Targeting Neuroinflammation to Alleviate Chronic Olfactory Dysfunction in Long COVID: A Role for Investigating Disease-Modifying Therapy (DMT)?

Arianna Di Stadio, Evanthia Bernitsas, Ignazio La Mantia, Michael J Brenner, Massimo Ralli, Luigi Angelo Vaira, Andrea Colizza, Carlo Cavaliere, Matteo Laudani, Teresa C Frohman, Marco De Vincentiis, Elliot M Frohman, Marta Altieri, Arianna Di Stadio, Evanthia Bernitsas, Ignazio La Mantia, Michael J Brenner, Massimo Ralli, Luigi Angelo Vaira, Andrea Colizza, Carlo Cavaliere, Matteo Laudani, Teresa C Frohman, Marco De Vincentiis, Elliot M Frohman, Marta Altieri

Abstract

Chronic olfactory dysfunction after SARS-CoV-2 infection occurs in approximately 10% of patients with COVID-19-induced anosmia, and it is a growing public health concern. A regimen of olfactory training and anti-neuroinflammatory therapy with co-ultramicronized palmitoylethanolamide with luteolin (um-PEA-LUT) has shown promising results in clinical trials; however, approximately 15% of treated patients do not achieve full recovery of a normal olfactory threshold, and almost 5% have no recovery. Disease-modifying therapies (DMTs), which are used to treat autoimmune neuroinflammation in multiple sclerosis (MS), have not been studied for treating persistent inflammation in refractory post-COVID-19 smell disorder. This study evaluated COVID-19-related smell loss and MS-related smell loss, comparing the responses to different therapies. Forty patients with MS and 45 reporting post-COVID-19 olfactory disorders were included in the study. All patients underwent nasal endoscopy and were evaluated by using validated Sniffin' Sticks testing. The patients with long COVID were treated for three months with um-PEA-LUT plus olfactory training. The patients with MS were treated with DMTs. Olfactory functions before and after treatment were analyzed in both groups. At the experimental endpoint, 13 patients in the COVID-19 group treated with um-PEA-LUT had residual olfactory impairment versus 10 patients in the MS group treated with DMTs. The severity of the persistent olfactory loss was lower in the MS group, and the patients with MS treated with IFN-beta and glatiramer acetate had the preservation of olfactory function. These data provide a rationale for considering prospective trials investigating the efficacy of DMTs for post-COVID-19 olfactory disorders that are refractory to um-PEA-LUT with olfactory training. This study is the first to consider the role of DMT in treating refractory post-viral olfactory loss in patients with long COVID.

Keywords: COVID-19; PASC; SARS-CoV-2; TDM; anosmia; disease-modifying therapy; hyposmia; interferon; long COVID; long-haul COVID; multiple sclerosis; neuroinflammation; olfaction; olfactory; olfactory training; post-acute sequelae of SARS-CoV-2 infection; smell; smell disorders; threshold detection identification.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The graph shows the difference in composite olfactory threshold, discrimination, and identification (TDI) scores for patients with multiple sclerosis (MS) at T0 and T1. No statistically significant variances were observed between T0 and T1 in these patients, as shown in the estimation plot (right side of the image).
Figure 2
Figure 2
The graph shows the differences in composite olfactory threshold, discrimination, and identification (TDI) scores of patients with COVID-19 (MS) at T0 and T1. Statistically significant variances were observed between T0 and T1 in these patients. as shown in the estimation plot (right side of the image).
Figure 3
Figure 3
The figure shows the details of the recovery of the smell function in patients with COVID-19 after being treated with PEA-LUT and olfactory rehabilitation for 3 months.
Figure 4
Figure 4
The graph shows the detailed differences in threshold, detection, and identification (TDI Sniffin’ Score) between patients with MS at T1 and patients with COVID-19 after treatment.

