Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment

Qiwei Yang, Michal Ciebiera, Maria Victoria Bariani, Mohamed Ali, Hoda Elkafas, Thomas G Boyer, Ayman Al-Hendy, Qiwei Yang, Michal Ciebiera, Maria Victoria Bariani, Mohamed Ali, Hoda Elkafas, Thomas G Boyer, Ayman Al-Hendy

Abstract

Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.

Keywords: developmental origin; epigenetics pathways; future directions; genetic instability; novel treatment; reprogramming; uterine fibroids.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

Figures

Graphical Abstract
Graphical Abstract
Figure 1.
Figure 1.
Developmental origin of fibroids from myometrial stem cells. Intrauterine and early-life adverse environmental exposure to endocrine-disrupting chemicals may act as the early hit to induce normal myometrial stem cells’ reprogramming by hijacking epigenomic plasticity. The plasticity of the developing epigenome is susceptible to epigenomic changes in myometrial stem cells following later-life adverse exposures, thereby leading to mutations and their transformation into tumor-initiating stem cells. The development and growth of fibroids are mainly characterized by abnormal cell proliferation, inhibited apoptosis, DNA instability, excessive deposition of ECM, and other critical biological pathways. Abbreviations: ECM, extracellular matrix; MED12, RNA polymerase II transcriptional mediator complex subunit 12; ncRNAs, non-coding RNA.
Figure 2.
Figure 2.
Risk factors for uterine fibroids that mainly affect inflammation, DNA damage pathways, and genetic instability. External and internal factors, such as EDC exposure, hyper-responsiveness to sex steroid hormones, obesity, vitamin D deficiency, and altered reproductive tract microbiome, contribute to chronic systemic inflammation. The inflammatory environment, EDC exposure, and vitamin D deficiency promote DNA damage and the accumulation of mutations. Consequently, these genetic events may activate the pathways involved in cell proliferation, the inhibition of apoptosis, and ECM remodeling, ultimately leading to the development and growth of fibroids. Abbreviations: E2, estrogen; EDCs, endocrine-disrupting chemicals; MED12, RNA polymerase II transcriptional mediator complex subunit 12; P4, progesterone.
Figure 3.
Figure 3.
Role of MED12 mutation in the pathogenesis of fibroids. Two mutually compatible models are demonstrating that fibroids driver mutations in MED12 trigger myometrial stem cell transformation and fibroids formation through altered signaling. In the first model (A), MED12 mutations in exon 2 disrupt the CDK8 T-loop conformation to affect Mediator kinase activity and the phosphorylation of downstream targets, including those that control myometrial stem cell fate and/or function. In the second model (B), MED12 mutations alter gene expression programs that control myometrial stem cell fate and/or function through kinase-independent mechanisms, such as MED12 interactions with transcriptional regulatory proteins (173). The 2 models are not mutually exclusive, and both scenarios could contribute to fibroids pathogenesis. Shown here is the 4-subunit Mediator kinase module comprising MED13, MED12, CycC, and CDK8/19 that variably associates with a core Mediator, which is collectively composed of 26 different subunits arranged into 3 structurally defined domains, ie, Head, Middle, and Tail. The structure of the core Mediator is from Clark et al (137), whereas that of the kinase module is from Li et al (167). Abbreviations: CDK8/19, cyclin-dependent kinase 8/19; CycC, cyclin C; MED12/13, RNA polymerase II transcriptional mediator complex subunit 12/13; MMSC, myometrial stem cell; UFs, uterine fibroids.
Figure 4.
Figure 4.
Estrogen receptor-mediated signaling pathways in the myometrium. The biosynthesis of natural E2 occurs in the ovary downstream the actions of the LH and the FSH, which are regulated by the GnRH. E2 mediates its biological response through several pathways, which can be classified as genomic and nongenomic. There are 3 main mechanisms of genomic regulation mediated by ER. Firstly, in the classical pathway, E2 ligands passively enter the cells by diffusion. ERα and ERβ are localized in the cytosol and are attached to the chaperon Hsp90, which is released after binding with estrogen. The estrogen-bound receptors form dimers that enter the nucleus and bind to the ERE, specific DNA sequences of the promoters of target genes affecting their transcription. Secondly, the nonclassical pathway involves binding the E2-bound ER to TFs that are already bound to the DNA. The third mechanism is hormone-independent. The ER can regulate E2 responses by activating the signaling of growth factors via the phosphorylation of different serine (118/167) residues on the receptor. In addition to upregulating gene expression, E2 exerts its nongenomic rapid biological actions by interaction with membrane receptors. GPER, a membrane-integrated 7-transmembrane receptor, activates heterotrimeric G-proteins after binding with estrogen to elicit various nongenomic responses, such as calcium signaling, PKC, and cAMP/PKA pathways. Bound-membrane ERs (ERα, ERβ, ER36, and ER46) also activate cytosolic signalings, such as PI3K/Akt and MAPK. In addition, the activation of kinases results in the phosphorylation of specific transcription factors that regulate gene expression. EDCs are exogenous, manufactured chemicals, such as genistein, bisphenol A, and phthalates that mimic natural estrogen molecular and cellular responses, thereby altering the functions of the endocrine system. These chemicals are associated with the developmental origin of fibroids and their pathogenesis. Abbreviations: AC, adenylyl cyclase; AKT, protein kinase B; cAMP, cyclic AMP; CoA, coactivator; E2, estrogen; EDCs, endocrine-disrupting chemicals; EGFR, epidermal growth factor receptor; ER, estrogen receptor; ERE, estrogen-responsive elements; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; GPER, G-protein coupled estrogen receptor 1; Hsp90, heat shock protein 90; IGFR, insulin-like growth factor 1 receptor; IP3, inositol trisphosphate; LH, luteinizing hormone; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; mER, membrane-bound estrogen receptor; mTOR, mammalian target of rapamycin; PI3K, phosphoinositol-3-kinase; PKA, protein kinase A; PKC, protein kinase; PLC, phospholipase C; Raf, Rapidly Accelerated Fibrosarcoma Kinase; Ras, Ras GTPase; TFs, transcription factors.
Figure 5.
Figure 5.
Critical pathways in uterine fibroids pathogenesis. The WNT/β-catenin, TGF-β, growth factor–regulated signaling, ECM, estrogen signaling, YAP/TAZ, Rho/ROCK, and DNA damage repair pathways play essential roles in fibroids formation and development. In addition, the crosstalk and interaction among these pathways may initiate and trigger uterine fibroids pathogenesis. Abbreviations: AKT, protein kinase B; APC, adenomatous polyposis coli; Bad, BCL2 associated agonist of cell death; CK1α, casein kinase 1 alpha; E2, Estrogen; ECM, extracellular matrix; ERE, estrogen-responsive elements; ERK, extracellular-signal-regulated kinase; ERα/β, estrogen receptor alpha/beta; FAK, focal adhesion kinase; GSK-3β, glycogen synthase kinase 3 beta; Hsp90, heat shock protein 90; LRP, lipoprotein receptor-related protein; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; mER, membrane-bound estrogen; MLC, Myosin regulatory light chain 2; MRN, Mre11-Rad50-Nbs1 complex; mTOR, mechanistic target of rapamycin; P, phosphorylated site; PDK1, 3-phosphoinositide-dependent protein kinase 1; PI3K, phosphatidylinositol 3-kinase; RAF, Rapidly Accelerated Fibrosarcoma kinase; RHO, Ras-homologous; RTK, receptor tyrosine kinases; SMAD, mothers against DPP (decapentaplegic); Src, proto-oncogene tyrosine-protein kinase; TF, transcription factor; TGFβ, transforming growth factor beta; TGFβR, transforming growth factor beta receptor; Wnt, Wingless-related integration site; YAP, Yes-associated protein; TAZ, transcriptional coactivator with PDZ-binding domain.
Figure 6.
Figure 6.
Future research prospects. Studies elucidating the interplay among genes, epigenome, and epitranscriptome in the context of stem cell biology, microbiome, and the interaction between the endometrium and uterine fibroids can advance the knowledge on the pathogenesis of uterine fibroids and are expected to contribute to developing novel therapeutic approaches for the treatment of patients with uterine fibroids. Abbreviations: ALKBH5, ALKB homolog 5; FTO, fat mass and obesity-associated protein; HMB: heavy menstrual bleeding; IGFBPs, insulin-like growth factor binding protein-3; METTL3,14, methyltransferase like 3 and 14; UFs, uterine fibroids; YTHDF1/YTHDC1, YTH domain-containing protein.

References

    1. Al-Hendy A, Myers ER, Stewart E. Uterine fibroids: burden and unmet medical need. Semin Reprod Med. 2017;35(6):473-480.
    1. Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol. 2016;59(1):2-24.
    1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100-107.
    1. Jayes FL, Liu B, Feng L, Aviles-Espinoza N, Leikin S, Leppert PC. Evidence of biomechanical and collagen heterogeneity in uterine fibroids. Plos One. 2019;14(4):e0215646.
