Effect of Metformin on a Preeclampsia-Like Mouse Model Induced by High-Fat Diet

Fuchuan Wang, Guangming Cao, Wei Yi, Li Li, Xiuzhen Cao, Fuchuan Wang, Guangming Cao, Wei Yi, Li Li, Xiuzhen Cao

Abstract

Background: Metformin has been reported to decrease insulin resistance and is associated with a lower risk of pregnancy-induced hypertension and preeclampsia. It is widely accepted that the placenta plays a crucial role in the development of preeclampsia. Our aim is to explore the effect of metformin on preeclampsia.

Study design: We examined control diet-fed (isocaloric diet) pregnant mice (CTRL group), pregnant mice fed a high-fat diet (HF group), and high-fat-diet-fed pregnant mice treated with metformin (HF-M group). The HF mice were fed a high-fat diet six weeks before pregnancy to establish a preeclampsia-like model; then, the group was randomly divided into a HF group and a HF-M group after pregnancy. Blood pressure, urine protein, pregnancy outcomes, protein expression, and histopathological changes in the placentas of all groups were examined and statistically analysed.

Results: We observed that metformin significantly improved high blood pressure, proteinuria, and foetal and placental weights in the HF-M group compared with the HF group. Metformin significantly improved placental labyrinth and foetal vascular development in preeclampsia. In addition, metformin effectively increased matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) levels in the placenta.

Conclusions: Our results suggest that metformin can improve preeclamptic symptoms and pregnancy outcomes.

Conflict of interest statement

The authors declare that there are no conflicts of interest regarding the publication of this article.

Copyright © 2019 Fuchuan Wang et al.

Figures

Figure 1
Figure 1
Effects of treatment with metformin on maternal signs of preeclampsia. (a) Systolic blood pressure. (b) Diastolic blood pressure. (c) Mean arterial blood pressure. (d) Urinary protein. The results are presented in mean ± SD. P < 0.05.
Figure 2
Figure 2
The weights of (a) the pregnant mice, (b) the placenta, and (c) the foetus at day 18.5 of pregnancy. Data are expressed as the mean ± SD. P < 0.05 between two groups.
Figure 3
Figure 3
Analysis of placental structure. (a) Placental HE staining results of the three groups. The magnification is 20x in the upper panels. (b–d) Bar charts show the labyrinth and sponge of the placenta. (e) An immunohistochemical analysis of laminin in the placenta. The magnification is 400x in the panels. Pseudocolour is used to indicate foetal blood vessels (red) and the maternal blood sinusoid (blue) in the placental labyrinth. (f–g) Bar graphs show the quantitative results of the red and blue areas of all placentas in each group, indicating the area of the maternal blood sinusoid (MBS) and foetal blood vessels (FBV). The statistical analysis was based on the results of all placentas in each group. Data are expressed as the mean ± SD. P < 0.05 between two groups.
Figure 4
Figure 4
The protein expression of the placenta by western blotting. (a) Western blotting shows the relative expression of VEGF and MMP-2 in the placentas. (b-c) Bar graphs show the relative protein levels of VEGF and MMP-2 based on the statistical analysis of the western blotting results. Data are expressed as the mean ± SD. P < 0.05 between two groups.

