2016;99:825–838. doi: 10.1189/jlb.3RI0116-021R.
    1. Dube D.H., Bertozzi C.R. Glycans in cancer and inflammation—Potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 2005;4:477–488. doi: 10.1038/nrd1751.
    1. Yu C., Lv B., Min S., Ren L., Yu J. Combined usage of monosaccharides with polysaccharides may decelerate tumor growth and malignance versus solely using a certain kind of saccharide. Biochem. Biophys. Res. Commun. 2020;525:800–805. doi: 10.1016/j.bbrc.2020.01.083.
    1. Wu D., Struwe W.B., Harvey D.J., Ferguson M.A.J., Robinson C.V. N-glycan microheterogeneity regulates interactions of plasma proteins. Proc. Natl. Acad. Sci. USA. 2018;115:8763–8768. doi: 10.1073/pnas.1807439115.
    1. Wooding K.M., Peng W., Mechref Y. Characterization of Pharmaceutical IgG and Biosimilars Using Miniaturized Platforms and LC-MS-MS. Curr. Pharm. Biotechnol. 2016;17:788–801. doi: 10.2174/1389201017666160401145012.
    1. Kailemia M.J., Xu G., Wong M., Li Q., Goonatilleke E., Leon F., Lebrilla C.B. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal. Chem. 2018;90:208–224. doi: 10.1021/acs.analchem.7b04202.
    1. Moremen K.W., Tiemeyer M., Nairn A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012;13:448–462. doi: 10.1038/nrm3383.
    1. Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49. doi: 10.1093/glycob/cww086.
    1. National Research Council (US) Committee on Assessing the Importance and Impact of Glycomics and Glycosciences . Transforming Glycoscience: A Roadmap for the Future. National Academies Press (US) National Academy of Sciences; Washington, DC, USA: 2012. The National Academies Collection: Reports funded by National Institutes of Health.
    1. Trombetta E.S. The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology. 2003;13:77R–91R. doi: 10.1093/glycob/cwg075.
    1. Davids M., Kane M.S., He M., Wolfe L.A., Li X., Raihan M.A., Chao K.R., Bone W.P., Boerkoel C.F., Gahl W.A., et al. Disruption of Golgi morphology and altered protein glycosylation in PLA2G6-associated neurodegeneration. J. Med. Genet. 2016;53:180–189. doi: 10.1136/jmedgenet-2015-103338.
    1. Ahat E., Xiang Y., Zhang X., Bekier M.E., 2nd, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of alpha5beta1 integrin. Mol. Biol. Cell. 2019;30:766–777. doi: 10.1091/mbc.E18-07-0462.
    1. Xiang Y., Zhang X., Nix D.B., Katoh T., Aoki K., Tiemeyer M., Wang Y. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat. Commun. 2013;4:1659. doi: 10.1038/ncomms2669.
    1. Freeze H.H., Chong J.X., Bamshad M.J., Ng B.G. Solving glycosylation disorders: Fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 2014;94:161–175. doi: 10.1016/j.ajhg.2013.10.024.
    1. Van den Boogert M.A.W., Rader D.J., Holleboom A.G. New insights into the role of glycosylation in lipoprotein metabolism. Curr. Opin. Lipidol. 2017;28:502–506. doi: 10.1097/MOL.0000000000000461.
    1. Furukawa K., Ohkawa Y., Yamauchi Y., Hamamura K., Ohmi Y., Furukawa K. Fine tuning of cell signals by glycosylation. J. Biochem. 2012;151:573–578. doi: 10.1093/jb/mvs043.
    1. Hansen L., Lind-Thomsen A., Joshi H.J., Pedersen N.B., Have C.T., Kong Y., Wang S., Sparso T., Grarup N., Vester-Christensen M.B., et al. A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology. 2015;25:211–224. doi: 10.1093/glycob/cwu104.
    1. Khan A.H., Bayat H., Rajabibazl M., Sabri S., Rahimpour A. Humanizing glycosylation pathways in eukaryotic expression systems. World J. Microbiol. Biotechnol. 2017;33:4. doi: 10.1007/s11274-016-2172-7.
    1. Zhang X., Wang Y. Glycosylation Quality Control by the Golgi Structure. J. Mol. Biol. 2016;428:3183–3193. doi: 10.1016/j.jmb.2016.02.030.
    1. Briggs A.M., Cross M.J., Hoy D.G., Sanchez-Riera L., Blyth F.M., Woolf A.D., March L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243–S255. doi: 10.1093/geront/gnw002.
    1. Rattan S.I. Increased molecular damage and heterogeneity as the basis of aging. Biol. Chem. 2008;389:267–272. doi: 10.1515/BC.2008.030.
    1. Blomme B., Van Steenkiste C., Callewaert N., Van Vlierberghe H. Alteration of protein glycosylation in liver diseases. J. Hepatol. 2009;50:592–603. doi: 10.1016/j.jhep.2008.12.010.
    1. Kang S.K., Chung T.W., Lee J.Y., Lee Y.C., Morton R.E., Kim C.H. The hepatitis B virus X protein inhibits secretion of apolipoprotein B by enhancing the expression of N-acetylglucosaminyltransferase III. J. Biol. Chem. 2004;279:28106–28112. doi: 10.1074/jbc.M403176200.
    1. Qin X., Guo Y., Du H., Zhong Y., Zhang J., Li X., Yu H., Zhang Z., Jia Z., Li Z. Comparative Analysis for Glycopatterns and Complex-Type N-Glycans of Glycoprotein in Sera from Chronic Hepatitis B- and C-Infected Patients. Front. Physiol. 2017;8:596. doi: 10.3389/fphys.2017.00596.
    1. Miura Y., Endo T. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations. Biochim. Biophys. Acta. 2016;1860:1608–1614. doi: 10.1016/j.bbagen.2016.01.013.
    1. Testa R., Vanhooren V., Bonfigli A.R., Boemi M., Olivieri F., Ceriello A., Genovese S., Spazzafumo L., Borelli V., Bacalini M.G., et al. N-glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS ONE. 2015;10:e0119983. doi: 10.1371/journal.pone.0119983.
    1. Smilowitz J.T., Totten S.M., Huang J., Grapov D., Durham H.A., Lammi-Keefe C.J., Lebrilla C., German J.B. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J. Nutr. 2013;143:1906–1912. doi: 10.3945/jn.113.180695.
    1. Carney E.F. Polycystic kidney disease: PMM2 mutation causes PKD and hyperinsulinism. Nat. Rev. Nephrol. 2017;13:321. doi: 10.1038/nrneph.2017.58.
    1. Caglayan A.O., Comu S., Baranoski J.F., Parman Y., Kaymakcalan H., Akgumus G.T., Caglar C., Dolen D., Erson-Omay E.Z., Harmanci A.S., et al. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. Eur. J. Med. Genet. 2015;58:39–43. doi: 10.1016/j.ejmg.2014.08.008.
    1. Song E., Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark. Med. 2015;9:835–844. doi: 10.2217/bmm.15.55.
    1. Epp A., Sullivan K.C., Herr A.B., Strait R.T. Immunoglobulin Glycosylation Effects in Allergy and Immunity. Curr. Allergy Asthma. Rep. 2016;16:79. doi: 10.1007/s11882-016-0658-x.
    1. Potapenko I.O., Luders T., Russnes H.G., Helland A., Sorlie T., Kristensen V.N., Nord S., Lingjaerde O.C., Borresen-Dale A.L., Haakensen V.D. Glycan-related gene expression signatures in breast cancer subtypes; relation to survival. Mol. Oncol. 2015;9:861–876. doi: 10.1016/j.molonc.2014.12.013.
    1. Vajaria B.N., Patel P.S. Glycosylation: A hallmark of cancer? Glycoconj. J. 2017;34:147–156. doi: 10.1007/s10719-016-9755-2.
    1. Huang Y., Zhou S., Zhu J., Lubman D.M., Mechref Y. LC-MS/MS isomeric profiling of permethylated N-glycans derived from serum haptoglobin of hepatocellular carcinoma (HCC) and cirrhotic patients. Electrophoresis. 2017;38:2160–2167. doi: 10.1002/elps.201700025.
    1. Zhu R., Zacharias L., Wooding K.M., Peng W., Mechref Y. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages. Methods Enzymol. 2017;585:397–429. doi: 10.1016/bs.mie.2016.11.009.
    1. Jung K., Cho W. Serial affinity chromatography as a selection tool in glycoproteomics. Anal. Chem. 2013;85:7125–7132. doi: 10.1021/ac400653z.
    1. Yang Z., Hancock W.S. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A. 2004;1053:79–88. doi: 10.1016/S0021-9673(04)01433-5.
    1. Zauner G., Deelder A.M., Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis. 2011;32:3456–3466. doi: 10.1002/elps.201100247.
    1. Selman M.H., Hemayatkar M., Deelder A.M., Wuhrer M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal. Chem. 2011;83:2492–2499. doi: 10.1021/ac1027116.
    1. Zhao Y.P., Ruan C.P., Wang H., Hu Z.Q., Fang M., Gu X., Ji J., Zhao J.Y., Gao C.F. Identification and assessment of new biomarkers for colorectal cancer with serum N-glycan profiling. Cancer. 2012;118:639–650. doi: 10.1002/cncr.26342.
    1. Zhao J., Song E., Zhu R., Mechref Y. Parallel data acquisition of in-source fragmented glycopeptides to sequence the glycosylation sites of proteins. Electrophoresis. 2016;37:1420–1430. doi: 10.1002/elps.201500562.
    1. Wang J., Li J., Wang Y., Gao M., Zhang X., Yang P. Development of Versatile Metal-Organic Framework Functionalized Magnetic Graphene Core-Shell Biocomposite for Highly Specific Recognition of Glycopeptides. ACS Appl. Mater. Interfaces. 2016;8:27482–27489. doi: 10.1021/acsami.6b08218.
    1. Ma W., Xu L., Li X., Shen S., Wu M., Bai Y., Liu H. Cysteine-Functionalized Metal-Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS Appl. Mater. Interfaces. 2017;9:19562–19568. doi: 10.1021/acsami.7b02853.
    1. Liu J., Yang K., Shao W., Li S., Wu Q., Zhang S., Qu Y., Zhang L., Zhang Y. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide. ACS Appl. Mater. Interfaces. 2016;8:22018–22024. doi: 10.1021/acsami.6b06343.
    1. Cao W., Huang J., Jiang B., Gao X., Yang P. Highly Selective Enrichment of Glycopeptides Based on Zwitterionically Functionalized Soluble Nanopolymers. Sci. Rep. 2016;6:29776. doi: 10.1038/srep29776.