    1. Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B. Uterine fibroids. Nat Rev Dis Primers. 2016;2:16043.
    1. Hodge JC, Quade BJ, Rubin MA, Stewart EA, Dal Cin P, Morton CC. Molecular and cytogenetic characterization of plexiform leiomyomata provide further evidence for genetic heterogeneity underlying uterine fibroids. Am J Pathol. 2008;172(5):1403-1410.
    1. Mäkinen N, Mehine M, Tolvanen J, et al. . MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252-255.
    1. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. Plos One. 2012;7(3):e33251.
    1. Yatsenko SA, Mittal P, Wood-Trageser MA, et al. . Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. Fertil Steril. 2017;107(2):457-466.e9.
    1. Heinonen HR, Pasanen A, Heikinheimo O, et al. . Multiple clinical characteristics separate MED12-mutation-positive and -negative uterine leiomyomas. Sci Rep. 2017;7(1):1015.
    1. Jamaluddin MFB, Nahar P, Tanwar PS. Proteomic characterization of the extracellular matrix of human uterine fibroids. Endocrinology. 2018;159(7):2656-2669.
    1. Jamaluddin MFB, Ko YA, Kumar M, et al. . Proteomic profiling of human uterine fibroids reveals upregulation of the extracellular matrix protein periostin. Endocrinology. 2018;159(2):1106-1118.
    1. Heinonen HR, Mehine M, Mäkinen N, et al. . Global metabolomic profiling of uterine leiomyomas. Br J Cancer. 2017;117(12):1855-1864.
    1. Holdsworth-Carson SJ, Zhao D, Cann L, Bittinger S, Nowell CJ, Rogers PA. Differences in the cellular composition of small versus large uterine fibroids. Reproduction. 2016;152(5):467-480.
    1. Tinelli A, Malvasi A, Hurst BS, et al. . Surgical management of neurovascular bundle in uterine fibroid pseudocapsule. JSLS. 2012;16(1):119-129.
    1. Tinelli A, Mynbaev OA, Sparic R, et al. . Angiogenesis and vascularization of uterine leiomyoma: clinical value of pseudocapsule containing peptides and neurotransmitters. Curr Protein Pept Sci. 2017;18(2):129-139.
    1. Tinelli A, Kosmas I, Mynbaev OA, et al. . Submucous fibroids, fertility, and possible correlation to pseudocapsule thickness in reproductive surgery. Biomed Res Int. 2018;2018:2804830.
    1. Tinelli A, Favilli A, Lasmar RB, et al. . The importance of pseudocapsule preservation during hysteroscopic myomectomy. Eur J Obstet Gynecol Reprod Biol. 2019;243:179-184.
    1. Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293-298.
    1. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308(5728):1589-1592.
    1. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206(3):211.e1-211.e9.
    1. Lee M, Chung YJ, Kim HK, et al. . Estimated prevalence and incidence of uterine leiomyoma, and its treatment trend in South Korean women for 12 years: a national population-based study. J Womens Health (Larchmt). 2021;30(7):1038-1046.
    1. Ciebiera M, Włodarczyk M, Słabuszewska-Jóźwiak A, Nowicka G, Jakiel G. Influence of vitamin D and transforming growth factor β3 serum concentrations, obesity, and family history on the risk for uterine fibroids. Fertil Steril. 2016;106(7):1787-1792.
    1. Faerstein E, Szklo M, Rosenshein N. Risk factors for uterine leiomyoma: a practice-based case-control study. I. African-American heritage, reproductive history, body size, and smoking. Am J Epidemiol. 2001;153(1):1-10.
    1. Wise LA, Palmer JR, Spiegelman D, et al. . Influence of body size and body fat distribution on risk of uterine leiomyomata in U.S. black women. Epidemiology. 2005;16(3):346-354.
    1. Ciebiera M, Wlodarczyk M, Ciebiera M, Zareba K, Lukaszuk K, Jakiel G. Vitamin D and uterine fibroids-review of the literature and novel concepts. Int J Mol Sci. 2018;19(7). doi:10.3390/ijms19072051.
    1. Sabry M, Halder SK, Allah AS, Roshdy E, Rajaratnam V, Al-Hendy A. Serum vitamin D3 level inversely correlates with uterine fibroid volume in different ethnic groups: a cross-sectional observational study. Int J Womens Health. 2013;5:93-100.
    1. Mohammadi R, Tabrizi R, Hessami K, et al. . Correlation of low serum vitamin-D with uterine leiomyoma: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2020;18(1):85.
    1. Ciebiera M, Szymańska-Majchrzak J, Sentkowska A, et al. . Alpha-tocopherol serum levels are increased in caucasian women with uterine fibroids: a pilot study. Biomed Res Int. 2018;2018:6793726.
    1. Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders? Front Immunol. 2018;9:208.
    1. Lee G, Kim S, Bastiaensen M, et al. . Exposure to organophosphate esters, phthalates, and alternative plasticizers in association with uterine fibroids. Environ Res. 2020;189:109874.
    1. Bariani MV, Rangaswamy R, Siblini H, Yang Q, Al-Hendy A, Zota AR. The role of endocrine-disrupting chemicals in uterine fibroid pathogenesis. Curr Opin Endocrinol Diabetes Obes. 2020;27(6):380-387.
    1. Yang Q, Ali M, El Andaloussi A, Al-Hendy A. The emerging spectrum of early life exposure-related inflammation and epigenetic therapy. Cancer Stud Mol Med. 2018;4(1):13-23.
    1. Wong JY, Chang PY, Gold EB, Johnson WO, Lee JS. Environmental tobacco smoke and risk of late-diagnosis incident fibroids in the Study of Women’s Health across the Nation (SWAN). Fertil Steril. 2016;106(5):1157-1164.
    1. Takala H, Yang Q, El Razek AMA, Ali M, Al-Hendy A. Alcohol consumption and risk of uterine fibroids. Curr Mol Med. 2020;20(4):247-258.
    1. Baird DD, Patchel SA, Saldana TM, et al. . Uterine fibroid incidence and growth in an ultrasound-based, prospective study of young African Americans. Am J Obstet Gynecol. 2020;223(3):402.e1-402.e18.
    1. Marsh EE, Al-Hendy A, Kappus D, Galitsky A, Stewart EA, Kerolous M. Burden, prevalence, and treatment of uterine fibroids: a survey of U.S. Women. J Womens Health (Larchmt). 2018;27(11):1359-1367.
    1. Jager KJ, Tripepi G, Chesnaye NC, Dekker FW, Zoccali C, Stel VS. Where to look for the most frequent biases? Nephrology (Carlton). 2020;25(6):435-441.
    1. Marshall LM, Spiegelman D, Barbieri RL, et al. . Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90(6):967-973.
    1. Wise LA, Palmer JR, Stewart EA, Rosenberg L. Age-specific incidence rates for self-reported uterine leiomyomata in the Black Women’s Health Study. Obstet Gynecol. 2005;105(3):563-568.
    1. Wright KN, Laufer MR. Leiomyomas in adolescents. Fertil Steril. 2011;95(7):2434.e15-2434.e17.
    1. Moroni RM, Vieira CS, Ferriani RA, Reis RM, Nogueira AA, Brito LG. Presentation and treatment of uterine leiomyoma in adolescence: a systematic review. BMC Womens Health. 2015;15:4.
    1. Yang CH, Lee JN, Hsu SC, Kuo CH, Tsai EM. Effect of hormone replacement therapy on uterine fibroids in postmenopausal women–a 3-year study. Maturitas. 2002;43(1):35-39.
    1. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG. 2017;124(10):1501-1512.
    1. Baird DD, Patchel SA, Saldana TM, et al. . Uterine fibroid incidence and growth in an ultrasound-based, prospective study of young African Americans. Am J Obstet Gynecol. 2020;223(3):402.e1-402.e18.
    1. Eltoukhi HM, Modi MN, Weston M, Armstrong AY, Stewart EA. The health disparities of uterine fibroid tumors for African American women: a public health issue. Am J Obstet Gynecol. 2014;210(3):194-199.
    1. Stewart EA, Nicholson WK, Bradley L, Borah BJ. The burden of uterine fibroids for African-American women: results of a national survey. J Womens Health (Larchmt). 2013;22(10):807-816.
    1. Al-Hendy A, Salama SA. Catechol-O-methyltransferase polymorphism is associated with increased uterine leiomyoma risk in different ethnic groups. J Soc Gynecol Investig. 2006;13(2):136-144.
    1. Baird DD, Hill MC, Schectman JM, Hollis BW. Vitamin D and the risk of uterine fibroids. Epidemiology. 2013;24(3):447-453.
    1. Brakta S, Diamond JS, Al-Hendy A, Diamond MP, Halder SK. Role of vitamin D in uterine fibroid biology. Fertil Steril. 2015;104(3):698-706.