References

    1. Hüttenbrink K.B., Hummel T., Berg D., Gasser T., Hähner A. Olfactory dysfunction: Common in later life and early warning of neurodegenerative disease. Dtsch. Arztebl. Int. 2013;110:1–7.e1. doi: 10.3238/arztebl.2013.0001.
    1. Vanderheiden A., Klein R.S. Neuroinflammation and COVID-19. Curr. Opin. Neurobiol. 2022;76:102608. doi: 10.1016/j.conb.2022.102608.
    1. Khoy K., Mariotte D., Defer G., Petit G., Toutirais O., Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front. Immunol. 2020;11:549842. doi: 10.3389/fimmu.2020.549842.
    1. Frohman E.M., Racke M.K., Raine C.S. Multiple sclerosis--the plaque and its pathogenesis. N. Engl. J. Med. 2006;354:942–955. doi: 10.1056/NEJMra052130.
    1. Constantinescu C.S., Raps E.C., Cohen J.A., West S.E., Doty R.L. Olfactory disturbances as the initial or most prominent symptom of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 1994;57:1011–1012. doi: 10.1136/jnnp.57.8.1011.
    1. Doty R.L., Li C., Mannon L.J., Yousem D.M. Olfactory dysfunction in multiple sclerosis. N. Engl. J. Med. 1997;336:1918–1919. doi: 10.1056/NEJM199706263362617. Erratum in N. Engl. J. Med. 1997, 337, 507.
    1. Doty R.L., Li C., Mannon L.J., Yousem D.M. Olfactory dysfunction in multiple sclerosis: Relation to longitudinal changes in plaque numbers in central olfactory structures. Neurology. 1999;53:880–882. doi: 10.1212/WNL.53.4.880.
    1. Hawkes C.H., Shephard B.C., Kobal G. Assessment of olfaction in multiple sclerosis: Evidence of dysfunction by olfactory evoked response and identification tests. J. Neurol. Neurosurg. Psychiatry. 1997;63:145–151. doi: 10.1136/jnnp.63.2.145.
    1. Good K.P., Tourbier I.A., Moberg P., Cuzzocreo J.L., Geckle R.J., Yousem D.M., Pham D.L., Doty R.L. Unilateral olfactory sensitivity in multiple sclerosis. Physiol. Behav. 2017;168:24–30. doi: 10.1016/j.physbeh.2016.10.017.
    1. Zivadinov R., Zorzon M., Monti Bragadin L., Pagliaro G., Cazzato G. Olfactory loss in multiple sclerosis. J. Neurol. Sci. 1999;168:127–130. doi: 10.1016/S0022-510X(99)00189-6.
    1. Zorzon M., Ukmar M., Bragadin L.M., Zanier F., Antonello R.M., Cazzato G., Zivadinov R. Olfactory dysfunction and extent of white matter abnormalities in multiple sclerosis: A clinical and MR study. Mult. Scler. 2000;6:386–390. doi: 10.1177/135245850000600605.
    1. Lutterotti A., Vedovello M., Reindl M., Ehling R., DiPauli F., Kuenz B., Gneiss C., Deisenhammer F., Berger T. Olfactory threshold is impaired in early, active multiple sclerosis. Mult. Scler. 2011;17:964–969. doi: 10.1177/1352458511399798.
    1. Bsteh G., Hegen H., Ladstätter F., Berek K., Amprosi M., Wurth S., Auer M., Di Pauli F., Deisenhammer F., Reindl M., et al. Change of olfactory function as a marker of inflammatory activity and disability progression in MS. Mult. Scler. 2019;25:267–274. doi: 10.1177/1352458517745724.
    1. Bsteh G., Berek K., Hegen H., Teuchner B., Auer M., Wurth S., Di Pauli F., Deisenhammer F., Berger T. Smelling multiple sclerosis: Different qualities of olfactory function reflect either inflammatory activity or neurodegeneration. Mult. Scler. 2020;26:57–68. doi: 10.1177/1352458518814113.
    1. Cherry J.D., Olschowka J.A., O’Banion M.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflamm. 2014;11:98. doi: 10.1186/1742-2094-11-98.
    1. Zelic M., Pontarelli F., Woodworth L., Zhu C., Mahan A., Ren Y., LaMorte M., Gruber R., Keane A., Loring P., et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 2021;35:109112. doi: 10.1016/j.celrep.2021.109112.