    1. Wan H., Huang J., Liu Z., Li J., Zhang W., Zou H. A dendrimer-assisted magnetic graphene–silica hydrophilic composite for efficient and selective enrichment of glycopeptides from the complex sample. Chem. Commun. 2015;51:9391–9394. doi: 10.1039/C5CC01980J.
    1. Sun N., Wang J., Yao J., Deng C. Hydrophilic Mesoporous Silica Materials for Highly Specific Enrichment of N-Linked Glycopeptide. Anal. Chem. 2017;89:1764–1771. doi: 10.1021/acs.analchem.6b04054.
    1. De Jong E.P., Griffin T.J. Online nanoscale ERLIC-MS outperforms RPLC-MS for shotgun proteomics in complex mixtures. J. Proteome Res. 2012;11:5059–5064. doi: 10.1021/pr300638n.
    1. Zacharias L.G., Hartmann A.K., Song E., Zhao J., Zhu R., Mirzaei P., Mechref Y. HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells. J. Proteome Res. 2016;15:3624–3634. doi: 10.1021/acs.jproteome.6b00429.
    1. Zhang H., Li X.J., Martin D.B., Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 2003;21:660–666. doi: 10.1038/nbt827.
    1. Chen R., Tan Y., Wang M., Wang F., Yao Z., Dong L., Ye M., Wang H., Zou H. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma. Mol. Cell Proteom. 2011;10:M110.006445. doi: 10.1074/mcp.M110.006445.
    1. Zeng X., Hood B.L., Sun M., Conrads T.P., Day R.S., Weissfeld J.L., Siegfried J.M., Bigbee W.L. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J. Proteome Res. 2010;9:6440–6449. doi: 10.1021/pr100696n.
    1. Whelan S.A., Lu M., He J., Yan W., Saxton R.E., Faull K.F., Whitelegge J.P., Chang H.R. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J. Proteome Res. 2009;8:4151–4160. doi: 10.1021/pr900322g.
    1. Wang Q., Chan T.R., Hilgraf R., Fokin V.V., Sharpless K.B., Finn M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 2003;125:3192–3193. doi: 10.1021/ja021381e.
    1. Agard N.J., Prescher J.A., Bertozzi C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004;126:15046–15047. doi: 10.1021/ja044996f.
    1. Ma R., Hu J., Cai Z., Ju H. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides. Nanoscale. 2014;6:3150–3156. doi: 10.1039/c3nr05367a.
    1. Zhang Y., Zhao W., Zhao Y., Mao Y., Su T., Zhong Y., Wang S., Zhai R., Cheng J., Fang X., et al. Comparative Glycoproteomic Profiling of Human Body Fluid between Healthy Controls and Patients with Papillary Thyroid Carcinoma. J. Proteome Res. 2019;19:2539–2552. doi: 10.1021/acs.jproteome.9b00672.
    1. Xie Y., Liu Q., Li Y., Deng C. Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography. J. Chromatogr. A. 2018;1540:87–93. doi: 10.1016/j.chroma.2018.02.013.
    1. Xiao H., Chen W., Smeekens J.M., Wu R. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat. Commun. 2018;9:1692. doi: 10.1038/s41467-018-04081-3.
    1. Dell A., Morris H.R. Glycoprotein structure determination by mass spectrometry. Science. 2001;291:2351–2356. doi: 10.1126/science.1058890.
    1. Mechref Y., Novotny M.V. Structural investigations of glycoconjugates at high sensitivity. Chem. Rev. 2002;102:321–369. doi: 10.1021/cr0103017.
    1. Banazadeh A., Peng W., Veillon L., Mechref Y. Carbon Nanoparticles and Graphene Nanosheets as MALDI Matrices in Glycomics: A New Approach to Improve Glycan Profiling in Biological Samples. J. Am. Soc. Mass Spectrom. 2018;29:1892–1900. doi: 10.1007/s13361-018-1985-z.
    1. Novotny M.V., Mechref Y. New hyphenated methodologies in high-sensitivity glycoprotein analysis. J. Sep. Sci. 2005;28:1956–1968. doi: 10.1002/jssc.200500258.
    1. Zheng T., Peelen D., Smith L.M. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 2005;127:9982–9983. doi: 10.1021/ja0505550.
    1. Hiono T., Matsuda A., Wagatsuma T., Okamatsu M., Sakoda Y., Kuno A. Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology. 2019;527:132–140. doi: 10.1016/j.virol.2018.11.010.
    1. Fukuyama Y., Nakaya S., Yamazaki Y., Tanaka K. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal. Chem. 2008;80:2171–2179. doi: 10.1021/ac7021986.
    1. Fukuyama Y., Funakoshi N., Takeyama K., Hioki Y., Nishikaze T., Kaneshiro K., Kawabata S., Iwamoto S., Tanaka K. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides. Anal. Chem. 2014;86:1937–1942. doi: 10.1021/ac4037087.
    1. O’Connor P.B., Mirgorodskaya E., Costello C.E. High pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for minimization of ganglioside fragmentation. J. Am. Soc. Mass Spectrom. 2002;13:402–407. doi: 10.1016/S1044-0305(02)00351-3.
    1. Reiding K.R., Blank D., Kuijper D.M., Deelder A.M., Wuhrer M. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal. Chem. 2014;86:5784–5793. doi: 10.1021/ac500335t.
    1. Banazadeh A., Nieman R., Goli M., Peng W., Hussein A., Bursal E., Lischka H., Mechref Y. Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Adv. 2019;9:20137–20148. doi: 10.1039/C9RA02337B.
    1. Toghi Eshghi S., Yang S., Wang X., Shah P., Li X., Zhang H. Imaging of N-linked glycans from formalin-fixed paraffin-embedded tissue sections using MALDI mass spectrometry. ACS Chem. Biol. 2014;9:2149–2156. doi: 10.1021/cb500405h.
    1. Powers T.W., Jones E.E., Betesh L.R., Romano P.R., Gao P., Copland J.A., Mehta A.S., Drake R.R. Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal. Chem. 2013;85:9799–9806. doi: 10.1021/ac402108x.
    1. Holst S., Heijs B., de Haan N., van Zeijl R.J., Briaire-de Bruijn I.H., van Pelt G.W., Mehta A.S., Angel P.M., Mesker W.E., Tollenaar R.A., et al. Linkage-Specific in Situ Sialic Acid Derivatization for N-Glycan Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded Tissues. Anal. Chem. 2016;88:5904–5913. doi: 10.1021/acs.analchem.6b00819.
    1. Nishikaze T., Kawabata S.-i., Tanaka K. In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive-and negative-ion tandem mass spectrometry. Anal. Chem. 2014;86:5360–5369. doi: 10.1021/ac500340t.
    1. Yang S., Wu W.W., Shen R.-F., Bern M., Cipollo J. Identification of Sialic Acid Linkages on Intact Glycopeptides via Differential Chemical Modification Using IntactGIG-HILIC. J. Am. Soc. Mass Spectrom. 2018;29:1273–1283. doi: 10.1007/s13361-018-1931-0.
    1. Shajahan A., Supekar N.T., Heiss C., Ishihara M., Azadi P. Tool for Rapid Analysis of Glycopeptide by Permethylation via One-Pot Site Mapping and Glycan Analysis. Anal. Chem. 2017;89:10734–10743. doi: 10.1021/acs.analchem.7b01730.
    1. Zhou S., Veillon L., Dong X., Huang Y., Mechref Y. Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 2017;142:4446–4455. doi: 10.1039/C7AN01262D.
    1. Zhou S., Hu Y., Mechref Y. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins. Electrophoresis. 2016;37:1506–1513. doi: 10.1002/elps.201500568.
    1. Wuhrer M., de Boer A.R., Deelder A.M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 2009;28:192–206. doi: 10.1002/mas.20195.
    1. Yoshida T. Peptide separation by Hydrophilic-Interaction Chromatography: A review. J. Biochem. Biophys. Methods. 2004;60:265–280. doi: 10.1016/j.jbbm.2004.01.006.
    1. Mauko L., Lacher N.A., Pelzing M., Nordborg A., Haddad P.R., Hilder E.F. Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012;911:93–104. doi: 10.1016/j.jchromb.2012.10.043.
    1. Jiang K., Wang C., Sun Y., Liu Y., Zhang Y., Huang L., Wang Z. Comparison of chicken and pheasant ovotransferrin N-glycoforms via electrospray ionization mass spectrometry and liquid chromatography coupled with mass spectrometry. J. Agric. Food Chem. 2014;62:7245–7254. doi: 10.1021/jf501352j.
    1. Mancera-Arteu M., Gimenez E., Barbosa J., Sanz-Nebot V. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion. Anal. Chim. Acta. 2016;940:92–103. doi: 10.1016/j.aca.2016.07.043.
    1. Zhao J., Li S., Li C., Wu S.L., Xu W., Chen Y., Shameem M., Richardson D., Li H. Identification of Low Abundant Isomeric N-Glycan Structures in Biological Therapeutics by LC/MS. Anal. Chem. 2016;88:7049–7059. doi: 10.1021/acs.analchem.6b00636.
    1. Tousi F., Bones J., Hancock W.S., Hincapie M. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: A nano-hydrophilic interaction liquid chromatography-MS platform. Anal. Chem. 2013;85:8421–8428. doi: 10.1021/ac4018007.
    1. Tao S., Huang Y., Boyes B.E., Orlando R. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal. Chem. 2014;86:10584–10590. doi: 10.1021/ac5020996.
    1. Ahn J., Bones J., Yu Y.Q., Rudd P.M., Gilar M. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010;878:403–408. doi: 10.1016/j.jchromb.2009.12.013.
    1. Mancera-Arteu M., Giménez E., Barbosa J., Peracaula R., Sanz-Nebot V. Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers. Anal. Chim. Acta. 2017;991:76–88. doi: 10.1016/j.aca.2017.07.068.
    1. West C., Elfakir C., Lafosse M. Porous graphitic carbon: A versatile stationary phase for liquid chromatography. J. Chromatogr. A. 2010;1217:3201–3216. doi: 10.1016/j.chroma.2009.09.052.
    1. Pabst M., Altmann F. Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal. Chem. 2008;80:7534–7542. doi: 10.1021/ac801024r.
    1. Pabst M., Bondili J.S., Stadlmann J., Mach L., Altmann F. Mass + retention time = structure: A strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 2007;79:5051–5057. doi: 10.1021/ac070363i.
    1. Zhang J., Lindsay L.L., Hedrick J.L., Lebrilla C.B. Strategy for profiling and structure elucidation of mucin-type oligosaccharides by mass spectrometry. Anal. Chem. 2004;76:5990–6001. doi: 10.1021/ac049666s.