    1. Geronimus AT, Hicken M, Keene D, Bound J. “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. Am J Public Health. 2006;96(5):826-833.
    1. Van Dyke ME, Baumhofer NK, Slopen N, et al. . Pervasive discrimination and allostatic load in African American and white adults. Psychosom Med. 2020;82(3):316-323.
    1. Williams DR, Mohammed SA. Discrimination and racial disparities in health: evidence and needed research. J Behav Med. 2009;32(1):20-47.
    1. Wise LA, Palmer JR, Cozier YC, Hunt MO, Stewart EA, Rosenberg L. Perceived racial discrimination and risk of uterine leiomyomata. Epidemiology. 2007;18(6):747-757.
    1. Vines AI, Ta M, Esserman DA. The association between self-reported major life events and the presence of uterine fibroids. Womens Health Issues. 2010;20(4):294-298.
    1. Thompson VL. Perceived experiences of racism as stressful life events. Community Ment Health J. 1996;32(3):223-233.
    1. Paradies Y, Ben J, Denson N, et al. . Racism as a determinant of health: a systematic review and meta-analysis. Plos One. 2015;10(9):e0138511.
    1. Dhama K, Latheef SK, Dadar M, et al. . Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 2019;6:91.
    1. Matyakhina L, Freedman RJ, Bourdeau I, et al. . Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical Cushing syndrome: a clinical and molecular genetic investigation. J Clin Endocrinol Metab. 2005;90(6):3773-3779.
    1. Herrera AY, Nielsen SE, Mather M. Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiol Stress. 2016;3:96-104.
    1. Puder JJ, Freda PU, Goland RS, Ferin M, Wardlaw SL. Stimulatory effects of stress on gonadotropin secretion in estrogen-treated women. J Clin Endocrinol Metab. 2000;85(6):2184-2188.
    1. Simons RL, Lei MK, Beach SRH, et al. . Discrimination, segregation, and chronic inflammation: Testing the weathering explanation for the poor health of Black Americans. Dev Psychol. 2018;54(10):1993-2006.
    1. Romieu I, Dossus L, Barquera S, et al. ; IARC working group on Energy Balance and Obesity . Energy balance and obesity: what are the main drivers? Cancer Causes Control. 2017;28(3):247-258.
    1. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG. Vitamin D concentration, obesity, and risk of diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2(4):298-306.
    1. Sun K, Xie Y, Zhao N, Li Z. A case-control study of the relationship between visceral fat and development of uterine fibroids. Exp Ther Med. 2019;18(1):404-410.
    1. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851-863.
    1. Shozu M, Murakami K, Inoue M. Aromatase and leiomyoma of the uterus. Semin Reprod Med. 2004;22(1):51-60.
    1. Bulun SE, Imir G, Utsunomiya H, et al. . Aromatase in endometriosis and uterine leiomyomata. J Steroid Biochem Mol Biol. 2005;95(1-5):57-62.
    1. Bulun SE, Lin Z, Imir G, et al. . Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359-383.
    1. Hautanen A. Synthesis and regulation of sex hormone-binding globulin in obesity. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S64-S70.
    1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. Association of physical activity with development of uterine leiomyoma. Am J Epidemiol. 2007;165(2):157-163.
    1. Shikora SA, Niloff JM, Bistrian BR, Forse RA, Blackburn GL. Relationship between obesity and uterine leiomyomata. Nutrition. 1991;7(4):251-255.
    1. Yang Y, He Y, Zeng Q, Li S. Association of body size and body fat distribution with uterine fibroids among Chinese women. J Womens Health (Larchmt). 2014;23(7):619-626.
    1. Parazzini F, Negri E, La Vecchia C, Chatenoud L, Ricci E, Guarnerio P. Reproductive factors and risk of uterine fibroids. Epidemiology. 1996;7(4):440-442.
    1. Sommer EM, Balkwill A, Reeves G, Green J, Beral DV, Coffey K; Million Women Study Collaborators . Effects of obesity and hormone therapy on surgically-confirmed fibroids in postmenopausal women. Eur J Epidemiol. 2015;30(6):493-499.
    1. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(4):571-588.
    1. Baird DD, Dunson DB. Why is parity protective for uterine fibroids? Epidemiology. 2003;14(2):247-250.
    1. Laughlin SK, Herring AH, Savitz DA, et al. . Pregnancy-related fibroid reduction. Fertil Steril. 2010;94(6):2421-2423.
    1. Boynton-Jarrett R, Rich-Edwards J, Malspeis S, Missmer SA, Wright R. A prospective study of hypertension and risk of uterine leiomyomata. Am J Epidemiol. 2005;161(7):628-638.
    1. Radin RG, Rosenberg L, Palmer JR, Cozier YC, Kumanyika SK, Wise LA. Hypertension and risk of uterine leiomyomata in US black women. Hum Reprod. 2012;27(5):1504-1509.
    1. Takeda T, Sakata M, Isobe A, et al. . Relationship between metabolic syndrome and uterine leiomyomas: a case-control study. Gynecol Obstet Invest. 2008;66(1):14-17.
    1. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-281.
    1. Bikle D. Vitamin D: production, metabolism, and mechanisms of action. In: Feingold KR, Anawalt B, Boyce A, et al., eds. Endotext. , Inc; 2000.
    1. Nair R, Maseeh A. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother. 2012;3(2):118-126.
    1. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88(2):491S-499S.
    1. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 2013;5(1):51-108.
    1. Prentice A, Schoenmakers I, Jones KS, Jarjou LM, Goldberg GR. Vitamin D deficiency and its health consequences in Africa. Clin Rev Bone Miner Metab. 2009;7:94-106.
    1. Zhao G, Ford ES, Tsai J, Li C, Croft JB. Factors associated with vitamin D deficiency and inadequacy among women of childbearing age in the United States. ISRN Obstet Gynecol. 2012;2012:691486.
    1. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;1(8263):74-76.
    1. Pilz S, Zittermann A, Trummer C, et al. . Vitamin D testing and treatment: a narrative review of current evidence. Endocr Connect. 2019;8(2):R27-R43.
    1. Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73-78.
    1. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. ; Endocrine Society . Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-1930.
    1. Rosen CJ, Abrams SA, Aloia JF, et al. . IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab. 2012;97(4):1146-1152.
    1. Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc. 2010;85(8):752-7; quiz 757.
    1. Jukic AMZ, Upson K, Harmon QE, Baird DD. Increasing serum 25-hydroxyvitamin D is associated with reduced odds of long menstrual cycles in a cross-sectional study of African American women. Fertil Steril. 2016;106(1):172-179.e2.
    1. Nandi A, Sinha N, Ong E, Sonmez H, Poretsky L. Is there a role for vitamin D in human reproduction? Horm Mol Biol Clin Investig. 2016;25(1):15-28.
    1. Triunfo S, Lanzone A. Potential impact of maternal vitamin D status on obstetric well-being. J Endocrinol Invest. 2016;39(1):37-44.
    1. Bläuer M, Rovio PH, Ylikomi T, Heinonen PK. Vitamin D inhibits myometrial and leiomyoma cell proliferation in vitro. Fertil Steril. 2009;91(5):1919-1925.
    1. Halder SK, Osteen KG, Al-Hendy A. Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Hum Reprod. 2013;28(9):2407-2416.
    1. Halder SK, Osteen KG, Al-Hendy A. 1,25-dihydroxyvitamin d3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Reprod. 2013;89(6):150.
    1. Paffoni A, Somigliana E, Vigano’ P, et al. . Vitamin D status in women with uterine leiomyomas. J Clin Endocrinol Metab. 2013;98(8):E1374-E1378.
    1. Chiaffarino F, Parazzini F, La Vecchia C, Chatenoud L, Di Cintio E, Marsico S. Diet and uterine myomas. Obstet Gynecol. 1999;94(3):395-398.
    1. Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 2007;87(4):725-736.
    1. Wise LA, Radin RG, Palmer JR, Kumanyika SK, Boggs DA, Rosenberg L. Intake of fruit, vegetables, and carotenoids in relation to risk of uterine leiomyomata. Am J Clin Nutr. 2011;94(6):1620-1631.
    1. Wise LA, Radin RG, Kumanyika SK, Ruiz-Narváez EA, Palmer JR, Rosenberg L. Prospective study of dietary fat and risk of uterine leiomyomata. Am J Clin Nutr. 2014;99(5):1105-1116.
    1. Harris SS. Vitamin D and African Americans. J Nutr. 2006;136(4):1126-1129.
    1. Chwalisz K, Taylor H. Current and emerging medical treatments for uterine fibroids. Semin Reprod Med. 2017;35(6):510-522.
    1. Marshall LM, Spiegelman D, Goldman MB, et al. . A prospective study of reproductive factors and oral contraceptive use in relation to the risk of uterine leiomyomata. Fertil Steril. 1998;70(3):432-439.