    1. Bjelobaba I., Savic D., Lavrnja I. Multiple Sclerosis and Neuroinflammation: The Overview of Current and Prospective Therapies. Curr. Pharm. Des. 2017;23:693–730. doi: 10.2174/1381612822666161214153108.
    1. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41:1100–1115. doi: 10.1016/j.it.2020.10.004.
    1. D’Ascanio L., Pandolfini M., Cingolani C., Latini G., Gradoni P., Capalbo M., Frausini G., Maranzano M., Brenner M.J., Di Stadio A. Olfactory Dysfunction in COVID-19 Patients: Prevalence and Prognosis for Recovering Sense of Smell. Otolaryngol.–Head Neck Surg. 2021;164:82–86. doi: 10.1177/0194599820943530.
    1. Esposito F., Cirillo M., De Micco R., Caiazzo G., Siciliano M., Russo A.G., Monari C., Coppola N., Tedeschi G., Tessitore A. Olfactory loss and brain connectivity after COVID-19. Hum. Brain Mapp. 2022;43:1548–1560. doi: 10.1002/hbm.25741.
    1. Aiyegbusi O.L., Hughes S.E., Turner G., Rivera S.C., McMullan C., Chandan J.S., Haroon S., Price G., Davies E.H., Nirantharakumar K., et al. TLC Study Group. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021;114:428–442. doi: 10.1177/01410768211032850.
    1. Di Stadio A., D’Ascanio L., Vaira L.A., Cantone E., De Luca P., Cingolani C., Motta G., De Riu G., Vitelli F., Spriano G., et al. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo-Controlled Clinical Trial. Curr. Neuropharmacol. 2022;20:2001–2012. doi: 10.2174/1570159X20666220420113513.
    1. D’Ascanio L., Vitelli F., Cingolani C., Maranzano M., Brenner M.J., Di Stadio A. Randomized clinical trial “olfactory dysfunction after COVID-19: Olfactory rehabilitation therapy vs. intervention treatment with Palmitoylethanolamide and Luteolin”: Preliminary results. Eur. Rev. Med. Pharmacol. Sci. 2021;25:4156–4162. doi: 10.26355/eurrev_202106_26059.
    1. De Luca P., Camaioni A., Marra P., Salzano G., Carriere G., Ricciardi L., Pucci R., Montemurro N., Brenner M.J., Di Stadio A. Effect of Ultra-Micronized Palmitoylethanolamide and Luteolin on Olfaction and Memory in Patients with Long COVID: Results of a Longitudinal Study. Cells. 2022;11:2552. doi: 10.3390/cells11162552.
    1. Berger J.R., Brandstadter R., Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2020;7:e761. doi: 10.1212/NXI.0000000000000761.
    1. O’Byrne L., Webster K.E., MacKeith S., Philpott C., Hopkins C., Burton M.J. Interventions for the treatment of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst. Rev. 2022;7:CD013876. doi: 10.1002/14651858.
    1. Di Stadio A., Severini C., Colizza A., De Vincentiis M., La Mantia I. Investigational drugs for the treatment of olfactory dysfunction. Expert Opin. Investig. Drugs. 2022;31:945–955. doi: 10.1080/13543784.2022.2113054.
    1. Di Stadio A., D’Ascanio L., La Mantia I., Ralli M., Brenner M.J. Parosmia after COVID-19: Olfactory training, neuroinflammation and distortions of smell. Eur. Rev. Med. Pharmacol. Sci. 2022;26:1–3. doi: 10.26355/eurrev_202201_27739.
    1. Nishanth K., Tariq E., Nzvere F.P., Miqdad M., Cancarevic I. Role of Smoking in the Pathogenesis of Multiple Sclerosis: A Review Article. Cureus. 2020;12:e9564. doi: 10.7759/cureus.9564.
    1. Figueroa-Vargas A., Cárcamo C., Henríquez-Ch R., Zamorano F., Ciampi E., Uribe-San-Martin R., Vásquez M., Aboitiz F., Billeke P. Frontoparietal connectivity correlates with working memory performance in multiple sclerosis. Sci. Rep. 2020;10:9310. doi: 10.1038/s41598-020-66279-0.
    1. Di Stadio A., Brenner M.J., De Luca P., Albanese M., D’Ascanio L., Ralli M., Roccamatisi D., Cingolani C., Vitelli F., Camaioni A., et al. Olfactory Dysfunction, Headache, and Mental Clouding in Adults with Long-COVID-19: What Is the Link between Cognition and Olfaction? A Cross-Sectional Study. Brain Sci. 2022;12:154. doi: 10.3390/brainsci12020154.
