The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies

Satoru Mihara, Takayuki Shibamoto, Satoru Mihara, Takayuki Shibamoto

Abstract

TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1'S-1'- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed.

Keywords: Allergy; Bradykinin receptors; Flavor and fragrance chemicals; Isothiocyanates; TRPA1.

Figures

Figure 1
Figure 1
Structure and function of one TRPA1 subunit.
Figure 2
Figure 2
Proposed reaction pathway of the activation of TRPA1 by a typical agonist, allyl isothiocyanates (AITC).
Figure 3
Figure 3
Model depicting functional interactions in Bradykinin Receptors (BK), protease-activated receptors 2 (PAR2), and TRPA1 and TRPV1.
Figure 4
Figure 4
Schematic diagram of nasal allergy-like symptoms induced by toluene diisocyanate (TDI) in rats.
Figure 5
Figure 5
Structures of TRPA1 antagonists discussed in this review.
Figure 6
Figure 6
Structures of aromatic TRPA1 agonists discussed in the present review.
Figure 7
Figure 7
Structures of nitrogen (isocyanate) or sulfur (sulfides) and nitrogen/sulfur (isothiocyanates) containing TRPA1 agonists discussed in the present review.
Figure 8
Figure 8
Proposed reaction mechanism of HCA/TRPA1 adduct formation.
Figure 9
Figure 9
Proposed formation mechanism of thymoquinone/TRPA1 adductviaMichael addition.
Figure 10
Figure 10
Proposed formation pathway ofS-allylmercaptocysteine from the reaction between diallyl trisulfide and a specific cysteine moiety ofβ-tubulin.