    1. Marshall LM, Spiegelman D, Manson JE, et al. . Risk of uterine leiomyomata among premenopausal women in relation to body size and cigarette smoking. Epidemiology. 1998;9(5):511-517.
    1. Chiaffarino F, Parazzini F, La Vecchia C, Marsico S, Surace M, Ricci E. Use of oral contraceptives and uterine fibroids: results from a case-control study. Br J Obstet Gynaecol. 1999;106(8):857-860.
    1. Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep. 2017;69(1):57-70.
    1. Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr. 2017;57(17):3583-3600.
    1. Ali M, Al-Hendy A. Uterine fibroid therapy: the pharmacokinetic considerations. Expert Opin Drug Metab Toxicol. 2018;14(9):887-889.
    1. Gao M, Wang H. Frequent milk and soybean consumption are high risks for uterine leiomyoma: A prospective cohort study. Medicine (Baltimore). 2018;97(41):e12009.
    1. Orta OR, Terry KL, Missmer SA, Harris HR. Dairy and related nutrient intake and risk of uterine leiomyoma: a prospective cohort study. Hum Reprod. 2020;35(2):453-463.
    1. Croce S, Ribeiro A, Brulard C, et al. . Uterine smooth muscle tumor analysis by comparative genomic hybridization: a useful diagnostic tool in challenging lesions. Mod Pathol. 2015;28(7):1001-1010.
    1. Mehine M, Mäkinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril. 2014;102(3):621-629.
    1. Mäkinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2(12):966-969.
    1. Kämpjärvi K, Mäkinen N, Kilpivaara O, et al. . Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107(10):1761-1765.
    1. Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044-E1047.
    1. Markowski DN, Bartnitzke S, Löning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids–their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528-1536.
    1. Markowski DN, Huhle S, Nimzyk R, Stenman G, Löning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer. 2013;52(3):297-304.
    1. Sadeghi S, Khorrami M, Amin-Beidokhti M, et al. . The study of MED12 gene mutations in uterine leiomyomas from Iranian patients. Tumour Biol. 2016;37(2):1567-1571.
    1. Shahbazi S, Fatahi N, Amini-Moghaddam S. Somatic mutational analysis of MED12 exon 2 in uterine leiomyomas of Iranian women. Am J Cancer Res. 2015;5(8):2441-2446.
    1. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A. Novel MED12 gene somatic mutations in women from the Southern United States with symptomatic uterine fibroids. Mol Genet Genomics. 2015;290(2):505-511.
    1. Wang H, Ye J, Qian H, Zhou R, Jiang J, Ye L. High-resolution melting analysis of MED12 mutations in uterine leiomyomas in Chinese patients. Genet Test Mol Biomarkers. 2015;19(3):162-166.
    1. Wu B, Słabicki M, Sellner L, et al. . MED12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br J Haematol. 2017;179(3):421-429.
    1. Park MJ, Shen H, Kim NH, et al. . Mediator kinase disruption in MED12-mutant uterine fibroids from Hispanic women of south Texas. J Clin Endocrinol Metab. 2018;103(11):4283-4292.
    1. Kämpjärvi K, Park MJ, Mehine M, et al. . Mutations in Exon 1 highlight the role of MED12 in uterine leiomyomas. Hum Mutat. 2014;35(9):1136-1141.
    1. Hodge JC, Pearce KE, Clayton AC, Taran FA, Stewart EA. Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am J Obstet Gynecol. 2014;210(6):572.e1-572.e7.
    1. Nezhad MH, Drieschner N, Helms S, et al. . 6p21 rearrangements in uterine leiomyomas targeting HMGA1. Cancer Genet Cytogenet. 2010;203(2):247-252.
    1. Vanharanta S, Pollard PJ, Lehtonen HJ, et al. . Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum Mol Genet. 2006;15(1):97-103.
    1. Vanharanta S, Wortham NC, Laiho P, et al. . 7q deletion mapping and expression profiling in uterine fibroids. Oncogene. 2005;24(43):6545-6554.
    1. Mehine M, Kaasinen E, Heinonen HR, et al. . Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113(5):1315-1320.
    1. George JW, Fan H, Johnson B, et al. . Integrated epigenome, exome, and transcriptome analyses reveal molecular subtypes and homeotic transformation in uterine fibroids. Cell Rep. 2019;29(12):4069-4085.e6.
    1. He C, Nelson W, Li H, et al. . Frequency of MED12 mutation in relation to tumor and patient’s clinical characteristics: a meta-analysis. Reprod Sci. Published online February 10, 2021. doi:10.1007/s43032-021-00473-x
    1. Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol. 2015;50(5):393-426.
    1. Lim WK, Ong CK, Tan J, et al. . Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 2014;46(8):877-880.
    1. Yoshida M, Sekine S, Ogawa R, et al. . Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer. 2015;112(10):1703-1708.
    1. Piscuoglio S, Murray M, Fusco N, et al. . MED12 somatic mutations in fibroadenomas and phyllodes tumours of the breast. Histopathology. 2015;67(5):719-729.
    1. Nagasawa S, Maeda I, Fukuda T, et al. . MED12 exon 2 mutations in phyllodes tumors of the breast. Cancer Med. 2015;4(7):1117-1121.
    1. Mishima C, Kagara N, Tanei T, et al. . Mutational analysis of MED12 in fibroadenomas and phyllodes tumors of the breast by means of targeted next-generation sequencing. Breast Cancer Res Treat. 2015;152(2):305-312.
    1. Tan J, Ong CK, Lim WK, et al. . Genomic landscapes of breast fibroepithelial tumors. Nat Genet. 2015;47(11):1341-1345.
    1. Kämpjärvi K, Järvinen TM, Heikkinen T, et al. . Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget. 2015;6(3):1884-1888.
    1. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015;125(8):3280-3284.
    1. Croce S, Chibon F. MED12 and uterine smooth muscle oncogenesis: state of the art and perspectives. Eur J Cancer. 2015;51(12):1603-1610.
    1. Heinonen HR, Sarvilinna NS, Sjöberg J, et al. . MED12 mutation frequency in unselected sporadic uterine leiomyomas. Fertil Steril. 2014;102(4):1137-1142.
    1. Markowski DN, Helmke BM, Bartnitzke S, Löning T, Bullerdiek J. Uterine fibroids: do we deal with more than one disease? Int J Gynecol Pathol. 2014;33(6):568-572.
    1. Matsubara A, Sekine S, Yoshida M, et al. . Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657-661.
    1. Mäkinen N, Vahteristo P, Kämpjärvi K, Arola J, Bützow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21(11):1300-1303.
    1. Pérot G, Croce S, Ribeiro A, et al. . MED12 alterations in both human benign and malignant uterine soft tissue tumors. Plos One. 2012;7(6):e40015.
    1. Zhang Q, Ubago J, Li L, et al. . Molecular analyses of 6 different types of uterine smooth muscle tumors: emphasis in atypical leiomyoma. Cancer. 2014;120(20):3165-3177.
    1. Äyräväinen A, Pasanen A, Ahvenainen T, et al. . Systematic molecular and clinical analysis of uterine leiomyomas from fertile-aged women undergoing myomectomy. Hum Reprod. 2020;35(10):2237-2244.
    1. Nadine Markowski D, Tadayyon M, Bartnitzke S, Belge G, Maria Helmke B, Bullerdiek J. Cell cultures in uterine leiomyomas: rapid disappearance of cells carrying MED12 mutations. Genes Chromosomes Cancer. 2014;53(4):317-323.
    1. Bloch J, Holzmann C, Koczan D, Helmke BM, Bullerdiek J. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth. Oncotarget. 2017;8(21):34762-34772.
    1. Holdsworth-Carson SJ, Zaitseva M, Vollenhoven BJ, Rogers PA. Clonality of smooth muscle and fibroblast cell populations isolated from human fibroid and myometrial tissues. Mol Hum Reprod. 2014;20(3):250-259.
    1. Salo T, Sutinen M, Hoque Apu E, et al. . A novel human leiomyoma tissue derived matrix for cell culture studies. BMC Cancer. 2015;15:981.
    1. Wu X, Serna VA, Thomas J, Qiang W, Blumenfeld ML, Kurita T. Subtype-specific tumor-associated fibroblasts contribute to the pathogenesis of uterine leiomyoma. Cancer Res. 2017;77(24):6891-6901.
    1. Serna VA, Wu X, Qiang W, Thomas J, Blumenfeld ML, Kurita T. Cellular kinetics of MED12-mutant uterine leiomyoma growth and regression in vivo. Endocr Relat Cancer. 2018;25(7):747-759.
    1. Barbieri CE, Baca SC, Lawrence MS, et al. . Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685-689.
    1. Arai E, Sakamoto H, Ichikawa H, et al. . Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int J Cancer. 2014;135(6):1330-1342.
    1. Kämpjärvi K, Kim NH, Keskitalo S, et al. . Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate. 2016;76(1):22-31.
    1. Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol. 2009;29(3):650-661.
    1. Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 2009;23(4):439-451.