    1. Hua S., An H.J., Ozcan S., Ro G.S., Soares S., DeVere-White R., Lebrilla C.B. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst. 2011;136:3663–3671. doi: 10.1039/c1an15093f.
    1. Zhou S., Huang Y., Dong X., Peng W., Veillon L., Kitagawa D.A.S., Aquino A.J.A., Mechref Y. Isomeric Separation of Permethylated Glycans by Porous Graphitic Carbon (PGC)-LC-MS/MS at High Temperatures. Anal. Chem. 2017;89:6590–6597. doi: 10.1021/acs.analchem.7b00747.
    1. Peng W., Goli M., Mirzaei P., Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) J. Proteome Res. 2019;18:3731–3740. doi: 10.1021/acs.jproteome.9b00429.
    1. Dong X., Zhou S., Mechref Y. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples. Electrophoresis. 2016;37:1532–1548. doi: 10.1002/elps.201500561.
    1. Grey C., Edebrink P., Krook M., Jacobsson S.P. Development of a high performance anion exchange chromatography analysis for mapping of oligosaccharides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:1827–1832. doi: 10.1016/j.jchromb.2009.05.003.
    1. Kandzia S., Costa J. N-glycosylation analysis by HPAEC-PAD and mass spectrometry. In: Malek A., Tchernitsa O., Walker J.M., editors. Ovarian Cancer: Methods and Protocols. Volume 1049. Springer Science Humana Press; Totowa, NJ, USA: 2013. pp. 301–312. (Methods in Molecular Biology).
    1. Behan J.L., Smith K.D. The analysis of glycosylation: A continued need for high pH anion exchange chromatography. Biomed. Chromatogr. 2011;25:39–46. doi: 10.1002/bmc.1514.
    1. Bones J., McLoughlin N., Hilliard M., Wynne K., Karger B.L., Rudd P.M. 2D-LC analysis of BRP 3 erythropoietin N-glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long poly-N-acetyl lactosamine extensions. Anal. Chem. 2011;83:4154–4162. doi: 10.1021/ac200406z.
    1. Rohrer J.S., Basumallick L., Hurum D.C. Profiling N-linked oligosaccharides from IgG by high-performance anion-exchange chromatography with pulsed amperometric detection. Glycobiology. 2016;26:582–591. doi: 10.1093/glycob/cww006.
    1. Maier M., Reusch D., Bruggink C., Bulau P., Wuhrer M., Molhoj M. Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously glycosylated IgGs. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1033–1034:342–352. doi: 10.1016/j.jchromb.2016.08.001.
    1. Gimenez E., Ramos-Hernan R., Benavente F., Barbosa J., Sanz-Nebot V. Capillary electrophoresis time-of-flight mass spectrometry for a confident elucidation of a glycopeptide map of recombinant human erythropoietin. Rapid Commun. Mass Spectrom. 2011;25:2307–2316. doi: 10.1002/rcm.5114.
    1. Imami K., Ishihama Y., Terabe S. On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis-mass spectrometry. J. Chromatogr. A. 2008;1194:237–242. doi: 10.1016/j.chroma.2008.04.050.
    1. Thakur D., Rejtar T., Karger B.L., Washburn N.J., Bosques C.J., Gunay N.S., Shriver Z., Venkataraman G. Profiling the glycoforms of the intact alpha subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal. Chem. 2009;81:8900–8907. doi: 10.1021/ac901506p.
    1. Ongay S., Neusüss C. Isoform differentiation of intact AGP from human serum by capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem. 2010;398:845–855. doi: 10.1007/s00216-010-3948-5.
    1. Neusüss C., Pelzing M. Capillary zone electrophoresis-mass spectrometry for the characterization of isoforms of intact glycoproteins. Methods Mol. Biol. 2009;492:201–213. doi: 10.1007/978-1-59745-493-3_11.
    1. Reusch D., Haberger M., Kailich T., Heidenreich A.K., Kampe M., Bulau P., Wuhrer M. High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs. 2014;6:185–196. doi: 10.4161/mabs.26712.
    1. Adamczyk B., Tharmalingam-Jaikaran T., Schomberg M., Szekrenyes A., Kelly R.M., Karlsson N.G., Guttman A., Rudd P.M. Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr. Res. 2014;389:174–185. doi: 10.1016/j.carres.2014.01.018.
    1. Zhong X., Chen Z., Snovida S., Liu Y., Rogers J.C., Li L. Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Quantitative Analysis of Glycans Labeled with Multiplex Carbonyl-Reactive Tandem Mass Tags. Anal. Chem. 2015;87:6527–6534. doi: 10.1021/acs.analchem.5b01835.
    1. Varadi C., Mittermayr S., Millan-Martin S., Bones J. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry. Anal. Bioanal. Chem. 2016;408:8691–8700. doi: 10.1007/s00216-016-9935-8.
    1. Iwatsuka K., Iwamoto H., Kinoshita M., Inada K., Yasueda S., Kakehi K. Comparative studies of N-glycans and glycosaminoglycans present in SIRC (Statens Seruminstitut rabbit cornea) cells and corneal epithelial cells from rabbit eyes. Curr. Eye Res. 2014;39:686–694. doi: 10.3109/02713683.2013.863940.
    1. Lu G., Crihfield C.L., Gattu S., Veltri L.M., Holland L.A. Capillary Electrophoresis Separations of Glycans. Chem. Rev. 2018;118:7867–7885. doi: 10.1021/acs.chemrev.7b00669.
    1. Feng H.T., Li P., Rui G., Stray J., Khan S., Chen S.M., Li S.F.Y. Multiplexing N-glycan analysis by DNA analyzer. Electrophoresis. 2017;38:1788–1799. doi: 10.1002/elps.201600404.
    1. Gabelica V., Marklund E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018;42:51–59. doi: 10.1016/j.cbpa.2017.10.022.
    1. Snyder C.M., Zhou X., Karty J.A., Fonslow B.R., Novotny M.V., Jacobson S.C. Capillary electrophoresis-mass spectrometry for direct structural identification of serum N-glycans. J. Chromatogr. A. 2017;1523:127–139. doi: 10.1016/j.chroma.2017.09.009.
    1. Ewing M.A., Glover M.S., Clemmer D.E. Hybrid ion mobility and mass spectrometry as a separation tool. J. Chromatogr. A. 2016;1439:3–25. doi: 10.1016/j.chroma.2015.10.080.
    1. Zhu F.F., Trinidad J.C., Clemmer D.E. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques. J. Am. Soc. Mass Spectrom. 2015;26:1092–1102. doi: 10.1007/s13361-015-1110-5.
    1. Hofmann J., Pagel K. Glycan Analysis by Ion Mobility-Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2017;56:8342–8349. doi: 10.1002/anie.201701309.
    1. Manz C., Pagel K. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Curr. Opin. Chem. Biol. 2018;42:16–24. doi: 10.1016/j.cbpa.2017.10.021.
    1. Kizuka Y., Kitazume S., Fujinawa R., Saito T., Iwata N., Saido T.C., Nakano M., Yamaguchi Y., Hashimoto Y., Staufenbiel M., et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol. Med. 2015;7:175–189. doi: 10.15252/emmm.201404438.
    1. Lee J., Ha S., Kim M., Kim S.W., Yun J., Ozcan S., Hwang H., Ji I.J., Yin D., Webster M.J., et al. Spatial and temporal diversity of glycome expression in mammalian brain. Proc. Natl. Acad. Sci. USA. 2020;117:28743–28753. doi: 10.1073/pnas.2014207117.
    1. Cho B.G., Veillon L., Mechref Y. N-Glycan Profile of Cerebrospinal Fluids from Alzheimer’s Disease Patients Using Liquid Chromatography with Mass Spectrometry. J. Proteome Res. 2019;18:3770–3779. doi: 10.1021/acs.jproteome.9b00504.
    1. Hu Y., Mayampurath A., Khan S., Cohen J.K., Mechref Y., Volchenboum S.L. N-linked glycan profiling in neuroblastoma cell lines. J. Proteome Res. 2015;14:2074–2081. doi: 10.1021/pr5011718.
    1. Wildburger N.C., Zhou S., Zacharias L.G., Kroes R.A., Moskal J.R., Schmidt M., Mirzaei P., Gumin J., Lang F.F., Mechref Y., et al. Integrated Transcriptomic and Glycomic Profiling of Glioma Stem Cell Xenografts. J. Proteome Res. 2015;14:3932–3939. doi: 10.1021/acs.jproteome.5b00549.
    1. Kizuka Y., Nakano M., Kitazume S., Saito T., Saido T.C., Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem. J. 2016;473:21–30. doi: 10.1042/BJ20150607.
    1. Lin Y., Zhu J., Pan L., Zhang J., Tan Z., Olivares J., Singal A.G., Parikh N.D., Lubman D.M. A Panel of Glycopeptides as Candidate Biomarkers for Early Diagnosis of NASH Hepatocellular Carcinoma Using a Stepped HCD Method and PRM Evaluation. J. Proteome Res. 2021;20:3278–3289. doi: 10.1021/acs.jproteome.1c00175.
    1. Lee J.Y., Lee H.K., Park G.W., Hwang H., Jeong H.K., Yun K.N., Ji E.S., Kim K.H., Kim J.S., Kim J.W., et al. Characterization of Site-Specific N-Glycopeptide Isoforms of α-1-Acid Glycoprotein from an Interlaboratory Study Using LC–MS/MS. J. Proteome Res. 2016;15:4146–4164. doi: 10.1021/acs.jproteome.5b01159.
    1. Frese C.K., Altelaar A.F., Hennrich M.L., Nolting D., Zeller M., Griep-Raming J., Heck A.J., Mohammed S. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 2011;10:2377–2388. doi: 10.1021/pr1011729.
    1. Segu Z.M., Mechref Y. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 2010;24:1217–1225. doi: 10.1002/rcm.4485.
    1. Singh C., Zampronio C.G., Creese A.J., Cooper H.J. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 2012;11:4517–4525. doi: 10.1021/pr300257c.
    1. Saba J., Dutta S., Hemenway E., Viner R. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int. J. Proteom. 2012;2012:560391. doi: 10.1155/2012/560391.
    1. Zhu Z.K., Desaire H. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry. Annu. Rev. Anal. Chem. 2015;8:463–483. doi: 10.1146/annurev-anchem-071114-040240.
    1. Hu H., Khatri K., Zaia J. Algorithms and Design Strategies Towards Automated Glycoproteomics Analysis. Mass Spectrom. Rev. 2017;36:475–498. doi: 10.1002/mas.21487.