References

    1. Berger A. What are leukotrienes and how do they work in asthma? BMJ. 1999;319:90.
    1. Stjernschantz J. The leukotrienes. Mid Biol. 1984;62:215–30.
    1. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106:9099–104.
    1. Fanger CM, del Camino D, Moran MM. TRPA1 as an analgesic target. Open Drug Discov J. 2010;2:64–70.
    1. Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch Eur J Physiol. 2008;457:77–89.
    1. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels. 2008;2:287–98.
    1. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–84.
    1. Bessac BF, Breathtaking JSE, TRP Channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology. 2008;23:360–70.
    1. Caterina MJ. Chemical biology: sticky spices. Nature. 2007;445:491–2.
    1. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445:541–5.
    1. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006;103:19564–8.
    1. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–29.
    1. Narukawa M, Koizumi K, Iwasaki Y, Kubota K, Watanabe T. Galangal pungent component, 1’-acetoxychavicol acetate, activates TRPA1. Biosci Biotechnol Biochem. 2010;74:1694–6.
    1. Koizumi K, Iwasaki Y, Narukawa M, Iitsuka Y, Fukao T, Seki T, et al. Diallyl sulfides in garlic activate both TRPA1 and TRPV1. Biochem Biophys Res Commun. 2009;382:545–8.
    1. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–43.
    1. Pedersen SF, Owslanik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.
    1. Voets T, Talavera K, Owsianik G, Nilius B. Sensing with TRP channels. Nat Chem Biol. 2005;1:85–92.
    1. Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 Mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82.
    1. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 2007;117:1979–87.
    1. Facchinetti F, Patacchini R. The rising role of TRPA1 in asthma. Open Drug Discov J. 2010;2:71–80.
    1. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Geophys Res. 2007;583:175–93.
    1. Meggs WJ. Mechanisms of allergy and chemical sensitivity. Toxicol Ind Health. 1999;15:331–8.
    1. Arctander S. Perfume and Flavor Chemicals. Montclair, NJ: Published by the author; 1969.
    1. Xu H, Blair NT, Clapham DE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci. 2005;25:8924–37.
    1. Burrow A, Eccles R, Jones AS. The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol. 1983;96:157–61.
    1. Burkhart CG, Burkhart HR. Contact irritant dermatitis and antipruritic agents: the need to address the itch. J Drugs Dermatol. 2003;2:143–6.
    1. Gavliakova S, Dolak T, Licha H, Krizova S, Plevkova J. Cineole, thymol and camphor nasal challenges and their effect on nasal symptoms and cough in an animal model. Acta Medica Martiniana. 2013;13:5–13.
    1. Zuccarini P, Soldani G. Camphor: benefits and risks of a widely used natural product. Acta Biol Szeged. 2009;53:77–82.
    1. Mihara S, Yamamoto T, Nishimura O. Inhibitory effects of the volatile compounds on allergic rhinitis – A consideration of the role of TRPA1 expressed in sensory nerve cell. Fragr J. 2013;41:59–65.
    1. Khajavi R, Abbasipour M, Barzi MG, Rashidi A, Rahimi MK, Mirzababa HH. Eucalyptus Essential oil-doped alginate fibers as a potent antibacterial wound dressing. Adv Polym Technol. 2014;33:21408.
    1. Zeković ZP, Lepojević ZD, Mujić IO. Laurel extracts obtained by steam distillation, supercritical fluid and solvent extraction. J Nat Prod. 2009;2:104–9.
    1. Tucker AO. Two commercial oils of Ravensara from Madagascar: R. anisata Danguy and R. aromatica Sonn. (Lauraceae) J Essent Oil Res. 1995;7:327–9.
    1. Ramanoelina PAR, Rasoarahona JRE, Gaydou EM. Chemical composition of Ravensara aromatica sonn. Leaf essential oils from Madagascar. J Essent Oil Res. 2006;18:215–7.
    1. Bhandari AK, Bisht VK, Negi JS, Bonthiyal M. 1, 8-Cineole: A predominant component in the essential oil of large cardamom (Amomum subulatum Roxb.) J Med Plants Res. 2013;7:1957–60.
    1. Kaul PN, Rao BRR, Singh K, Bhattacharya AK, Mallavarapu GR, Ramesh S. Volatile constituents of essential oils isolated from different parts of Alpinia calcarata rosc. J Essential Oil Res. 2005;17:7–9.
    1. Bhuiyan MNI, Begum J, Nandi NC. Volatile constituents of essential oils isolated from different parts of Alpinia calcarata Rosc. African J Plant Sci. 2011;5:349–52.
    1. Ali T, Javan M, Sonboli A, Semnanian S. Evaluation of the antinociceptive and anti- inflammatory effects of essential oil of Nepeta pogonosperma Jamzad et Assadi in rats. DARU J Pharm Sci. 2012;20:48.
    1. El-Massry KF, El-Ghorab AH, Shaaban HA, Shibamoto T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifoliul leaves cultivated in Egypt. J Agric Food Chem. 2009;57:5265–70.