    1. Turunen M, Spaeth JM, Keskitalo S, et al. . Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep. 2014;7(3):654-660.
    1. Park MJ, Shen H, Spaeth JM, et al. . Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem. 2018;293(13):4870-4882.
    1. Li YC, Chao TC, Kim HJ, et al. . Structure and noncanonical Cdk8 activation mechanism within an argonaute-containing mediator kinase module. Sci Adv. 2021;7(3). doi:10.1126/sciadv.abd4484
    1. Spaeth JM, Kim NH, Boyer TG. Mediator and human disease. Semin Cell Dev Biol. 2011;22(7):776-787.
    1. Fant CB, Taatjes DJ. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription. 2019;10(2):76-90.
    1. Aranda-Orgilles B, Saldaña-Meyer R, Wang E, et al. . MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control hematopoiesis. Cell Stem Cell. 2016;19(6):784-799.
    1. Papadopoulou T, Kaymak A, Sayols S, Richly H. Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation. Cell Cycle. 2016;15(11):1479-1493.
    1. Huang S, Hölzel M, Knijnenburg T, et al. . MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell. 2012;151(5):937-950.
    1. Ding N, Zhou H, Esteve PO, et al. . Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell. 2008;31(3):347-359.
    1. El Andaloussi A, Al-Hendy A, Ismail N, Boyer TG, Halder SK. Introduction of somatic mutation in MED12 induces Wnt4/β-catenin and disrupts autophagy in human uterine myometrial cell. Reprod Sci. 2020;27(3):823-832.
    1. Liu S, Yin P, Kujawa SA, Coon JS 5th, Okeigwe I, Bulun SE. Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma. Oncogene. 2019;38(15):2722-2735.
    1. Asano R, Asai-Sato M, Matsukuma S, et al. . Expression of erythropoietin messenger ribonucleic acid in wild-type MED12 uterine leiomyomas under estrogenic influence: new insights into related growth disparities. Fertil Steril. 2019;111(1):178-185.
    1. Lynch CJ, Bernad R, Martínez-Val A, et al. . Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nat Cell Biol. 2020;22(10):1223-1238.
    1. Martinez-Val A, Lynch CJ, Calvo I, et al. . Dissection of two routes to naïve pluripotency using different kinase inhibitors. Nat Commun. 2021;12(1):1863.
    1. Adler AS, McCleland ML, Truong T, et al. . CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res. 2012;72(8):2129-2139.
    1. Fukasawa K, Kadota T, Horie T, et al. . CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene. 2021;40(15):2803-2815.
    1. Técher H, Koundrioukoff S, Nicolas A, Debatisse M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet. 2017;18(9):535-550.
    1. Bullerdiek J, Rommel B. Factors targeting MED12 to drive tumorigenesis? F1000Res. 2018;7:359.
    1. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377-388.
    1. Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol. 2020;17(4):232-250.
    1. Gallagher CS, Morton CC. Genetic association studies in uterine fibroids: risk alleles presage the path to personalized therapies. Semin Reprod Med. 2016;34(4):235-241.
    1. Quade BJ, Weremowicz S, Neskey DM, et al. . Fusion transcripts involving HMGA2 are not a common molecular mechanism in uterine leiomyomata with rearrangements in 12q15. Cancer Res. 2003;63(6):1351-1358.
    1. Gross KL, Morton CC. Genetics and the development of fibroids. Clin Obstet Gynecol. 2001;44(2):335-349.
    1. Gross KL, Neskey DM, Manchanda N, et al. . HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosomes Cancer. 2003;38(1):68-79.
    1. Mehine M, Kaasinen E, Heinonen HR, et al. . Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113(5):1315-1320.
    1. Stewart L, Glenn GM, Stratton P, et al. . Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch Dermatol. 2008;144(12):1584-1592.
    1. Badeloe S, Bladergroen RS, Jonkman MF, et al. . Hereditary multiple cutaneous leiomyoma resulting from novel mutations in the fumarate hydratase gene. J Dermatol Sci. 2008;51(2):139-143.
    1. Wheeler KC, Warr DJ, Warsetsky SI, Barmat LI. Novel fumarate hydratase mutation in a family with atypical uterine leiomyomas and hereditary leiomyomatosis and renal cell cancer. Fertil Steril. 2016;105(1):144-148.
    1. Popp B, Erber R, Kraus C, et al. . Targeted sequencing of FH-deficient uterine leiomyomas reveals biallelic inactivating somatic fumarase variants and allows characterization of missense variants. Mod Pathol. 2020;33(11):2341-2353.
    1. Berta DG, Kuisma H, Välimäki N, et al. . Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature. 2021;596(7872):398-403.
    1. Leistico JR, Saini P, Futtner CR, et al. . Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution. Cell Rep. 2021;34(13):108927.
    1. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(3692):67-69.
    1. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344-1355.
    1. Ono M, Maruyama T, Masuda H, et al. . Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104(47):18700-18705.
    1. Chang HL, Senaratne TN, Zhang L, et al. . Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17(2):158-167.
    1. Mas A, Cervelló I, Gil-Sanchis C, et al. . Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril. 2012;98(3):741-751.e6.
    1. Mas A, Nair S, Laknaur A, Simón C, Diamond MP, Al-Hendy A. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril. 2015;104(1):225-34.e3.
    1. Patterson AL, George JW, Chatterjee A, et al. . Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Hum Reprod. 2020;35(1):44-57.
    1. Ono M, Qiang W, Serna VA, et al. . Role of stem cells in human uterine leiomyoma growth. Plos One. 2012;7(5):e36935.
    1. Elkafas H, Qiwei Y, Al-Hendy A. Origin of uterine fibroids: conversion of myometrial stem cells to tumor-initiating cells. Semin Reprod Med. 2017;35(6):481-486.
    1. Afify SM, Seno M. Conversion of stem cells to cancer stem cells: undercurrent of cancer initiation. Cancers (Basel). 2019;11(3). doi:10.3390/cancers11030345
    1. Mas A, Stone L, O’Connor PM, et al. . Developmental exposure to endocrine disruptors expands murine myometrial stem cell compartment as a prerequisite to leiomyoma tumorigenesis. Stem Cells. 2017;35(3):666-678.
    1. Hu WY, Shi GB, Hu DP, Nelles JL, Prins GS. Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol. 2012;354(1-2):63-73.
    1. Cook JD, Davis BJ, Cai SL, Barrett JC, Conti CJ, Walker CL. Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc Natl Acad Sci U S A. 2005;102(24):8644-8649.
    1. Treviño LS, Dong J, Kaushal A, et al. . Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nat Commun. 2020;11(1):2316.
    1. Zhang J, Liu J, Ren L, et al. . PM2.5 induces male reproductive toxicity via mitochondrial dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway. Sci Total Environ. 2018;634:1435-1444.
    1. Hendryx M, Luo J, Chojenta C, Byles JE. Air pollution exposures from multiple point sources and risk of incident chronic obstructive pulmonary disease (COPD) and asthma. Environ Res. 2019;179(Pt A):108783.
    1. Herbert C, Kumar RK. Ambient air pollution and asthma. Eur Respir J. 2017;49(5). doi:10.1183/13993003.00230-2017
    1. Shukla A, Bunkar N, Kumar R, et al. . Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci Total Environ. 2019;656:760-777.
    1. Fuchs LFP, Veras MM, Saldiva PHN, et al. . Ambient levels of concentrated PM2.5 affects cell kinetics in adrenal glands: an experimental study in mice. Gynecol Endocrinol. 2017;33(6):490-495.
    1. VoPham T, Bertrand KA, Tamimi RM, Laden F, Hart JE. Ambient PM2.5 air pollution exposure and hepatocellular carcinoma incidence in the United States. Cancer Causes Control. 2018;29(6):563-572.
    1. Mahalingaiah S, Hart JE, Laden F, et al. . Air pollution and risk of uterine leiomyomata. Epidemiology. 2014;25(5):682-688.
    1. Lin CY, Wang CM, Chen ML, Hwang BF. The effects of exposure to air pollution on the development of uterine fibroids. Int J Hyg Environ Health. 2019;222(3):549-555.
    1. Chiaffarino F, Cipriani S, Ricci E, et al. . Alcohol consumption and risk of uterine myoma: a systematic review and meta analysis. Plos One. 2017;12(11):e0188355.
    1. Wise LA, Palmer JR, Harlow BL, et al. . Risk of uterine leiomyomata in relation to tobacco, alcohol and caffeine consumption in the Black Women’s Health Study. Hum Reprod. 2004;19(8):1746-1754.
    1. Templeman C, Marshall SF, Clarke CA, et al. . Risk factors for surgically removed fibroids in a large cohort of teachers. Fertil Steril. 2009;92(4):1436-1446.
    1. Nagata C, Nakamura K, Oba S, Hayashi M, Takeda N, Yasuda K. Association of intakes of fat, dietary fibre, soya isoflavones and alcohol with uterine fibroids in Japanese women. Br J Nutr. 2009;101(10):1427-1431.