    1. Schindler B., Laloy-Borgna G., Barnes L., Allouche A.R., Bouju E., Dugas V., Demesmay C., Compagnon I. Online Separation and Identification of Isomers Using Infrared Multiple Photon Dissociation Ion Spectroscopy Coupled to Liquid Chromatography: Application to the Analysis of Disaccharides Regio-Isomers and Monosaccharide Anomers. Anal. Chem. 2018;90:11741–11745. doi: 10.1021/acs.analchem.8b02801.
    1. Renois-Predelus G., Schindler B., Compagnon I. Analysis of Sulfate Patterns in Glycosaminoglycan Oligosaccharides by MS(n) Coupled to Infrared Ion Spectroscopy: The Case of GalNAc4S and GalNAc6S. J. Am. Soc. Mass Spectrom. 2018;29:1242–1249. doi: 10.1007/s13361-018-1955-5.
    1. Riggs D.L., Hofmann J., Hahm H.S., Seeberger P.H., Pagel K., Julian R.R. Glycan Isomer Identification Using Ultraviolet Photodissociation Initiated Radical Chemistry. Anal. Chem. 2018;90:11581–11588. doi: 10.1021/acs.analchem.8b02958.
    1. Madsen J.A., Ko B.J., Xu H., Iwashkiw J.A., Robotham S.A., Shaw J.B., Feldman M.F., Brodbelt J.S. Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry. Anal. Chem. 2013;85:9253–9261. doi: 10.1021/ac4021177.
    1. Cotham V.C., Brodbelt J.S. Characterization of Therapeutic Monoclonal Antibodies at the Subunit-Level using Middle-Down 193 nm Ultraviolet Photodissociation. Anal. Chem. 2016;88:4004–4013. doi: 10.1021/acs.analchem.6b00302.
    1. Hoffmann W.D., Jackson G.P. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations. J. Am. Soc. Mass Spectrom. 2014;25:1939–1943. doi: 10.1007/s13361-014-0989-6.
    1. Mendis P.M., Sasiene Z.J., Ropartz D., Rogniaux H., Jackson G.P. Ultra-high-performance liquid chromatography charge transfer dissociation mass spectrometry (UHPLC-CTD-MS) as a tool for analyzing the structural heterogeneity in carrageenan oligosaccharides. Anal. Bioanal Chem. 2022;414:303–318. doi: 10.1007/s00216-021-03396-3.
    1. Yang Y., Liu F., Franc V., Halim L.A., Schellekens H., Heck A.J. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat. Commun. 2016;7:13397. doi: 10.1038/ncomms13397.
    1. Yu Q., Wang B., Chen Z., Urabe G., Glover M.S., Shi X., Guo L.W., Kent K.C., Li L. Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization. J. Am. Soc. Mass Spectrom. 2017;28:1751–1764. doi: 10.1007/s13361-017-1701-4.
    1. Crittenden C.M., Escobar E.E., Williams P.E., Sanders J.D., Brodbelt J.S. Characterization of Antigenic Oligosaccharides from Gram-Negative Bacteria via Activated Electron Photodetachment Mass Spectrometry. Anal. Chem. 2019;91:4672–4679. doi: 10.1021/acs.analchem.9b00048.
    1. Klein D.R., Powers M.J., Trent M.S., Brodbelt J.S. Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria. Anal. Chem. 2019;91:9608–9615. doi: 10.1021/acs.analchem.9b00940.
    1. Kurz S., Sheikh M.O., Lu S., Wells L., Tiemeyer M. Separation and Identification of Permethylated Glycan Isomers by Reversed Phase NanoLC-NSI-MS(n) Mol. Cell Proteom. 2021;20:100045. doi: 10.1074/mcp.RA120.002266.
    1. Ashline D.J., Yu Y., Lasanajak Y., Song X., Hu L., Ramani S., Prasad V., Estes M.K., Cummings R.D., Smith D.F., et al. Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses. Mol. Cell Proteom. 2014;13:2961–2974. doi: 10.1074/mcp.M114.039925.
    1. Ashline D.J., Zhang H., Reinhold V.N. Isomeric complexity of glycosylation documented by MSn. Anal. Bioanal. Chem. 2017;409:439–451. doi: 10.1007/s00216-016-0018-7.
    1. Deguchi K., Ito H., Takegawa Y., Shinji N., Nakagawa H., Nishimura S. Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans. Rapid Commun. Mass Spectrom. 2006;20:741–746. doi: 10.1002/rcm.2368.
    1. Kawasaki N., Itoh S., Yamaguchi T. LC/MSn for glycoprotein analysis: N-linked glycosylation analysis and peptide sequencing of glycopeptides. Methods Mol. Biol. 2009;534:239–248. doi: 10.1007/978-1-59745-022-5_18.
    1. Zhou S., Hu Y., DeSantos-Garcia J.L., Mechref Y. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. J. Am. Soc. Mass Spectrom. 2015;26:596–603. doi: 10.1007/s13361-014-1054-1.
    1. Song E., Pyreddy S., Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. RCM. 2012;26:1941–1954. doi: 10.1002/rcm.6290.
    1. Yin H., Zhu J., Wang M., Yao Z.P., Lubman D.M. Quantitative Analysis of α-1-Antitrypsin Glycosylation Isoforms in HCC Patients Using LC-HCD-PRM-MS. Anal. Chem. 2020;92:8201–8208. doi: 10.1021/acs.analchem.0c00420.
    1. Gutierrez Reyes C.D., Huang Y., Atashi M., Zhang J., Zhu J., Liu S., Parikh N.D., Singal A.G., Dai J., Lubman D.M., et al. PRM-MS Quantitative Analysis of Isomeric N-Glycopeptides Derived from Human Serum Haptoglobin of Patients with Cirrhosis and Hepatocellular Carcinoma. Metabolites. 2021;11:563. doi: 10.3390/metabo11080563.
    1. Cooper C.A., Gasteiger E., Packer N.H. GlycoMod--a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics. 2001;1:340–349. doi: 10.1002/1615-9861(200102)1:2<340::AID-PROT340>;2-B.
    1. Maxwell E., Tan Y., Tan Y., Hu H., Benson G., Aizikov K., Conley S., Staples G.O., Slysz G.W., Smith R.D., et al. GlycReSoft: A software package for automated recognition of glycans from LC/MS data. PLoS ONE. 2012;7:e45474. doi: 10.1371/journal.pone.0045474.
    1. Wang M., Shajahan A., Pepi L.E., Azadi P., Zaia J. Glycoproteomic Sample Processing, LC-MS, and Data Analysis Using GlycReSoft. Curr. Protoc. 2021;1:e84. doi: 10.1002/cpz1.84.
    1. Gao H.Y. Generation of asparagine-linked glycan structure databases and their use. J. Am. Soc. Mass Spectrom. 2009;20:1739–1742. doi: 10.1016/j.jasms.2009.05.012.
    1. Vakhrushev S.Y., Dadimov D., Peter-Katalinić J. Software platform for high-throughput glycomics. Anal. Chem. 2009;81:3252–3260. doi: 10.1021/ac802408f.
    1. Apte A., Meitei N.S. Bioinformatics in glycomics: Glycan characterization with mass spectrometric data using SimGlycan. Methods Mol. Biol. 2010;600:269–281. doi: 10.1007/978-1-60761-454-8_19.
    1. Hu Y., Zhou S., Yu C.Y., Tang H., Mechref Y. Automated annotation and quantitation of glycans by liquid chromatography/electrospray ionization mass spectrometric analysis using the MultiGlycan-ESI computational tool. Rapid Commun. Mass Spectrom. 2015;29:135–142. doi: 10.1002/rcm.7093.
    1. Hong P., Sun H., Sha L., Pu Y., Khatri K., Yu X., Tang Y., Lin C. GlycoDeNovo—An Efficient Algorithm for Accurate de novo Glycan Topology Reconstruction from Tandem Mass Spectra. J. Am. Soc. Mass Spectrom. 2017;28:2288–2301. doi: 10.1007/s13361-017-1760-6.
    1. Maass K., Ranzinger R., Geyer H., von der Lieth C.W., Geyer R. “Glyco-peakfinder”—de novo composition analysis of glycoconjugates. Proteomics. 2007;7:4435–4444. doi: 10.1002/pmic.200700253.
    1. Horlacher O., Jin C., Alocci D., Mariethoz J., Müller M., Karlsson N.G., Lisacek F. Glycoforest 1.0. Anal. Chem. 2017;89:10932–10940. doi: 10.1021/acs.analchem.7b02754.
    1. Ceroni A., Maass K., Geyer H., Geyer R., Dell A., Haslam S.M. GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 2008;7:1650–1659. doi: 10.1021/pr7008252.
    1. MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054.
    1. Irungu J., Go E.P., Dalpathado D.S., Desaire H. Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal. Chem. 2007;79:3065–3074. doi: 10.1021/ac062100e.
    1. Ozohanics O., Krenyacz J., Ludányi K., Pollreisz F., Vékey K., Drahos L. GlycoMiner: A new software tool to elucidate glycopeptide composition. Rapid Commun. Mass Spectrom. 2008;22:3245–3254. doi: 10.1002/rcm.3731.
    1. Pompach P., Chandler K.B., Lan R., Edwards N., Goldman R. Semi-automated identification of N-Glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J. Proteome Res. 2012;11:1728–1740. doi: 10.1021/pr201183w.
    1. Mayampurath A.M., Wu Y., Segu Z.M., Mechref Y., Tang H. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun. Mass Spectrom. 2011;25:2007–2019. doi: 10.1002/rcm.5059.
    1. Woodin C.L., Hua D., Maxon M., Rebecchi K.R., Go E.P., Desaire H. GlycoPep grader: A web-based utility for assigning the composition of N-linked glycopeptides. Anal. Chem. 2012;84:4821–4829. doi: 10.1021/ac300393t.
    1. Polasky D.A., Yu F., Teo G.C., Nesvizhskii A.I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat. Methods. 2020;17:1125–1132. doi: 10.1038/s41592-020-0967-9.
    1. Zeng W.F., Liu M.Q., Zhang Y., Wu J.Q., Fang P., Peng C., Nie A., Yan G., Cao W., Liu C., et al. pGlyco: A pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Sci. Rep. 2016;6:25102. doi: 10.1038/srep25102.
    1. Bern M., Kil Y.J., Becker C. Byonic: Advanced peptide and protein identification software. Curr. Protoc. Bioinform. 2012;40:13–20. doi: 10.1002/0471250953.bi1320s40.
    1. Park G.W., Kim J.Y., Hwang H., Lee J.Y., Ahn Y.H., Lee H.K., Ji E.S., Kim K.H., Jeong H.K., Yun K.N., et al. Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation. Sci. Rep. 2016;6:21175. doi: 10.1038/srep21175.