    1. Klein G, Ruben C, Upmann M. Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr Microbiol. 2013;67:200–8.
    1. Lee K-G, Shibamoto T. Antioxidant activities of volatile components isolated from Eucalyptus species. J Sci Food Agric. 2001;81:1573–9.
    1. Martinez-Velazquez M, Rosario-Cruz R, Castillo-Herrera G, Flores-Fernandez JM, Alvarez AH, Lugo-Cervantes E. Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmaris officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: lxodiae) J Med Entomol. 2011;48:822–7.
    1. Sertel S, Eichhorn T, Plinkert PK, Efferth T. Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1) HNO. 2011;59:1203–8.
    1. Zhu L, Tian Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res. 2013;112:1137–42.
    1. Ximenes RM, de Morais NL, Cassundé NM, Jorge RJ, dos Santos SM, Magalhães LP, et al. Antinociceptive and wound healing activities of Croton adamantinus Müll. Arg. essential oil. J Nat Med. 2013;67:758–64.
    1. Sato K, Krist S, Buchbauer G. Antimicrobial effect of vapours of geraniol, ®-(−)-linalool, terpineol, g-terpinene and 1,8-cineole on airborne microbes using an airwasher. Flavour Fragr J. 2007;22:435–7.
    1. Nam S, Jang H-W, Shibamoto T. Antioxidant activities of extract from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata, and their volatile components. J Agric Food Chem. 2012;60:9097–105.
    1. Juergens UR, Engelen T, Racke K, Stober M, Gillissen A, Vetter H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther. 2004;17:281–7.
    1. Astani A, Reichling J, Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother Res. 2010;24:673–9.
    1. Murata S, Shiragami R, Kosugi C, Tezuka T, Yamazaki M, Hirano A, et al. Antitumor effect of 1,8-cineole against colon cancer. Oncol Rep. 2013;30:2647–52.
    1. Horvath G, Acs K, Kocsis B. TLC-direct bioautography for determination of antibacterial activity of Artemisia adamsii essential oil. J AOAC Int. 2013;96:1209–13.
    1. Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, et al. 1,8-Cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain. 2012;8:86–97.
    1. Arakawa T, Shibata M, Hosomi K, Watanabe T, Honma Y, Kawasumi K, et al. Anti-allergic effects of peppermint oil, chicle and jelutong. Shokuhin Eiseigaku Zasshi. 1992;33:569–75.
    1. Takaishi M, Uchida K, Fujita F, Tominaga M. Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci. 2014;64:47–57.
    1. Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15–25.
    1. Xial B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci. 2008;28:9640–51.
    1. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci. 2007;27:9874–84.
    1. Laude EA, Morice AH, Grattan TJ. The antitussive effects of menthol, camphor and cineole in conscious GP. Pulm Pharmacol. 1994;7:179–84.
    1. Buday T, Brozmanova M, Biringerova Z, Gavliakova S, Poliacek I, Calkovsky V, et al. Modulation of cough response by sensory inputs from the nose–role of trigeminal TRPA1 versus TRPM8 channels. Cough. 2012;8:11.
    1. Chen L, Su J, Li L, Li B, Li W. A new source of natural D-borneol and its characteristic. J Med Plants Res. 2011;5:3440–7.
    1. Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps pamp.) J Agric Food Chem. 2000;48:3463–9.
    1. Nishimura O. Enantiomer separation of the characteristic odorants in Japanese fresh rhizomes of Zingiber officinale Roscoe (ginger) using multidimensional GC system and confirmation of the odour character of each enantiomer by GC-olfactometry. Flavour Fragr J. 2001;16:13–8.
    1. Sun X, Ou L, Mi S, Wang N. Analgesic and anti-inflammation effect of borneol. Zhong Yao Xin Yao Yu Lin Chuang Yao Li. 2007;18:353–5.
    1. Ehrnhöfer-Ressler MM, Marc Pignitter KF, Walker JM, Walker J, Rychlik M, Somoza V. Identification of 1,8-cineole, borneol, camphor, and thujone as anti- inflammatory compounds in a Salvia officinalis L. Infusion using human gingival fibroblasts. J Agric Food Chem. 2013;61:3451–9.
    1. Kumar D, Bhat ZA, Kumar V, Khan NA, Chashoo IA, Zargar MI, et al. Effects of Stachys tibetica essential oil in anxiety. Eur J Integr Med. 2012;4:e169–76.
    1. Siegmund B, Pöllinger-Zierler B. Odor thresholds of microbially induced off-flavor compounds in apple juice. J Agric Food Chem. 2006;54:5984–5589.
    1. Tabachek JL, Yurkowski M. Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. J Fish Res Board Can. 1976;33:25–35.
    1. Izaquirre G, Taylor WD. A guide to geosmin- and MIB-producing cyanobacteria in the United States. Water Sci Technol. 2004;49:19–24.
    1. Parveen Z, Nawaz S, Siddique S, Shahzad K. Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur Variety Indian J Pharm Sci. 2013;75:117–22.