    1. Di Stadio A., D’Ascanio L., De Luca P., Roccamatisi D., La Mantia I., Brenner M.J. Hyperosmia after COVID-19: Hedonic perception or hypersensitivity? Eur. Rev. Med. Pharmacol. Sci. 2022;26:2196–2200. doi: 10.26355/eurrev_202203_28368.
    1. Di Sabato D.J., Quan N., Godbout J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016;139:136–153. doi: 10.1111/jnc.13607.
    1. Di Stadio A., Bernitsas E., Ralli M., Severini C., Brenner M.J., Angelini C. OAS1 gene, Spike protein variants and persistent COVID-19-related anosmia: May the olfactory disfunction be a harbinger of future neurodegenerative disease? Eur. Rev. Med. Pharmacol. Sci. 2022;26:347–349. doi: 10.26355/eurrev_202201_27858.
    1. Chabot S., Yong V.W. Interferon beta-1b increases interleukin-10 in a model of T cell-microglia interaction: Relevance to MS. Neurology. 2000;55:1497–1505. doi: 10.1212/WNL.55.10.1497.
    1. Mudò G., Frinchi M., Nuzzo D., Scaduto P., Plescia F., Massenti M.F., Di Carlo M., Cannizzaro C., Cassata G., Cicero L., et al. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J. Neuroinflammation. 2019;16:44. doi: 10.1186/s12974-019-1417-4.
    1. Begum-Haque S., Christy M., Wang Y., Kasper E., Ochoa-Reparaz J., Smith J.Y., Haque A., Kasper L.H. Glatiramer acetate biases dendritic cells towards an anti-inflammatory phenotype by modulating OPN, IL-17, and RORγt responses and by increasing IL-10 production in experimental allergic encephalomyelitis. J. Neuroimmunol. 2013;254:117–124. doi: 10.1016/j.jneuroim.2012.10.003.
    1. Starossom S.C., Veremeyko T., Dukhinova M., Yung A.W., Ponomarev E.D. Glatiramer acetate (copaxone) modulates platelet activation and inhibits thrombin-induced calcium influx: Possible role of copaxone in targeting platelets during autoimmune neuroinflammation. PLoS ONE. 2014;9:e96256. doi: 10.1371/journal.pone.0096256.
    1. De Luca P., Scarpa A., Ralli M., Tassone D., Simone M., De Campora L., Cassandro C., Di Stadio A. Auditory Disturbances and SARS-CoV-2 Infection: Brain Inflammation or Cochlear Affection? Systematic Review and Discussion of Potential Pathogenesis. Front. Neurol. 2021;12:707207. doi: 10.3389/fneur.2021.707207.
    1. Desai R.A., Davies A.L., Del Rossi N., Tachrount M., Dyson A., Gustavson B., Kaynezhad P., Mackenzie L., van der Putten M.A., McElroy D., et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann. Neurol. 2020;88:123–136. doi: 10.1002/ana.25749.
    1. Orefice N.S., Alhouayek M., Carotenuto A., Montella S., Barbato F., Comelli A., Calignano A., Muccioli G.G., Orefice G. Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics. 2016;13:428–438. doi: 10.1007/s13311-016-0420-z.
    1. Nau R., Ribes S., Djukic M., Eiffert H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front. Cell. Neurosci. 2014;8:138. doi: 10.3389/fncel.2014.00138.
    1. Ye S., Liu H., Chen Y., Qiu F., Liang C.L., Zhang Q., Huang H., Wang S., Zhang Z.D., Lu W., et al. A Novel Immunosuppressant, Luteolin, Modulates Alloimmunity and Suppresses Murine Allograft Rejection. J. Immunol. 2019;203:3436–3446. doi: 10.4049/jimmunol.1900612.
    1. Noce A., Albanese M., Marrone G., Di Lauro M., Zaitseva A.P., Palazzetti D., Guerriero C., Paolino A., Pizzenti G., Di Daniele F., et al. Ultramicronized Palmitoylethanolamide (um-PEA): A New Possible Adjuvant Treatment in CO VID-19 patients. Pharmaceuticals. 2021;14:336. doi: 10.3390/ph14040336.

Source: PubMed

3
Suscribir