    1. Nasir W., Toledo A.G., Noborn F., Nilsson J., Wang M., Bandeira N., Larson G. SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis. J. Proteome Res. 2016;15:2826–2840. doi: 10.1021/acs.jproteome.6b00417.
    1. Ye Z., Mao Y., Clausen H., Vakhrushev S.Y. Glyco-DIA: A method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries. Nat. Methods. 2019;16:902–910. doi: 10.1038/s41592-019-0504-x.
    1. Ren J.M., Rejtar T., Li L., Karger B.L. N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB) J. Proteome Res. 2007;6:3162–3173. doi: 10.1021/pr070111y.
    1. He L., Xin L., Shan B., Lajoie G.A., Ma B. GlycoMaster DB: Software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J. Proteome Res. 2014;13:3881–3895. doi: 10.1021/pr401115y.
    1. Chandler K.B., Pompach P., Goldman R., Edwards N. Exploring site-specific N-glycosylation microheterogeneity of haptoglobin using glycopeptide CID tandem mass spectra and glycan database search. J. Proteome Res. 2013;12:3652–3666. doi: 10.1021/pr400196s.
    1. Zhu Z., Hua D., Clark D.F., Go E.P., Desaire H. GlycoPep Detector: A tool for assigning mass spectrometry data of N-linked glycopeptides on the basis of their electron transfer dissociation spectra. Anal. Chem. 2013;85:5023–5032. doi: 10.1021/ac400287n.
    1. Wu S.W., Liang S.Y., Pu T.H., Chang F.Y., Khoo K.H. Sweet-Heart - An integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J. Proteom. 2013;84:1–16. doi: 10.1016/j.jprot.2013.03.026.
    1. Xu X., Veenstra T.D. Analysis of biofluids for biomarker research. Proteom. Clin. Appl. 2008;2:1403–1412. doi: 10.1002/prca.200780173.
    1. Adamczyk B., Tharmalingam T., Rudd P.M. Glycans as cancer biomarkers. Biochim. Biophys. Acta. 2012;1820:1347–1353. doi: 10.1016/j.bbagen.2011.12.001.
    1. Patil K., Yelamanchi S., Kumar M., Hinduja I., Prasad T.S.K., Gowda H., Mukherjee S. Quantitative mass spectrometric analysis to unravel glycoproteomic signature of follicular fluid in women with polycystic ovary syndrome. PLoS ONE. 2019;14:e0214742. doi: 10.1371/journal.pone.0214742.
    1. Zhang J., Zhang M., Sun B., Li Y., Xu P., Liu C., Liu L., Liu X. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-kappaB. J. Neurochem. 2014;131:791–802. doi: 10.1111/jnc.12944.
    1. Suttapitugsakul S., Sun F., Wu R. Recent Advances in Glycoproteomic Analysis by Mass Spectrometry. Anal. Chem. 2020;92:267–291. doi: 10.1021/acs.analchem.9b04651.
    1. Doherty M., Theodoratou E., Walsh I., Adamczyk B., Stockmann H., Agakov F., Timofeeva M., Trbojevic-Akmacic I., Vuckovic F., Duffy F., et al. Plasma N-glycans in colorectal cancer risk. Sci. Rep. 2018;8:8655. doi: 10.1038/s41598-018-26805-7.
    1. Kamiyama T., Yokoo H., Furukawa J., Kurogochi M., Togashi T., Miura N., Nakanishi K., Kamachi H., Kakisaka T., Tsuruga Y., et al. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology. 2013;57:2314–2325. doi: 10.1002/hep.26262.
    1. He Y., Xie Q., Wang Y., Liang Y., Xu X., Li Y., Miao J., Chen Z., Li Y. Liquid chromatography mass spectrometry-based O-glycomics to evaluate glycosylation alterations in gastric cancer. Proteom. Clin. Appl. 2016;10:206–215. doi: 10.1002/prca.201500041.
    1. Hua S., Saunders M., Dimapasoc L.M., Jeong S.H., Kim B.J., Kim S., So M., Lee K.S., Kim J.H., Lam K.S., et al. Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling. J. Proteome Res. 2014;13:961–968. doi: 10.1021/pr400987f.
    1. Hua S., Williams C.C., Dimapasoc L.M., Ro G.S., Ozcan S., Miyamoto S., Lebrilla C.B., An H.J., Leiserowitz G.S. Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. J. Chromatogr. A. 2013;1279:58–67. doi: 10.1016/j.chroma.2012.12.079.
    1. Liu Y., Wang C., Wang R., Wu Y., Zhang L., Liu B.-F., Cheng L., Liu X. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer. J. Proteom. 2018;181:160–169. doi: 10.1016/j.jprot.2018.04.016.
    1. Muronetz V.I., Barinova K.V., Stroylova Y.Y., Semenyuk P.I., Schmalhausen E.V. Glyceraldehyde-3-phosphate dehydrogenase: Aggregation mechanisms and impact on amyloid neurodegenerative diseases. Int. J. Biol. Macromol. 2017;100:55–66. doi: 10.1016/j.ijbiomac.2016.05.066.
    1. Marijanovic Z., Caputo A., Campana V., Zurzolo C. Identification of an intracellular site of prion conversion. PLoS Pathog. 2009;5:e1000426. doi: 10.1371/journal.ppat.1000426.
    1. Yi J.H., Katagiri Y., Susarla B., Figge D., Symes A.J., Geller H.M. Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J. Comp. Neurol. 2012;520:3295–3313. doi: 10.1002/cne.23156.
    1. Yuzwa S.A., Shan X., Macauley M.S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 2012;8:393–399. doi: 10.1038/nchembio.797.
    1. Harlalka G.V., Lehman A., Chioza B., Baple E.L., Maroofian R., Cross H., Sreekantan-Nair A., Priestman D.A., Al-Turki S., McEntagart M.E., et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain. 2013;136:3618–3624. doi: 10.1093/brain/awt270.
    1. Li J.J., Dickson D., Hof P.R., Vlassara H. Receptors for advanced glycosylation endproducts in human brain: Role in brain homeostasis. Mol. Med. 1998;4:46–60. doi: 10.1007/BF03401729.
    1. Moniruzzaman M., Ishihara S., Nobuhara M., Higashide H., Funamoto S. Glycosylation status of nicastrin influences catalytic activity and substrate preference of gamma-secretase. Biochem. Biophys. Res. Commun. 2018;502:98–103. doi: 10.1016/j.bbrc.2018.05.126.
    1. Yi C.W., Wang L.Q., Huang J.J., Pan K., Chen J., Liang Y. Glycosylation Significantly Inhibits the Aggregation of Human Prion Protein and Decreases Its Cytotoxicity. Sci. Rep. 2018;8:12603. doi: 10.1038/s41598-018-30770-6.
    1. Nakagawa K., Kitazume S., Oka R., Maruyama K., Saido T.C., Sato Y., Endo T., Hashimoto Y. Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J. Neurochem. 2006;96:924–933. doi: 10.1111/j.1471-4159.2005.03595.x.
    1. Wang A.C., Jensen E.H., Rexach J.E., Vinters H.V., Hsieh-Wilson L.C. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc. Natl. Acad. Sci. USA. 2016;113:15120–15125. doi: 10.1073/pnas.1606899113.
    1. Demirev A.V., Song H.L., Cho M.H., Cho K., Peak J.J., Yoo H.J., Kim D.H., Yoon S.Y. V232M substitution restricts a distinct O-glycosylation of PLD3 and its neuroprotective function. Neurobiol. Dis. 2019;129:182–194. doi: 10.1016/j.nbd.2019.05.015.
    1. Vicente Miranda H., Szego E.M., Oliveira L.M.A., Breda C., Darendelioglu E., de Oliveira R.M., Ferreira D.G., Gomes M.A., Rott R., Oliveira M., et al. Glycation potentiates alpha-synuclein-associated neurodegeneration in synucleinopathies. Brain. 2017;140:1399–1419. doi: 10.1093/brain/awx056.
    1. Gilch S., Kehler C., Schätzl H.M. The prion protein requires cholesterol for cell surface localization. Mol. Cell Neurosci. 2006;31:346–353. doi: 10.1016/j.mcn.2005.10.008.
    1. Charlwood J., Dingwall C., Matico R., Hussain I., Johanson K., Moore S., Powell D.J., Skehel J.M., Ratcliffe S., Clarke B., et al. Characterization of the glycosylation profiles of Alzheimer’s beta -secretase protein Asp-2 expressed in a variety of cell lines. J. Biol. Chem. 2001;276:16739–16748. doi: 10.1074/jbc.M009361200.
    1. Frenkel-Pinter M., Stempler S., Tal-Mazaki S., Losev Y., Singh-Anand A., Escobar-Alvarez D., Lezmy J., Gazit E., Ruppin E., Segal D. Altered protein glycosylation predicts Alzheimer’s disease and modulates its pathology in disease model Drosophila. Neurobiol. Aging. 2017;56:159–171. doi: 10.1016/j.neurobiolaging.2017.04.020.
    1. Gizaw S.T., Koda T., Amano M., Kamimura K., Ohashi T., Hinou H., Nishimura S. A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochim. Biophys. Acta. 2015;1850:1704–1718. doi: 10.1016/j.bbagen.2015.04.006.
    1. Frenkel-Pinter M., Shmueli M.D., Raz C., Yanku M., Zilberzwige S., Gazit E., Segal D. Interplay between protein glycosylation pathways in Alzheimer’s disease. Sci. Adv. 2017;3:e1601576. doi: 10.1126/sciadv.1601576.
    1. Huttenrauch M., Ogorek I., Klafki H., Otto M., Stadelmann C., Weggen S., Wiltfang J., Wirths O. Glycoprotein NMB: A novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol. Commun. 2018;6:108. doi: 10.1186/s40478-018-0612-3.
    1. Ilic K., Mlinac-Jerkovic K., Jovanov-Milosevic N., Simic G., Habek N., Bogdanovic N., Kalanj-Bognar S. Hippocampal expression of cell-adhesion glycoprotein neuroplastin is altered in Alzheimer’s disease. J. Cell Mol. Med. 2019;23:1602–1607. doi: 10.1111/jcmm.13998.
    1. Garcia-Ayllon M.S., Botella-Lopez A., Cuchillo-Ibanez I., Rabano A., Andreasen N., Blennow K., Avila J., Saez-Valero J. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer’s Disease Brain. Mol. Neurobiol. 2017;54:188–199. doi: 10.1007/s12035-015-9644-x.