    1. Tranchida PQ, Shellie RA, Purcaro G, Conte LS, Dugo P, Dugo G, et al. Analysis of fresh and aged tea tree essential oils by using GC × GC–qMS. J Chromatogr Sci. 2010;48:262–6.
    1. Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006;9:628–35.
    1. Al-Mariri A, Swied G, Oda A, Al Hallab L. Antibacterial activity of thymus syriacus boiss essential oil and its components against some Syrian gram-negative bacteria isolates. Iran j Med Sci. 2013;38:180–6.
    1. Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae) Parasitol Res. 2013;112:3713–21.
    1. Sá RCS, Andrade LN, de Sousa DP. A Review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18:1227–54.
    1. Abdel-Rahman FH, Alaniz NM, Saleh MA. Nematicidal activity of terpenoids. J Environ Sci Health B. 2013;48:16–22.
    1. de Oliveira Monteiro CM, Daemon E, Silva AM, Maturano R, Amaral C. Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) Parasitol Res. 2010;106:615–9.
    1. Shabnum S, Wagay MG. Essential oil composition of Thymus vulgaris L. and their uses. J Res Dev. 2011;11:83–94.
    1. Mihara S, Asano K, Yamamoto T, Nishimura O. Attenuating effect of volatile thymol on allergic rhinitis induced by toluene 2,4-diisocyanate in rats. Proc 56th Symp Chem Terpenes, Essential Oils and Aromatics 2012, pp. 203–205.
    1. Gavliakova S, Biringerova Z, Buday T, Brozmanova M, Calkovsky V, Poliacek I, et al. Antitussive effects of nasal thymol challenges in healthy volunteers. Respir Physiol Neurobiol. 2013;187:104–7.
    1. Lee SP, Buber MT, Yang Q, Cerne R, Cortes RY, Sprous DG, et al. Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol. 2008;153:1739–49.
    1. De Vincenzi M, Stammati A, De Vincenzi A, Silano M. Constituents of aromatic plants: carvacrol. Fitoterapia. 2004;75:801–4.
    1. Varel VH, Miller DN. Effect of carvacrol and thymol on odor emissions from livestock wastes. Water Sci Technol. 2001;44:143–8.
    1. Silva FV, Guimaraes AG, Silva ERS, Sousa-Neto BP, Machado FDF, Quintans-Júnior LJ, et al. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J Med Food. 2012;15:984–91.
    1. Lee CC, Houghton P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J Ethnopharmacol. 2005;100:237–43.
    1. Yang X, Eilerman RG. Pungent principal of Alpinia galangal (L.) Swartz and its applications. J Agric Food Chem. 1999;47:1657–62.
    1. Chudiwal AK, Jain DP, Somani RS. Alpinia galanga Willd.– An overview on phyto-pharmacological properties. IJNPR. 2010;1:143–9.
    1. Hasima N, Aun LI, Azmi MN, Thirthagiri E, Ibrahim H, Awag K. 1’S-1’-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine. 2010;17:935–9.
    1. Awang K, Azmi MN, Aun LI, Aziz AN, Ibrahim H, Nagoor NH. The apoptotic effect of 1’s-1’-acetoxychaviol acetate from Alpinia conchigera on human cancer cells. Molecules. 2010;15:8048–59.
    1. Batra V, Syed Z, Gill JN, Coburn MA, Adegboyega P, DiGiovanni J, et al. Effect of the tropical ginger compound, 1’acetoxychavicol acetate, against tumor promotion in K5.Stat3C transgenic mice. J Exp Clin Cancer Res. 2012;31:57.
    1. Matsuda H, Morikawa T, Managi H, Yoshikawa M. Antiallergic principles from Alpinia galanga: Structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-α and IL-4 in RBL-2H3 cells. Bioorg Med Chem Lett. 2003;13:3197–202.
    1. Seo JW, Cho SC, Park SJ, Lee EJ, Lee JH, Han SS, et al. 1’-acetoxychavicol acetate isolated from Alpinia galanga ameliorates ovalbumin- induced asthma in mice. PLoS One. 2013;8:e56447.
    1. Pooja A, Arun N, Maninder K. GC-MS Profile of volatile oils of Cinnamomum Zeylanicum Blume and Ocimum kilimandscharicum Baker ex Gurke. Int J Pharm Sci Rev Res. 2013;19:124–6.
    1. Corren J, Lemay M, Lin Y, Rozga L, Randolph RK. Clinical and biochemical effects of a combination botanical product (ClearGuard™) for allergy: a pilot randomized double-blind placebo-controlled trial. Nutr J. 2008;7:20.
    1. Nagai T, Nakao M, Shimizu Y, Kodera Y, Oh-Ishi M, Maeda T, et al. Proteomic analysis of anti-inflammatory effects of a kampo (Japanese herbal) medicine “Shoseiryuto (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Evid Based Complement Altermat Med. 2011;2011:604196.
    1. Cocchiara J, Letizia CS, Lalko J, Lapczynski A, Api AM. Fragrance material review on cinnamaldhyde. Food Chem Toxicol. 2005;43:867–923.
    1. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem. 2008;283:32691–703.
    1. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med. 2009;180:1042–7.
    1. Klein AH, Carstens MI, Zanotto KL, Sawyer CM, Ivanov M, Cheung S, et al. Self- and cross-desensitization of oral irritation by menthol and cinnamaldehyde (CA) via peripheral interactions at trigeminal sensory neurons. Chem Senses. 2011;36:199–208.