    1. Reichman ME, Judd JT, Longcope C, et al. . Effects of alcohol consumption on plasma and urinary hormone concentrations in premenopausal women. J Natl Cancer Inst. 1993;85(9):722-727.
    1. Hankinson SE, Willett WC, Manson JE, et al. . Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst. 1995;87(17):1297-1302.
    1. Katsouyanni K, Boyle P, Trichopoulos D. Diet and urine estrogens among postmenopausal women. Oncology. 1991;48(6):490-494.
    1. Garaycoechea JI, Crossan GP, Langevin F, et al. . Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553(7687):171-177.
    1. Sadikot RT, Bedi B, Li J, Yeligar SM. Alcohol-induced mitochondrial DNA damage promotes injurious crosstalk between alveolar epithelial cells and alveolar macrophages. Alcohol. 2019;80:65-72.
    1. Kruman II, Henderson GI, Bergeson SE. DNA damage and neurotoxicity of chronic alcohol abuse. Exp Biol Med (Maywood). 2012;237(7):740-747.
    1. Zhao M, Howard EW, Guo Z, Parris AB, Yang X. p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells. Plos One. 2017;12(4):e0175121.
    1. Chiaffarino F, Ricci E, Cipriani S, Chiantera V, Parazzini F. Cigarette smoking and risk of uterine myoma: systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2016;197:63-71.
    1. Ross RK, Pike MC, Vessey MP, Bull D, Yeates D, Casagrande JT. Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br Med J (Clin Res Ed). 1986;293(6543):359-362.
    1. Lumbiganon P, Rugpao S, Phandhu-fung S, Laopaiboon M, Vudhikamraksa N, Werawatakul Y. Protective effect of depot-medroxyprogesterone acetate on surgically treated uterine leiomyomas: a multicentre case–control study. Br J Obstet Gynaecol. 1996;103(9):909-914.
    1. D’Aloisio AA, Baird DD, DeRoo LA, Sandler DP. Association of intrauterine and early-life exposures with diagnosis of uterine leiomyomata by 35 years of age in the Sister Study. Environ Health Perspect. 2010;118(3):375-381.
    1. Faerstein E, Szklo M, Rosenshein NB. Risk factors for uterine leiomyoma: a practice-based case-control study. II. Atherogenic risk factors and potential sources of uterine irritation. Am J Epidemiol. 2001;153(1):11-19.
    1. Wang Q, Trevino LS, Wong RL, et al. . Reprogramming of the epigenome by MLL1 links early-life environmental exposures to prostate cancer risk. Mol Endocrinol. 2016;30(8):856-871.
    1. Walker CL, Ho SM. Developmental reprogramming of cancer susceptibility. Nat Rev Cancer. 2012;12(7):479-486.
    1. McCampbell AS, Walker CL, Broaddus RR, Cook JD, Davies PJ. Developmental reprogramming of IGF signaling and susceptibility to endometrial hyperplasia in the rat. Lab Invest. 2008;88(6):615-626.
    1. Gore AC, Walker DM, Zama AM, Armenti AE, Uzumcu M. Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging. Mol Endocrinol. 2011;25(12):2157-2168.
    1. Sirohi D, Al Ramadhani R, Knibbs LD. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: a systematic literature review. Rev Environ Health. 2021;36(1):101-115.
    1. Liu Q. Effects of environmental endocrine-disrupting chemicals on female reproductive health. Adv Exp Med Biol. 2021;1300:205-229.
    1. Prusinski L, Al-Hendy A, Yang Q. Developmental exposure to endocrine disrupting chemicals alters the epigenome: identification of reprogrammed targets. Gynecol Obstet Res. 2016;3(1):1-6.
    1. Ono M, Yin P, Navarro A, et al. . Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053-17058.
    1. Hall JM, Greco CW. Perturbation of nuclear hormone receptors by endocrine disrupting chemicals: mechanisms and pathological consequences of exposure. Cells. 2019;9(1). doi:10.3390/cells9010013
    1. Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol. 2020;502:110665.
    1. Moore AB, Castro L, Yu L, et al. . Stimulatory and inhibitory effects of genistein on human uterine leiomyoma cell proliferation are influenced by the concentration. Hum Reprod. 2007;22(10):2623-2631.
    1. Baird DD, Newbold R. Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol. 2005;20(1):81-84.
    1. Mahalingaiah S, Hart JE, Wise LA, Terry KL, Boynton-Jarrett R, Missmer SA. Prenatal diethylstilbestrol exposure and risk of uterine leiomyomata in the Nurses’ Health Study II. Am J Epidemiol. 2014;179(2):186-191.
    1. Zota AR, Geller RJ, Calafat AM, Marfori CQ, Baccarelli AA, Moawad GN. Phthalates exposure and uterine fibroid burden among women undergoing surgical treatment for fibroids: a preliminary study. Fertil Steril. 2019;111(1):112-121.
    1. Zota AR, Geller RJ, VanNoy BN, et al. . Phthalate exposures and MicroRNA expression in uterine fibroids: The FORGE Study. Epigenet Insights. 2020;13:2516865720904057.
    1. Lee J, Jeong Y, Mok S, et al. . Associations of exposure to phthalates and environmental phenols with gynecological disorders. Reprod Toxicol. 2020;95:19-28.
    1. Hassan MH, Eyzaguirre E, Arafa HM, Hamada FM, Salama SA, Al-Hendy A. Memy I: a novel murine model for uterine leiomyoma using adenovirus-enhanced human fibroid explants in severe combined immune deficiency mice. Am J Obstet Gynecol. 2008;199(2):156.e1-156.e8.
    1. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433-2442.
    1. Croy A, Fritsch M, Schmidt N, et al. . Application of a patient derived xenograft model for predicative study of uterine fibroid disease. Plos One. 2015;10(11). doi:10.1371/journal.pone.0142429
    1. Suo G, Sadarangani A, Lamarca B, Cowan B, Wang JY. Murine xenograft model for human uterine fibroids: an in vivo imaging approach. Reprod Sci. 2009;16(9):827-842.
    1. Mas A, Nair S, Laknaur A, Simón C, Diamond MP, Al-Hendy A. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril. 2015;104(1):225-34.e3.
    1. Prizant H, Sen A, Light A, et al. . Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol. 2013;27(9):1403-1414.
    1. Varghese BV, Koohestani F, McWilliams M, et al. . Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc Natl Acad Sci U S A. 2013;110(6):2187-2192.
    1. Tanwar PS, Lee HJ, Zhang L, et al. . Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81(3):545-552.
    1. Field KJ, Griffith JW, Lang CM. Spontaneous reproductive tract leiomyomas in aged guinea-pigs. J Comp Pathol. 1989;101(3):287-294.
    1. Walker CL, Hunter D, Everitt JI. Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosomes Cancer. 2003;38(4):349-356.
    1. Everitt JI, Wolf DC, Howe SR, Goldsworthy TL, Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995;146(6):1556-1567.
    1. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004;82 Suppl 3:1182-1187.
    1. Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: II. Effects of DES on development. Am J Anat. 1989;186(1):21-42.
    1. Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog. 2007;46(9):783-796.
    1. Cook JD, Davis BJ, Goewey JA, Berry TD, Walker CL. Identification of a sensitive period for developmental programming that increases risk for uterine leiomyoma in Eker rats. Reprod Sci. 2007;14(2):121-136.
    1. Branham WS, Sheehan DM. Ovarian and adrenal contributions to postnatal growth and differentiation of the rat uterus. Biol Reprod. 1995;53(4):863-872.
    1. Yang Q, Diamond MP, Al-Hendy A. Early life adverse environmental exposures increase the risk of uterine fibroid development: role of epigenetic regulation. Front Pharmacol. 2016;7:40.
    1. Greathouse KL, Bredfeldt T, Everitt JI, et al. . Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res. 2012;10(4):546-557.
    1. Treviño LS, Wang Q, Walker CL. Phosphorylation of epigenetic “readers, writers and erasers”: Implications for developmental reprogramming and the epigenetic basis for health and disease. Prog Biophys Mol Biol. 2015;118(1-2):8-13.
    1. Wong RL, Wang Q, Treviño LS, et al. . Identification of secretaglobin Scgb2a1 as a target for developmental reprogramming by BPA in the rat prostate. Epigenetics. 2015;10(2):127-134.
    1. Li S, Washburn KA, Moore R, et al. . Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 1997;57(19):4356-4359.
    1. Yin Y, Lin C, Veith GM, Chen H, Dhandha M, Ma L. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells. Dis Model Mech. 2012;5(6):870-880.
    1. Yang Q, Trevino LS, Mas A, et al. . Early life developmental exposure to endocrine disrupting chemicals increases the risk of adult onset of uterine fibroids by permanently reprograming the epigenome of myometrial stem cells towards a pro-fibroid landscape. Fertil Steril. 2016; 106(3):suppl e2.