    1. Ribaudo G., Coghi P., Zanforlin E., Law B.Y.K., Wu Y.Y.J., Han Y., Qiu A.C., Qu Y.Q., Zagotto G., Wong V.K.W. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer’s disease. Bioorg. Chem. 2019;87:474–483. doi: 10.1016/j.bioorg.2019.03.034.
    1. Hartz A.M., Zhong Y., Wolf A., LeVine H., 3rd, Miller D.S., Bauer B. Abeta40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J. Neurosci. 2016;36:1930–1941. doi: 10.1523/jneurosci.0350-15.2016.
    1. Chai A.B., Leung G.K.F., Callaghan R., Gelissen I.C. P-glycoprotein: A role in the export of amyloid-beta in Alzheimer’s disease? FEBS J. 2020;287:612–625. doi: 10.1111/febs.15148.
    1. Mohamed L.A., Keller J.N., Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-beta brain load and related pathology in Alzheimer’s disease mouse model. Biochim. Biophys. Acta. 2016;1862:778–787. doi: 10.1016/j.bbadis.2016.01.013.
    1. Kao Y.H., Chern Y., Yang H.T., Chen H.M., Lin C.J. Regulation of P-glycoprotein expression in brain capillaries in Huntington’s disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone. J. Cereb. Blood Flow Metab. 2016;36:1412–1423. doi: 10.1177/0271678X15606459.
    1. Ban J.J., Chung J.Y., Lee M., Im W., Kim M. MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochem. Biophys. Res. Commun. 2017;488:316–321. doi: 10.1016/j.bbrc.2017.05.040.
    1. Bras I.C., Konig A., Outeiro T.F. Glycation in Huntington’s Disease: A Possible Modifier and Target for Intervention. J. Huntingtons Dis. 2019;8:245–256. doi: 10.3233/JHD-190366.
    1. Vicente Miranda H., Gomes M.A., Branco-Santos J., Breda C., Lazaro D.F., Lopes L.V., Herrera F., Giorgini F., Outeiro T.F. Glycation potentiates neurodegeneration in models of Huntington’s disease. Sci. Rep. 2016;6:36798. doi: 10.1038/srep36798.
    1. McGeer P.L., Itagaki S., McGeer E.G. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76:550–557. doi: 10.1007/BF00689592.
    1. Steffan J.S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y.Z., Gohler H., Wanker E.E., Bates G.P., Housman D.E., Thompson L.M. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA. 2000;97:6763–6768. doi: 10.1073/pnas.100110097.
    1. Pacini G., Ieronymaki M., Nuti F., Sabatino G., Larregola M., Aharoni R., Papini A.M., Rovero P. Epitope mapping of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in a mouse model of multiple sclerosis: Microwave-assisted synthesis of the peptide antigens and ELISA screening. J. Pept. Sci. 2016;22:52–58. doi: 10.1002/psc.2839.
    1. Androutsou M.E., Tapeinou A., Vlamis-Gardikas A., Tselios T. Myelin Oligodendrocyte Glycoprotein and Multiple Sclerosis. Med. Chem. 2018;14:120–128. doi: 10.2174/1573406413666170906123204.
    1. Khare P., Challa D.K., Devanaboyina S.C., Velmurugan R., Hughes S., Greenberg B.M., Ober R.J., Ward E.S. Myelin oligodendrocyte glycoprotein-specific antibodies from multiple sclerosis patients exacerbate disease in a humanized mouse model. J. Autoimmun. 2018;86:104–115. doi: 10.1016/j.jaut.2017.09.002.
    1. Bronge M., Ruhrmann S., Carvalho-Queiroz C., Nilsson O.B., Kaiser A., Holmgren E., Macrini C., Winklmeier S., Meinl E., Brundin L., et al. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J. Autoimmun. 2019;102:38–49. doi: 10.1016/j.jaut.2019.04.013.
    1. Budge K.M., Neal M.L., Richardson J.R., Safadi F.F. Glycoprotein NMB: An Emerging Role in Neurodegenerative Disease. Mol. Neurobiol. 2018;55:5167–5176. doi: 10.1007/s12035-017-0707-z.
    1. Chan G.N., Evans R.A., Banks D.B., Mesev E.V., Miller D.S., Cannon R.E. Selective induction of P-glycoprotein at the CNS barriers during symptomatic stage of an ALS animal model. Neurosci. Lett. 2017;639:103–113. doi: 10.1016/j.neulet.2016.12.049.
    1. Mohamed L.A., Markandaiah S.S., Bonanno S., Pasinelli P., Trotti D. Excess glutamate secreted from astrocytes drives upregulation of P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp. Neurol. 2019;316:27–38. doi: 10.1016/j.expneurol.2019.04.002.
    1. Dunn A.R., Stout K.A., Ozawa M., Lohr K.M., Hoffman C.A., Bernstein A.I., Li Y., Wang M., Sgobio C., Sastry N., et al. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc. Natl. Acad. Sci. USA. 2017;114:E2253–E2262. doi: 10.1073/pnas.1616892114.
    1. Moloney E.B., Moskites A., Ferrari E.J., Isacson O., Hallett P.J. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol. Dis. 2018;120:1–11. doi: 10.1016/j.nbd.2018.08.013.
    1. Gan L., Li Z., Lv Q., Huang W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm. 2019;567:118449. doi: 10.1016/j.ijpharm.2019.118449.
    1. Ma L., Song J., Sun X., Ding W., Fan K., Qi M., Xu Y., Zhang W. Role of microtubule-associated protein 6 glycosylated with Gal-(beta-1,3)-GalNAc in Parkinson’s disease. Aging. 2019;11:4597–4610. doi: 10.18632/aging.102072.
    1. Papuc E., Wilczynska B., Rejdak K. Humoral response against myelin associated glycoprotein reflects oligodendroglial degeneration in Parkinson’s disease. Ann. Agric. Environ. Med. 2016;23:390–393. doi: 10.5604/12321966.1203998.
    1. Yamagata H., Uchida S., Matsuo K., Harada K., Kobayashi A., Nakashima M., Higuchi F., Watanuki T., Matsubara T., Watanabe Y. Altered plasma protein glycosylation in a mouse model of depression and in patients with major depression. J. Affect. Disord. 2018;233:79–85. doi: 10.1016/j.jad.2017.08.057.
    1. Yoo S.-W., Motari M.G., Susuki K., Prendergast J., Mountney A., Hurtado A., Schnaar R.L. Sialylation regulates brain structure and function. FASEB J. 2015;29:3040–3053. doi: 10.1096/fj.15-270983.
    1. Park D.I., Štambuk J., Razdorov G., Pučić-Baković M., Martins-de-Souza D., Lauc G., Turck C.W. Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci. Rep. 2018;8:179. doi: 10.1038/s41598-017-17500-0.
    1. Boeck C., Pfister S., Bürkle A., Vanhooren V., Libert C., Salinas-Manrique J., Dietrich D.E., Kolassa I.T., Karabatsiakis A. Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. J. Affect. Disord. 2018;234:139–147. doi: 10.1016/j.jad.2018.02.082.
    1. Van der Zwaag B., Franke L., Poot M., Hochstenbach R., Spierenburg H.A., Vorstman J.A., van Daalen E., de Jonge M.V., Verbeek N.E., Brilstra E.H., et al. Gene-network analysis identifies susceptibility genes related to glycobiology in autism. PLoS ONE. 2009;4:e5324. doi: 10.1371/journal.pone.0005324.
    1. Pivac N., Knezević A., Gornik O., Pucić M., Igl W., Peeters H., Crepel A., Steyaert J., Novokmet M., Redzić I., et al. Human plasma glycome in attention-deficit hyperactivity disorder and autism spectrum disorders. Mol. Cell Proteom. 2011;10:M110.004200. doi: 10.1074/mcp.M110.004200.
    1. Mueller T.M., Meador-Woodruff J.H. Post-translational protein modifications in schizophrenia. NPJ Schizophr. 2020;6:5. doi: 10.1038/s41537-020-0093-9.
    1. Kippe J.M., Mueller T.M., Haroutunian V., Meador-Woodruff J.H. Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia. Schizophr. Res. 2015;166:219–224. doi: 10.1016/j.schres.2015.06.002.
    1. Tucholski J., Simmons M.S., Pinner A.L., McMillan L.D., Haroutunian V., Meador-Woodruff J.H. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia. Neuroreport. 2013;24:688–691. doi: 10.1097/WNR.0b013e328363bd8a.
    1. Tucholski J., Simmons M.S., Pinner A.L., Haroutunian V., McCullumsmith R.E., Meador-Woodruff J.H. Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr. Res. 2013;146:177–183. doi: 10.1016/j.schres.2013.01.031.
    1. Mueller T.M., Haroutunian V., Meador-Woodruff J.H. N-Glycosylation of GABAA receptor subunits is altered in Schizophrenia. Neuropsychopharmacology. 2014;39:528–537. doi: 10.1038/npp.2013.190.
    1. Telford J.E., Bones J., McManus C., Saldova R., Manning G., Doherty M., Leweke F.M., Rothermundt M., Guest P.C., Rahmoune H., et al. Antipsychotic treatment of acute paranoid schizophrenia patients with olanzapine results in altered glycosylation of serum glycoproteins. J. Proteome Res. 2012;11:3743–3752. doi: 10.1021/pr300218h.
    1. Stanta J.L., Saldova R., Struwe W.B., Byrne J.C., Leweke F.M., Rothermund M., Rahmoune H., Levin Y., Guest P.C., Bahn S., et al. Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J. Proteome Res. 2010;9:4476–4489. doi: 10.1021/pr1002356.
    1. Bauer D., Haroutunian V., Meador-Woodruff J.H., McCullumsmith R.E. Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr. Res. 2010;117:92–98. doi: 10.1016/j.schres.2009.07.025.
    1. Narayan S., Head S.R., Gilmartin T.J., Dean B., Thomas E.A. Evidence for disruption of sphingolipid metabolism in schizophrenia. J. Neurosci. Res. 2009;87:278–288. doi: 10.1002/jnr.21822.
    1. Varma R., Michos G.A., Gordon B.J., Varma R.S., Shirey R.E. Serum glycoconjugates in children with schizophrenia and conduct and adjustment disorders. Biochem. Med. 1983;30:206–214. doi: 10.1016/0006-2944(83)90087-X.
    1. Varma R., Hoshino A.Y., Vercellotti J.R. Serum glycoproteins in schizophrenia. Carbohydr. Res. 1980;82:343–351. doi: 10.1016/s0008-6215(00)85708-0.
    1. Moreno-Villanueva M., Morath J., Vanhooren V., Elbert T., Kolassa S., Libert C., Bürkle A., Kolassa I.T. N-glycosylation profiling of plasma provides evidence for accelerated physiological aging in post-traumatic stress disorder. Transl. Psychiatry. 2013;3:e320. doi: 10.1038/tp.2013.93.