    1. Mihara S, Asano K, Yamamoto T, Nishimura O. Attenuating effects of volatile hexyl cinnamic aldehyde on allergic rhinitis in rats. Proc 62nd Annl Meet Japan Soci Allergol 2012, p.1468.
    1. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299–305.
    1. Gerige SJ, Gerige MKY, Rao M, Ramanjaneyulu GV. GC-MS Analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Braz Arch Biol Technol. 2009;52:1189–92.
    1. Mbarek LA, Mouse HA, Elabbadi N, Bensalah M, Gamouh A, Aboufatima R, et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz J Med Biol Res. 2007;40:839–47.
    1. Swamy SM, Tan BK. Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J Ethnopharmacol. 2000;70:1–7.
    1. Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB. 2009;11:373–81.
    1. El Mezayen R, El Gazzar M, Nicolls MR, Marecki JC, Dreskin SC, Nomiyama H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett. 2006;106:72–81.
    1. El-Tahir KE, Ashour MM, AL Harbi MM. The respiratory effects of the volatile oil of the black seed (Nigella sativa) in guinea pigs: Elucidation of the mechanism(s) of action. Gen Pharmacol. 1993;24:1115–22.
    1. Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem. 1994;269:26512–7.
    1. Songa Y, Wagner BA, Witmer JR, Lehmlera HJ, Buettnera GR. Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinines. Proc Natl Acad Sci U S A. 2009;106:9725–30.
    1. Shadnia S, Ahmadimanesh M, Ghazi-Khansari M, Zamani N. Intestinal obstruction in acute inhalational toluene 2,4-diisocyanate gas toxicity. Int J Occup Environ Med. 2013;4:164–6.
    1. Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA. Transient receptor potential ankyrin 1 mediates toluene diisocyanate–evoked respiratory irritation. Am J Respir Cell Mol Biol. 2009;40:756–62.
    1. Abe Y, Takeda N, Irifune M, Ogino S, Kalubi B, Imamura I, et al. Effects of capsaicin desensitization on nasal allergy-like symptoms and histamine release in the nose induced by toluene diisocyanate in guinea pigs. Acta Oto-Laryngol. 1992;112:703–9.
    1. Das AK, Mizuguchi H, Kodama M, Dev S, Umehara H, Kitamura Y, et al. Sho-seiryu-to suppresses histamine signaling at the transcriptional level in TDI-sensitized nasal allergy model rats. Allergol Int. 2009;58:81–8.
    1. Uchida K, Miura Y, Nagai M, Tominaga M. Isothiocyanates from Wasabia japonica activate transient receptor potential ankyrin 1 channel. Chem Senses. 2012;37:809–18.
    1. Dufour V, Alazzam B, Ermel G, Thepaut M, Rossero A, Tresse O, et al. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol. 2012;2:53.
    1. Nagai M, Okunishi I. The effect of wasabi rhizome extract on atopic dermatitis-like symptoms in HR-1 hairless mice. J Nutr Sci Vitaminol. 2009;55:195–200.
    1. Moon JK, Kim JR, Ahn YJ, Shibamoto T. Analysis and anti-helicobactor activity of sulforaphane and related compounds present in broccoli (Brassica oleracea L.) sprouts. J Agric Food Chem. 2010;58:6672–6671.
    1. Hamasaki T, Asano K, Mihara S, Yamamoto T, Suzaki I, Hirano K, et al. Attenuating effect of 6-methylthiohexyl isothiocyanate on allergic rhinitis induced by toluene 2,4-diisocyanate in rats. J Jpn Soc Aromatherapy. 2011;10:45–51.
    1. Mihara S, Asano K, Yamamoto T, Nishimura O. Attenuating effects of volatile isothiocyanates on allergic rhinitis in rats. Proc 59th Conv Japan Soci for Food Sci Technol 2012, p. 174
    1. Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM. Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors. Pain. 2008;135:271–9.
    1. Kendler BS. Garlic (Allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease. Pre Med. 1987;16:670–85.
    1. Thomson M, Ali M. Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets. 2003;3:67–81.
    1. Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26:93–103.
    1. Seki T, Hosono T, Hosono-Fukao T, Inada K, Tanaka R, Ogihara J, et al. Anticancer effects of diallyl trisulfide derived from garlic. Asia Pac J Clin Nutr. 2008;17:249–52.
    1. Hosono T, Fukao T, Ogihara J, Ito Y, Shiba H, Seki T, et al. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification or beta-tubulin. J Biol Chem. 2005;280:41487–93.
    1. Casella S, Leonardi M, Melai B, Fratini F, Pistelli L. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L. Phytother Res. 2013;27:380–3.
    1. Mihara S, Asano K, Yamamoto T, Nishimura O. Attenuating effect of volatile dipropyl trisulfide on allergic rhinitis induced by toluene 2,4-diisocyanate in rats. Proc 46th Symp Japan Assoc Study Taste Smell 2012, p. 93.

Source: PubMed

3
Suscribir