References

    1. Uzan J., Carbonnel M., Piconne O., Asmar R., Ayoubi J. M. Pre-eclampsia: pathophysiology, diagnosis, and management. Vascular Health and Risk Management. 2011;2011(7):467–474. doi: 10.2147/VHRM.S20181.
    1. Rosser M. L., Katz N. T. Preeclampsia: an obstetrician’s perspective. Advances in Chronic Kidney Disease. 2013;20(3):287–296. doi: 10.1053/j.ackd.2013.02.005.
    1. Poon L. C., Nicolaides K. H. Early prediction of preeclampsia. Obstetrics and Gynecology International. 2014;2014:11. doi: 10.1155/2014/297397.297397
    1. Qin J. Z., Pang L. H., Li M. J., et al. Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reproductive Biology and Endocrinology. 2013;11(1):p. 56. doi: 10.1186/1477-7827-11-56.
    1. Anim-Nyame N., Sooranna S. R., Steer P. J., et al. Longitudinal analysis of maternal plasma leptin concentrations during normal pregnancy and pre-eclampsia. Human Reproduction. 2000;15(9):2033–2036. doi: 10.1093/humrep/15.9.2033.
    1. Murphy H. R., Steel S. A., Roland J. M., et al. Obstetric and perinatal outcomes in pregnancies complicated by Type 1 and Type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabetic Medicine. 2011;28(9):1060–1067. doi: 10.1111/j.1464-5491.2011.03333.x.
    1. Holman N., Lewis-Barned N., Bell R., et al. Development and evaluation of a standardized registry for diabetes in pregnancy using data from the Northern, North West and East Anglia regional audits1. Diabetic Medicine. 2011;28(7):797–804. doi: 10.1111/j.1464-5491.2011.03259.x.
    1. Knight K. M., Pressman E. K., Hackney D. N., Thornburg L. L. Perinatal outcomes in type 2 diabetic patients compared with non-diabetic patients matched by body mass index. The Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(6):611–615. doi: 10.3109/14767058.2011.587059.
    1. Thornburg R. P., Morani A., Moriscot A., Machado U. F., et al. Insulin resistance of pregnancy involves estrogen-induced repression of muscle GLUT4. Molecular and Cellular Endocrinology. 2008;295(1-2):24–31. doi: 10.1016/j.mce.2008.07.008.
    1. Boney C. M., Verma A., Tucker R., Vohr B. R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–e296. doi: 10.1542/peds.2004-1808.
    1. Brietzke S. A. Oral antihyperglycemic treatment options for type 2 diabetes mellitus. Medical Clinics of North America. 2015;99(1):87–106. doi: 10.1016/j.mcna.2014.08.012.
    1. Wouldes T. A., Battin M., Coat S., et al. Neurodevelopmental outcome at 2 years in offspring of women randomised to metformin or insulin treatment for gestational diabetes. The Journal of Maternal-Fetal & Neonatal Medicine. 2016;101(6):F488–F493. doi: 10.1136/archdischild-2015-309602.
    1. Zhao L.-P., Sheng X.-Y., Zhou S., et al. Metformin versus insulin for gestational diabetes mellitus: a meta-analysis. British Journal of Clinical Pharmacology. 2015;80(5):1224–1234. doi: 10.1111/bcp.12672.
    1. Kitwitee P., Limwattananon S., Limwattananon C., et al. Metformin for the treatment of gestational diabetes: an updated meta-analysis. Diabetes Research and Clinical Practice. 2015;109(3):521–532. doi: 10.1016/j.diabres.2015.05.017.
    1. Cassina M., Donà M., Di Gianantonio E., Litta P., Clementi M. First-trimester exposure to metformin and risk of birth defects: a systematic review and meta-analysis. Human Reproduction Update. 2014;20(5):656–669. doi: 10.1093/humupd/dmu022.
    1. Kulkarni J., Storch A., Baraniuk A., Gilbert H., Gavrilidis E., Worsley R. Antipsychotic use in pregnancy. Expert Opinion on Pharmacotherapy. 2015;16(9):1335–1345. doi: 10.1517/14656566.2015.1041501.
    1. Brownfoot F. C., Hastie R., Hannan N. J., et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. American Journal of Obstetrics and Gynecology. 2016;214(3):356.e1–356.e15. doi: 10.1016/j.ajog.2015.12.019.