    1. Elkafas H, Badary OA, Elmorsy E, Kamel R, Al-Hendy A, Yang Q. Targeting activated pro-inflammatory pathway in primed myometrial stem cells with vitamin D3 and Paricalcitol. Fertil Steril. 2019;112(3):e100-e101.
    1. Yang Q, Treviño L, Mas A, Diamond M, Walker C, Al-Hendy A. Identification of novel epigenetic reprogrammed genes in myometrial stem cells developmentally exposed to endocrine disrupting chemicals. Reprod Sci. 2017;24 suppl 1:103A.
    1. Mohamed Ali HE, Ismail N, Al-Hendy A, Yang Q.. Inhibition of MLL1 and HDAC activity reverses reprogrammed inflammatory components induced by developmental exposure to an endocrine disruptor (diethylstibesterol) in myometrial stem cells. Reprod Sci. 2020;27 suppl 1:229A. doi:10.1007/s43032-020-00176-9
    1. Yang Q, , Al-HendyA. Integrated multi-omics analyses of high-risk myometrial progenitor/stem cells: implication for uterine fibroid pathogenesis. Reprod Sci. 2021;28 suppl 1:37A.
    1. Levy G, Malik M, Britten J, Gilden M, Segars J, Catherino WH. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures. Fertil Steril. 2014;102(1):272-281.e2.
    1. Malik M, Britten J, Segars J, Catherino WH. Leiomyoma cells in 3-dimensional cultures demonstrate an attenuated response to fasudil, a rho-kinase inhibitor, when compared to 2-dimensional cultures. Reprod Sci. 2014;21(9):1126-1138.
    1. Xie J, Xu X, Yin P, et al. . Application of ex-vivo spheroid model system for the analysis of senescence and senolytic phenotypes in uterine leiomyoma. Lab Invest. 2018;98(12):1575-1587.
    1. Thompson WE, Al-Hendy A, Yang Q, et al. . OR20-04 modeling uterine disorders utilizing adult uterine stem cells. J Endocr Soc. 2020;4(Supplement_1). doi:10.1210/jendso/bvaa046.668
    1. Ishikawa H, Reierstad S, Demura M, et al. . High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94(5):1752-1756.
    1. Nierth-Simpson EN, Martin MM, Chiang TC, et al. . Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology. 2009;150(5):2436-2445.
    1. Borahay MA, Asoglu MR, Mas A, Adam S, Kilic GS, Al-Hendy A. Estrogen receptors and signaling in fibroids: role in pathobiology and therapeutic implications. Reprod Sci. 2017;24(9):1235-1244.
    1. Bulun SE, Moravek MB, Yin P, et al. . Uterine leiomyoma stem cells: linking progesterone to growth. Semin Reprod Med. 2015;33(5):357-365.
    1. Hodges LC, Houston KD, Hunter DS, et al. . Transdominant suppression of estrogen receptor signaling by progesterone receptor ligands in uterine leiomyoma cells. Mol Cell Endocrinol. 2002;196(1-2):11-20.
    1. Cermik D, Arici A, Taylor HS. Coordinated regulation of HOX gene expression in myometrium and uterine leiomyoma. Fertil Steril. 2002;78(5):979-984.
    1. Kawaguchi K, Fujii S, Konishi I, et al. . Immunohistochemical analysis of oestrogen receptors, progesterone receptors and Ki-67 in leiomyoma and myometrium during the menstrual cycle and pregnancy. Virchows Arch A Pathol Anat Histopathol. 1991;419(4):309-315.
    1. Matsuo H, Kurachi O, Shimomura Y, Samoto T, Maruo T. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology. 1999;57 Suppl 2:49-58.
    1. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433-2442.
    1. Ali M, Al-Hendy A. Selective progesterone receptor modulators for fertility preservation in women with symptomatic uterine fibroids. Biol Reprod. 2017;97(3):337-352.
    1. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004;82 Suppl 3:1182-1187.
    1. Rogers R, Norian J, Malik M, et al. . Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198(4):474.e1-474.11.
    1. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: from tension to function. Front Physiol. 2018;9:824.
    1. Ko YA, Jamaluddin MFB, Adebayo M, et al. . Extracellular matrix (ECM) activates β-catenin signaling in uterine fibroids. Reproduction. 2018;155(1):61-71.
    1. Flake GP, Moore AB, Sutton D, et al. . The natural history of uterine leiomyomas: light and electron microscopic studies of fibroid phases, interstitial ischemia, inanosis, and reclamation. Obstet Gynecol Int. 2013;2013:528376.
    1. Flake GP, Moore AB, Sutton D, et al. . The natural history of uterine leiomyomas: light and electron microscopic studies of fibroid phases, interstitial ischemia, inanosis, and reclamation. Obstet Gynecol Int. 2013;2013:528376.
    1. Flake GP, Moore AB, Sutton D, et al. . The life cycle of the uterine fibroid myocyte. Curr Obstet Gynecol Rep. 2018;7(2):97-105.
    1. Cho S, Vashisth M, Abbas A, et al. . Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev Cell. 2019;49(6):920-935.e5.
    1. Gilbert HTJ, Mallikarjun V, Dobre O, et al. . Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading. Nat Commun. 2019;10(1):4149.
    1. Leavy M, Trottmann M, Liedl B, et al. . Effects of elevated β-estradiol levels on the functional morphology of the testis—new insights. Sci Rep. 2017;7:39931.
    1. Malik M, Segars J, Catherino WH. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth. Matrix Biol. 2012;31(7-8):389-397.
    1. Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab. 1994;79(3):900-906.
    1. Islam MS, Ciavattini A, Petraglia F, Castellucci M, Ciarmela P. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update. 2018;24(1):59-85.
    1. Ciebiera M, Ali M, Zgliczynska M, Skrzypczak M, Al-Hendy A. Vitamins and uterine fibroids: current data on pathophysiology and possible clinical relevance. Int J Mol Sci. 2020;21(15). doi:10.3390/ijms21155528
    1. Jayes FL, Liu B, Moutos FT, Kuchibhatla M, Guilak F, Leppert PC. Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum. Am J Obstet Gynecol. 2016;215(5):596.e1-596.e8.
    1. Suzuki A, Kariya M, Matsumura N, et al. . Expression of p53 and p21(WAF-1), apoptosis, and proliferation of smooth muscle cells in normal myometrium during the menstrual cycle: implication of DNA damage and repair for leiomyoma development. Med Mol Morphol. 2012;45(4):214-221.
    1. Karowicz-Bilinska A, Plodzidym M, Krol J, Lewinska A, Bartosz G. Changes of markers of oxidative stress during menstrual cycle. Redox Rep. 2008;13(5):237-240.
    1. Atashgaran V, Wrin J, Barry SC, Dasari P, Ingman WV. Dissecting the biology of menstrual cycle-associated breast cancer risk. Front Oncol. 2016;6:267.
    1. Yang Q, Laknaur A, Elam L, et al. . Identification of polycomb group protein EZH2-mediated DNA mismatch repair gene MSH2 in human uterine fibroids. Reprod Sci. 2016;23(10):1314-1325.
    1. Yang Q, Nair S, Laknaur A, Ismail N, Diamond MP, Al-Hendy A. The polycomb group protein EZH2 impairs DNA damage repair gene expression in human uterine fibroids. Biol Reprod. 2016;94(3):69.
    1. Prusinski Fernung LE, Al-Hendy A, Yang Q. A preliminary study: human fibroid Stro-1+/CD44+ stem cells isolated from uterine fibroids demonstrate decreased DNA repair and genomic integrity compared to adjacent myometrial Stro-1+/CD44+ Cells. Reprod Sci. 2019;26(5):619-638.
    1. Prusinski Fernung LE, Yang Q, Sakamuro D, Kumari A, Mas A, Al-Hendy A. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod. 2018;99(4):735-748.
    1. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263.
    1. Thakur R, Mishra DP. Pharmacological modulation of beta-catenin and its applications in cancer therapy. J Cell Mol Med. 2013;17(4):449-456.
    1. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461-1473.
    1. Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/β-catenin signaling pathway. Endocrinology. 2017;158(3):592-603.
    1. Ko YA, Jamaluddin MFB, Adebayo M, et al. . Extracellular matrix (ECM) activates β-catenin signaling in uterine fibroids. Reproduction. 2018;155(1):61-71.
    1. Zaitseva M, Holdsworth-Carson SJ, Waldrip L, et al. . Aberrant expression and regulation of NR2F2 and CTNNB1 in uterine fibroids. Reproduction. 2013;146(2):91-102.
    1. Tai CT, Lin WC, Chang WC, Chiu TH, Chen GT. Classical cadherin and catenin expression in normal myometrial tissues and uterine leiomyomas. Mol Reprod Dev. 2003;64(2):172-178.
    1. Ulin M, Ali M, Chaudhry ZT, Al-Hendy A, Yang Q. Uterine fibroids in menopause and perimenopause. Menopause. 2020;27(2):238-242.