    1. Tudor L., Nedic Erjavec G., Nikolac Perkovic M., Konjevod M., Svob Strac D., Uzun S., Kozumplik O., Jovanovic T., Lauc G., Pivac N. N-glycomic Profile in Combat Related Post-Traumatic Stress Disorder. Biomolecules. 2019;9:834. doi: 10.3390/biom9120834.
    1. Barisic K., Lauc G., Dumic J., Pavlovic M., Flogel M. Changes of glycoprotein patterns in sera of humans under stress. Eur. J. Clin. Chem. Clin. Biochem. 1996;34:97–101.
    1. Floegel M., Lauc G., Žanić-Grubišić T., Dumić J., Barišić K. Novel 57 kd glycoprotein in sera of humans under stress. Croat. Chem. Acta. 1996;69:371–378.
    1. Lauc G., Dabelić S., Dumić J., Flögel M. Stressin and natural killer cell activity in professional soldiers. Ann. N. Y. Acad. Sci. 1998;851:526–530. doi: 10.1111/j.1749-6632.1998.tb09031.x.
    1. Konjevod M., Tudor L., Svob Strac D., Nedic Erjavec G., Barbas C., Zarkovic N., Nikolac Perkovic M., Uzun S., Kozumplik O., Lauc G., et al. Metabolomic and glycomic findings in posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;88:181–193. doi: 10.1016/j.pnpbp.2018.07.014.
    1. Reimand J., Wagih O., Bader G.D. Evolutionary constraint and disease associations of post-translational modification sites in human genomes. PLoS Genet. 2015;11:e1004919. doi: 10.1371/journal.pgen.1004919.
    1. Chauhan N.B. Chronic neurodegenerative consequences of traumatic brain injury. Restor. Neurol. Neurosci. 2014;32:337–365. doi: 10.3233/rnn-130354.
    1. Hwang H., Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol. Res. 2018;129:295–307. doi: 10.1016/j.phrs.2017.12.006.
    1. Endo T. Structure, function and pathology of O-mannosyl glycans. Glycoconj. J. 2004;21:3–7. doi: 10.1023/B:GLYC.0000043740.26062.2c.
    1. Yang W.J., Chen W., Chen L., Guo Y.J., Zeng J.S., Li G.Y., Tong W.S. Involvement of tau phosphorylation in traumatic brain injury patients. Acta Neurol. Scand. 2017;135:622–627. doi: 10.1111/ane.12644.
    1. Lazarus R.C., Buonora J.E., Jacobowitz D.M., Mueller G.P. Protein carbonylation after traumatic brain injury: Cell specificity, regional susceptibility, and gender differences. Free Radic. Biol. Med. 2015;78:89–100. doi: 10.1016/j.freeradbiomed.2014.10.507.
    1. Zhang X., Li Z., Zhang Q., Chen L., Huang X., Zhang Y., Liu X., Liu W., Li W. Mechanisms Underlying H2O2-Evoked Carbonyl Modification of Cytoskeletal Protein and Axon Injury in PC-12 Cells. Cell Physiol. Biochem. 2018;48:1088–1098. doi: 10.1159/000491975.
    1. Peng W., Zhao J., Dong X., Banazadeh A., Huang Y., Hussien A., Mechref Y. Clinical application of quantitative glycomics. Expert Rev. Proteom. 2018;15:1007–1031. doi: 10.1080/14789450.2018.1543594.
    1. Freeze H.H., Eklund E.A., Ng B.G., Patterson M.C. Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci. 2015;38:105–125. doi: 10.1146/annurev-neuro-071714-034019.
    1. Gill A.C., Castle A.R. The cellular and pathologic prion protein. Handb. Clin. Neurol. 2018;153:21–44. doi: 10.1016/b978-0-444-63945-5.00002-7.
    1. Mao X., Zhang D., Tao T., Liu X., Sun X., Wang Y., Shen A. O-GlcNAc glycosylation of p27(kip1) promotes astrocyte migration and functional recovery after spinal cord contusion. Exp. Cell Res. 2015;339:197–205. doi: 10.1016/j.yexcr.2015.11.007.
    1. Li C.X., Ma G.Y., Guo M.F., Liu Y. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons. Neural Regen. Res. 2015;10:972–975. doi: 10.4103/1673-5374.158364.
    1. Karve I.P., Taylor J.M., Crack P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 2016;173:692–702. doi: 10.1111/bph.13125.
    1. Mortezaee K., Khanlarkhani N., Beyer C., Zendedel A. Inflammasome: Its role in traumatic brain and spinal cord injury. J. Cell Physiol. 2018;233:5160–5169. doi: 10.1002/jcp.26287.
    1. Loane D.J., Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Pt 3Exp. Neurol. 2016;275:316–327. doi: 10.1016/j.expneurol.2015.08.018.
    1. McIntosh T.K., Smith D.H., Meaney D.F., Kotapka M.J., Gennarelli T.A., Graham D.I. Neuropathological sequelae of traumatic brain injury: Relationship to neurochemical and biomechanical mechanisms. Lab. Investig. 1996;74:315–342.
    1. Roberts P.J., Davies S.W. Excitatory receptors and their role in excitotoxicity. Biochem. Soc. Trans. 1987;15:218–219.
    1. Katayama Y., Becker D.P., Tamura T., Hovda D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 1990;73:889–900. doi: 10.3171/jns.1990.73.6.0889.
    1. Vink R., Van Den Heuvel C. Recent advances in the development of multifactorial therapies for the treatment of traumatic brain injury. Expert Opin. Investig. Drugs. 2004;13:1263–1274. doi: 10.1517/13543784.13.10.1263.
    1. Hayes R.L., Dixon C.E. Neurochemical changes in mild head injury. Semin. Neurol. 1994;14:25–31. doi: 10.1055/s-2008-1041055.
    1. Barkhoudarian G., Hovda D.A., Giza C.C. The Molecular Pathophysiology of Concussive Brain Injury - an Update. Phys. Med. Rehabil. Clin. N. Am. 2016;27:373–393. doi: 10.1016/j.pmr.2016.01.003.
    1. Higgins G.C., Beart P.M., Shin Y.S., Chen M.J., Cheung N.S., Nagley P. Oxidative stress: Emerging mitochondrial and cellular themes and variations in neuronal injury. J. Alzheimers Dis. 2010;20:S453–S473. doi: 10.3233/jad-2010-100321.
    1. Cernak I., Savic V.J., Kotur J., Prokic V., Veljovic M., Grbovic D. Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J. Neurotrauma. 2000;17:53–68. doi: 10.1089/neu.2000.17.53.
    1. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Hall E.D., Yonkers P.A., Andrus P.K., Cox J.W., Anderson D.K. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J. Neurotrauma. 1992;9:S425–S442.
    1. Shohami E., Beit-Yannai E., Horowitz M., Kohen R. Oxidative stress in closed-head injury: Brain antioxidant capacity as an indicator of functional outcome. J. Cereb. Blood Flow. Metab. 1997;17:1007–1019. doi: 10.1097/00004647-199710000-00002.
    1. Marklund N., Clausen F., Lewander T., Hillered L. Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping method. J. Neurotrauma. 2001;18:1217–1227. doi: 10.1089/089771501317095250.
    1. Lewen A., Matz P., Chan P.H. Free radical pathways in CNS injury. J. Neurotrauma. 2000;17:871–890.
    1. Kim J.S., He L., Lemasters J.J. Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 2003;304:463–470.
    1. Tavazzi B., Signoretti S., Lazzarino G., Amorini A.M., Delfini R., Cimatti M., Marmarou A., Vagnozzi R. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery. 2005;56:582–589. doi: 10.1227/01.neu.0000156715.04900.e6. discussion 582–589.
    1. Chan I.S., Ginsburg G.S. Personalized medicine: Progress and promise. Annu. Rev. Genom. Hum. Genet. 2011;12:217–244. doi: 10.1146/annurev-genom-082410-101446.
    1. Magalhães A., Gomes J., Ismail M.N., Haslam S.M., Mendes N., Osório H., David L., Le Pendu J., Haas R., Dell A., et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology. 2009;19:1525–1536. doi: 10.1093/glycob/cwp131.
    1. Azevedo M., Eriksson S., Mendes N., Serpa J., Figueiredo C., Resende L.P., Ruvoën-Clouet N., Haas R., Borén T., Le Pendu J., et al. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J. Pathol. 2008;215:308–316. doi: 10.1002/path.2363.
    1. Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56:5309–5318.
    1. Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 1989;52:257–331. doi: 10.1016/s0065-230x(08)60215-8.
    1. Almeida A., Kolarich D. The promise of protein glycosylation for personalised medicine. Biochim. Biophys. Acta. 2016;1860:1583–1595. doi: 10.1016/j.bbagen.2016.03.012.
    1. Morris B. The components of the Wired Spanning Forest are recurrent. Probab. Theory Relat. Fields. 2003;125:259–265. doi: 10.1007/s00440-002-0236-0.
    1. Alley W.R., Jr., Vasseur J.A., Goetz J.A., Svoboda M., Mann B.F., Matei D.E., Menning N., Hussein A., Mechref Y., Novotny M.V. N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J. Proteome Res. 2012;11:2282–2300. doi: 10.1021/pr201070k.
    1. Abd Hamid U.M., Royle L., Saldova R., Radcliffe C.M., Harvey D.J., Storr S.J., Pardo M., Antrobus R., Chapman C.J., Zitzmann N., et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology. 2008;18:1105–1118. doi: 10.1093/glycob/cwn095.
    1. Hammarström S. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999;9:67–81. doi: 10.1006/scbi.1998.0119.
    1. Goldstein M.J., Mitchell E.P. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Investig. 2005;23:338–351. doi: 10.1081/CNV-58878.
    1. Bhatnagar J., Tewari H.B., Bhatnagar M., Austin G.E. Comparison of carcinoembryonic antigen in tissue and serum with grade and stage of colon cancer. Anticancer Res. 1999;19:2181–2187.
    1. Amri R., Bordeianou L.G., Sylla P., Berger D.L. Preoperative carcinoembryonic antigen as an outcome predictor in colon cancer. J. Surg. Oncol. 2013;108:14–18. doi: 10.1002/jso.23352.
    1. Hiraizumi S., Takasaki S., Ohuchi N., Harada Y., Nose M., Mori S., Kobata A. Altered glycosylation of membrane glycoproteins associated with human mammary carcinoma. Jpn. J. Cancer Res. 1992;83:1063–1072. doi: 10.1111/j.1349-7006.1992.tb02723.x.