    1. Barbieri R. L. Metformin for the treatment of polycystic ovary syndrome. Obstetrics and Gynecology. 2013;101(4):785–793.
    1. Legro R. S., Barnhart H. X., Schlaff W. D., et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. New England Journal of Medicine. 2007;356(6):551–566. doi: 10.1056/nejmoa063971.
    1. Zheng J., Shan P. F., Gu W. The efficacy of metformin in pregnant women with polycystic ovary syndrome: a meta-analysis of clinical trials. Journal of Endocrinological Investigation. 2013;36(10):797–802.
    1. Goldman-Wohl D., Yagel S. Regulation of trophoblast invasion: from normal implantation to pre-eclampsia. Molecular and Cellular Endocrinology. 2002;187(1-2):233–238. doi: 10.1016/s0303-7207(01)00687-6.
    1. Lam C., Lim K.-H., Karumanchi S. A. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46(5):1077–1085. doi: 10.1161/01.hyp.0000187899.34379.b0.
    1. Roberts J. M., Hubel C. A. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl A):32–37. doi: 10.1016/j.placenta.2008.11.009.
    1. Vashukova E. S., Glotov A. S., Fedotov P. V., et al. Placental microRNA expression in pregnancies complicated by superimposed pre-eclampsia on chronic hypertension. Molecular Medicine Reports. 2016;14(1):22–32. doi: 10.3892/mmr.2016.5268.
    1. Roberts J. M., Escudero C. The placenta in preeclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2012;2(2):72–83. doi: 10.1016/j.preghy.2012.01.001.
    1. Duckitt K., Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330(7491):p. 565. doi: 10.1136/bmj.38380.674340.e0.
    1. Masuyama H., Inoue S., Hiramatsu Y. Retinol-binding protein 4 and insulin resistance in preeclampsia. Endocrine Journal. 2011;58(1):47–53. doi: 10.1507/endocrj.k10e-288.
    1. Masuyama H., Segawa T., Sumida Y., et al. Different profiles of circulating angiogenic factors and adipocytokines between early- and late-onset pre-eclampsia. BJOG: An International Journal of Obstetrics & Gynaecology. 2010;117(3):314–320. doi: 10.1111/j.1471-0528.2009.02453.x.
    1. Masuyama H., Hiramatsu Y. Treatment with a constitutive androstane receptor ligand ameliorates the signs of preeclampsia in high-fat diet-induced obese pregnant mice. Molecular and Cellular Endocrinology. 2012;348(1):120–127. doi: 10.1016/j.mce.2011.07.047.
    1. Sun M. N., Yang Z., Ma R. Q. Effect of high-fat diet on liver and placenta fatty infiltration in early onset preeclampsia-like mouse model. Chinese Medical Journal. 2012;125(19):3532–3538.
    1. Masuyama H., Mitsui T., Maki J., et al. Dimethylesculetin ameliorates maternal glucose intolerance and fetal overgrowth in high-fat diet-fed pregnant mice via constitutive androstane receptor. Molecular and Cellular Biochemistry. 2016;419(1-2):185–192. doi: 10.1007/s11010-016-2772-4.
    1. Bertoldo M. J., Faure M., Dupont J. Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation. Annals of Translational Medicine. 2014;2(6):p. 55. doi: 10.3978/j.issn.2305-5839.2014.06.04.
    1. Froment O. M., Shokry M., Ismail H., et al. Expression of matrix metalloproteinases 2 and 9 in human trophoblasts of normal and preeclamptic placentas. International Journal of Health Sciences (Qassim) 2011;5(2 Suppl 1):21–23.
    1. Cockle J. V., Gopichandran N., Walker J. J., Levene M. I., Orsi N. M. Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reproductive Sciences. 2007;14(7):629–645. doi: 10.1177/1933719107304563.
    1. Cross S. N., Ratner E., Rutherford T. J., et al. Bevacizumab-mediated interference with VEGF signaling is sufficient to induce a preeclampsia-like syndrome in nonpregnant women. Reviews in Obstetrics & Gynecology. 2012;5(1):2–8.
    1. Brouillet S., Hoffmann P., Feige J.-J., Alfaidy N. EG-VEGF: a key endocrine factor in placental development. Trends in Endocrinology & Metabolism. 2012;23(10):501–508. doi: 10.1016/j.tem.2012.05.006.

Source: PubMed

3
Suscribir