    1. Brooks S.A., Leathem A.J. Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet. 1991;338:71–74. doi: 10.1016/0140-6736(91)90071-V.
    1. Büll C., Stoel M.A., den Brok M.H., Adema G.J. Sialic acids sweeten a tumor’s life. Cancer Res. 2014;74:3199–3204. doi: 10.1158/0008-5472.CAN-14-0728.
    1. Arnal-Estapé A., Nguyen D.X. Sweets for a bitter end: Lung cancer cell-surface protein glycosylation mediates metastatic colonization. Cancer Discov. 2015;5:109–111. doi: 10.1158/-15-0013.
    1. Thompson L. World Health Organization classification of tumours: Pathology and genetics of head and neck tumours. Ear Nose Throat J. 2006;85:74. doi: 10.1177/014556130608500201.
    1. Goldbrunner R.H., Bernstein J.J., Tonn J.C. Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir. 1999;141:295–305. doi: 10.1007/s007010050301.
    1. Akiyama Y., Jung S., Salhia B., Lee S., Hubbard S., Taylor M., Mainprize T., Akaishi K., van Furth W., Rutka J.T. Hyaluronate receptors mediating glioma cell migration and proliferation. J. Neurooncol. 2001;53:115–127. doi: 10.1023/A:1012297132047.
    1. Yamaguchi Y. Lecticans: Organizers of the brain extracellular matrix. Cell Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690.
    1. Gary S.C., Kelly G.M., Hockfield S. BEHAB/brevican: A brain-specific lectican implicated in gliomas and glial cell motility. Curr. Opin. Neurobiol. 1998;8:576–581. doi: 10.1016/S0959-4388(98)80083-4.
    1. Viapiano M.S., Bi W.L., Piepmeier J., Hockfield S., Matthews R.T. Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res. 2005;65:6726–6733. doi: 10.1158/0008-5472.CAN-05-0585.
    1. Lemjabbar-Alaoui H., McKinney A., Yang Y.W., Tran V.M., Phillips J.J. Glycosylation alterations in lung and brain cancer. Adv. Cancer Res. 2015;126:305–344. doi: 10.1016/bs.acr.2014.11.007.
    1. Yamamoto H., Swoger J., Greene S., Saito T., Hurh J., Sweeley C., Leestma J., Mkrdichian E., Cerullo L., Nishikawa A., et al. Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: Implications for a role in regulating invasivity. Cancer Res. 2000;60:134–142.
    1. Seberger P.J., Chaney W.G. Control of metastasis by Asn-linked, beta1-6 branched oligosaccharides in mouse mammary cancer cells. Glycobiology. 1999;9:235–241. doi: 10.1093/glycob/9.3.235.
    1. Schauer R. Sialic acids and their role as biological masks. Trends Biochem. Sci. 1985;10:357–360. doi: 10.1016/0968-0004(85)90112-4.
    1. Hudak J.E., Canham S.M., Bertozzi C.R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014;10:69–75. doi: 10.1038/nchembio.1388.
    1. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. doi: 10.1126/science.6801762.
    1. Katorcha E., Makarava N., Savtchenko R., Baskakov I.V. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci. Rep. 2015;5:16912. doi: 10.1038/srep16912.
    1. Schachter H. Congenital disorders involving defective N-glycosylation of proteins. Cell Mol. Life Sci. 2001;58:1085–1104. doi: 10.1007/PL00000923.
    1. Ma J., Lindquist S. De novo generation of a PrPSc-like conformation in living cells. Nat. Cell Biol. 1999;1:358–361. doi: 10.1038/14053.
    1. Winklhofer K.F., Heller U., Reintjes A., Tatzelt J. Inhibition of complex glycosylation increases the formation of PrPsc. Traffic. 2003;4:313–322. doi: 10.1034/j.1600-0854.2003.00088.x.
    1. Rudd P.M., Endo T., Colominas C., Groth D., Wheeler S.F., Harvey D.J., Wormald M.R., Serban H., Prusiner S.B., Kobata A., et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc. Natl. Acad. Sci. USA. 1999;96:13044–13049. doi: 10.1073/pnas.96.23.13044.
    1. Wille H., Michelitsch M.D., Guenebaut V., Supattapone S., Serban A., Cohen F.E., Agard D.A., Prusiner S.B. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA. 2002;99:3563–3568. doi: 10.1073/pnas.052703499.
    1. Requena J.R., Wille H. The structure of the infectious prion protein: Experimental data and molecular models. Prion. 2014;8:60–66. doi: 10.4161/pri.28368.
    1. Xiao X., Yuan J., Haik S., Cali I., Zhan Y., Moudjou M., Li B., Laplanche J.L., Laude H., Langeveld J., et al. Glycoform-selective prion formation in sporadic and familial forms of prion disease. PLoS ONE. 2013;8:e58786. doi: 10.1371/annotation/5391f30a-0875-4145-a1ea-74aedbbcd1e4.
    1. Somerville R.A. Host and transmissible spongiform encephalopathy agent strain control glycosylation of PrP. J. Gen. Virol. 1999;80:1865–1872. doi: 10.1099/0022-1317-80-7-1865.
    1. Collinge J., Sidle K.C., Meads J., Ironside J., Hill A.F. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature. 1996;383:685–690. doi: 10.1038/383685a0.
    1. Lüdemann N., Clement A., Hans V.H., Leschik J., Behl C., Brandt R. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS) J. Biol. Chem. 2005;280:31648–31658. doi: 10.1074/jbc.M504395200.
    1. Moll T., Shaw P.J., Cooper-Knock J. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain. 2019;143:1332–1340. doi: 10.1093/brain/awz358.
    1. Vajn K., Viljetić B., Degmečić I.V., Schnaar R.L., Heffer M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS ONE. 2013;8:e75720. doi: 10.1371/journal.pone.0075720.
    1. Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J. Neurosci. Res. 2014;92:1227–1242. doi: 10.1002/jnr.23411.
    1. Wu G., Lu Z.H., Kulkarni N., Ledeen R.W. Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J. Neurosci. Res. 2012;90:1997–2008. doi: 10.1002/jnr.23090.
    1. Gylys K.H., Fein J.A., Yang F., Miller C.A., Cole G.M. Increased cholesterol in Abeta-positive nerve terminals from Alzheimer’s disease cortex. Neurobiol. Aging. 2007;28:8–17. doi: 10.1016/j.neurobiolaging.2005.10.018.
    1. Cooper-Knock J., Moll T., Ramesh T., Castelli L., Beer A., Robins H., Fox I., Niedermoser I., Van Damme P., Moisse M., et al. Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Rep. 2019;26:2298–2306.e5. doi: 10.1016/j.celrep.2019.02.006.
    1. Schneider J.S. Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson’s disease. PLoS ONE. 2018;13:e0199189. doi: 10.1371/journal.pone.0199189.
    1. Seyfried T.N., Choi H., Chevalier A., Hogan D., Akgoc Z., Schneider J.S. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson’s Disease. ASN Neuro. 2018;10:1759091418781889. doi: 10.1177/1759091418781889.
    1. Desplats P.A., Denny C.A., Kass K.E., Gilmartin T., Head S.R., Sutcliffe J.G., Seyfried T.N., Thomas E.A. Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol. Dis. 2007;27:265–277. doi: 10.1016/j.nbd.2007.05.003.
    1. Kracun I., Kalanj S., Talan-Hranilovic J., Cosovic C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem. Int. 1992;20:433–438. doi: 10.1016/0197-0186(92)90058-Y.
    1. Yanagisawa K., Ihara Y. GM1 ganglioside-bound amyloid beta-protein in Alzheimer’s disease brain. Neurobiol. Aging. 1998;19:S65–S67. doi: 10.1016/S0197-4580(98)00032-3.
    1. Hayashi H., Kimura N., Yamaguchi H., Hasegawa K., Yokoseki T., Shibata M., Yamamoto N., Michikawa M., Yoshikawa Y., Terao K., et al. A seed for Alzheimer amyloid in the brain. J. Neurosci. 2004;24:4894–4902. doi: 10.1523/JNEUROSCI.0861-04.2004.
    1. Yamaguchi T., Yamauchi Y., Furukawa K., Ohmi Y., Ohkawa Y., Zhang Q., Okajima T., Furukawa K. Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing. Sci. Rep. 2016;6:34505. doi: 10.1038/srep34505.
    1. Abu Bakar N., Lefeber D.J., van Scherpenzeel M. Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 2018;41:499–513. doi: 10.1007/s10545-018-0144-9.
    1. Abbott K.L., Pierce J.M. Lectin-based glycoproteomic techniques for the enrichment and identification of potential biomarkers. Methods Enzymol. 2010;480:461–476. doi: 10.1016/s0076-6879(10)80020-5.
    1. Van Scherpenzeel M., Willems E., Lefeber D.J. Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glycoconj. J. 2016;33:345–358. doi: 10.1007/s10719-015-9639-x.
    1. Chong P.F., Sakai Y., Torisu H., Tanaka T., Furuno K., Mizuno Y., Ohga S., Hara T., Kira R. Leucine-rich alpha-2 glycoprotein in the cerebrospinal fluid is a potential inflammatory biomarker for meningitis. J. Neurol. Sci. 2018;392:51–55. doi: 10.1016/j.jns.2018.07.006.
    1. Adav S.S., Sze S.K. Simultaneous Enrichment of Plasma Extracellular Vesicles and Glycoproteome for Studying Disease Biomarkers. Methods Mol. Biol. 2017;1619:193–201. doi: 10.1007/978-1-4939-7057-5_15.
    1. Moseley R., Stewart J.E., Stephens P., Waddington R.J., Thomas D.W. Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: Lessons learned from other inflammatory diseases? Br. J. Dermatol. 2004;150:401–413. doi: 10.1111/j.1365-2133.2004.05845.x.
    1. Gontika M.P., Anagnostouli M.C. Anti-Myelin Oligodendrocyte Glycoprotein and Human Leukocyte Antigens as Markers in Pediatric and Adolescent Multiple Sclerosis: On Diagnosis, Clinical Phenotypes, and Therapeutic Responses. Mult. Scler. Int. 2018;2018:8487471. doi: 10.1155/2018/8487471.
    1. Kailemia M.J., Park D., Lebrilla C.B. Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 2017;409:395–410. doi: 10.1007/s00216-016-9880-6.
    1. Murugesan V., Liu J., Yang R., Lin H., Lischuk A., Pastores G., Zhang X., Chuang W.L., Mistry P.K. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells Mol. Dis. 2018;68:47–53. doi: 10.1016/j.bcmd.2016.12.002.

Source: PubMed

3
Suscribir