    1. Al-Hendy A, Diamond MP, Boyer TG, Halder SK. Vitamin D3 inhibits Wnt/β-catenin and mTOR signaling pathways in human uterine fibroid cells. J Clin Endocrinol Metab. 2016;101(4):1542-1551.
    1. Corachán A, Ferrero H, Aguilar A, et al. . Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/β-catenin pathway. Fertil Steril. 2019;111(2):397-407.
    1. Dieffenbach PB, Haeger CM, Coronata AMF, et al. . Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol. 2017;313(3):L628-L647.
    1. Mulder CL, Eijkenboom LL, Beerendonk CCM, Braat DDM, Peek R. Enhancing the safety of ovarian cortex autotransplantation: cancer cells are purged completely from human ovarian tissue fragments by pharmacological inhibition of YAP/TAZ oncoproteins. Hum Reprod. 2019;34(3):506-518.
    1. Park JH, Shin JE, Park HW. The role of Hippo pathway in cancer stem cell biology. Mol Cells. 2018;41(2):83-92.
    1. Purdy MP, Ducharme M, Haak AJ, et al. . YAP/TAZ are activated by mechanical and hormonal stimuli in myometrium and exhibit increased baseline activation in uterine fibroids. Reprod Sci. 2020;27(4):1074-1085.
    1. Islam MS, Afrin S, Singh B, et al. . Extracellular matrix and Hippo signaling as therapeutic targets of antifibrotic compounds for uterine fibroids. Clin Transl Med. 2021;11(7):e475.
    1. Norian JM, Owen CM, Taboas J, et al. . Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol. 2012;31(1):57-65.
    1. Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet. 2019;20(2):109-127.
    1. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7). doi:10.3390/ijms18071414
    1. Yang Q, Mas A, Diamond MP, Al-Hendy A. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23(2):163-175.
    1. Yang Q, Al-Hendy A. Non-coding RNAs: an important regulatory mechanism in pathogenesis of uterine fibroids. Fertil Steril. 2018;109(5):802-803.
    1. Navarro A, Yin P, Ono M, et al. . 5-Hydroxymethylcytosine promotes proliferation of human uterine leiomyoma: a biological link to a new epigenetic modification in benign tumors. J Clin Endocrinol Metab. 2014;99(11):E2437-E2445.
    1. Ciebiera M, Wlodarczyk M, Zgliczynski S, Lozinski T, Walczak K, Czekierdowski A. The role of miRNA and related pathways in pathophysiology of uterine fibroids-from bench to bedside. Int J Mol Sci. 2020;21(8). doi:10.3390/ijms21083016
    1. Wang T, Zhang X, Obijuru L, et al. . A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336-347.
    1. Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging roles of long non-coding RNAs in uterine leiomyoma pathogenesis: a review. Reprod Sci. 2021. doi:10.1007/s43032-021-00571-w
    1. Zhou W, Wang G, Li B, Qu J, Zhang Y. LncRNA APTR promotes uterine leiomyoma cell proliferation by targeting erα to activate the Wnt/β-catenin pathway. Front Oncol. 2021;11:536346.
    1. Chuang TD, Rehan A, Khorram O. Functional role of the long noncoding RNA X-inactive specific transcript in leiomyoma pathogenesis. Fertil Steril. 2021;115(1):238-247.
    1. Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015;21:242-256.
    1. Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. Inflammation in reproductive disorders. Reprod Sci. 2009;16(2):216-229.
    1. AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod. 2021;105(1):7-31.
    1. Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients. 2018;10(11). doi:10.3390/nu10111656
    1. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med. 2019;18(3):121-126.
    1. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-867.
    1. Laughlin SK, Schroeder JC, Baird DD. New directions in the epidemiology of uterine fibroids. Semin Reprod Med. 2010;28(3):204-217.
    1. Moore KR, Cole SR, Dittmer DP, Schoenbach VJ, Smith JS, Baird DD. Self-reported reproductive tract infections and ultrasound diagnosed uterine fibroids in African-American Women. J Womens Health (Larchmt). 2015;24(6):489-495.
    1. Pietrowski D, Thewes R, Sator M, Denschlag D, Keck C, Tempfer C. Uterine leiomyoma is associated with a polymorphism in the interleukin 1-beta gene. Am J Reprod Immunol. 2009;62(2):112-117.
    1. Prokofiev V, Konenkov V, Koroleva E, Shevchenko A, Dergacheva T, Novikov A. The structure of the cytokine gene network in uterine fibroids. Presented at: 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB); 2020. doi:10.1109/CSGB51356.2020.9214588
    1. Sosna O, Kolesár L, Slavčev A, et al. . Th1/Th2 cytokine gene polymorphisms in patients with uterine fibroid. Folia Biol (Praha). 2010;56(5):206-210.
    1. Hsieh YY, Chang CC, Tsai FJ, Lin CC, Yeh LS, Tsai CH. Tumor necrosis factor-alpha-308 promoter and p53 codon 72 gene polymorphisms in women with leiomyomas. Fertil Steril. 2004;82 Suppl 3:1177-1181.
    1. Litovkin KV, Domenyuk VP, Bubnov VV, Zaporozhan VN. Interleukin-6 -174G/C polymorphism in breast cancer and uterine leiomyoma patients: a population-based case control study. Exp Oncol. 2007;29(4):295-298.
    1. Hsieh YY, Chang CC, Tsai CH, Lin CC, Tsai FJ. Interleukin (IL)-12 receptor beta1 codon 378 G homozygote and allele, but not IL-1 (beta-511 promoter, 3953 exon 5, receptor antagonist), IL-2 114, IL-4-590 intron 3, IL-8 3’-UTR 2767, and IL-18 105, are associated with higher susceptibility to leiomyoma. Fertil Steril. 2007;87(4):886-895.
    1. Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28(3):180-203.
    1. Wegienka G. Are uterine leiomyoma a consequence of a chronically inflammatory immune system? Med Hypotheses. 2012;79(2):226-231.
    1. Protic O, Toti P, Islam MS, et al. . Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res. 2016;364(2):415-427.
    1. Liu ZQ, Lu MY, Sun RL, Yin ZN, Liu B, Wu YZ. Characteristics of peripheral immune function in reproductive females with uterine leiomyoma. J Oncol. 2019;2019:5935640.
    1. Elkafas H, Bariani MV, Ali M, et al. . Pro-inflammatory and immunosuppressive environment contributes to the development and progression of uterine fibroids. Fertil Steril. 2020;114(3). doi:10.1016/j.fertnstert.2020.08.264
    1. Shanes ED, Friedman LA, Mills AM. PD-L1 expression and tumor-infiltrating lymphocytes in uterine smooth muscle tumors: implications for immunotherapy. Am J Surg Pathol. 2019;43(6):792-801.
    1. Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update. 2005;11(4):411-423.
    1. Yang Q, Trevino LS, El Andaloussi A, Ismail N, Walker C, Al-Hendy A.. Developmental Reprogramming of Pro-Inflammatory Pathway Mediates Adult Onset of Uterine Fibroids. Fertil Steril. 2018; 110: 4 suppl e377-378.
    1. Pike JW, Christakos S. Biology and mechanisms of action of the vitamin D hormone. Endocrinol Metab Clin North Am. 2017;46(4):815-843.
    1. Young MRI, Xiong Y. Influence of vitamin D on cancer risk and treatment: Why the variability? Trends Cancer Res. 2018;13:43-53.
    1. Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96(4):E754-E762.
    1. Sharan C, Halder SK, Thota C, Jaleel T, Nair S, Al-Hendy A. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol-O-methyltransferase. Fertil Steril. 2011;95(1):247-253.
    1. Ciebiera M, Wlodarczyk M, Wrzosek M, et al. . Role of transforming growth factor beta in uterine fibroid biology. Int J Mol Sci. 2017;18(11). doi:10.3390/ijms18112435
    1. Halder SK, Sharan C, Al-Hendy A. 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012;86(4):116.
    1. Al-Hendy A, Diamond MP, El-Sohemy A, Halder SK. 1,25-dihydroxyvitamin D3 regulates expression of sex steroid receptors in human uterine fibroid cells. J Clin Endocrinol Metab. 2015;100(4):E572-E582.
    1. Elhusseini H, Elkafas H, Abdelaziz M, et al. . Diet-induced vitamin D deficiency triggers inflammation and DNA damage profile in murine myometrium. Int J Womens Health. 2018;10:503-514.
    1. Ciebiera M, Wlodarczyk M, Zgliczynska M, et al. . The role of tumor necrosis factor alpha in the biology of uterine fibroids and the related symptoms. Int J Mol Sci. 2018;19(12). doi:10.3390/ijms19123869
    1. Ali M, Shahin SM, Sabri NA, Al-Hendy A, Yang Q. Hypovitaminosis D exacerbates the DNA damage load in human uterine fibroids, which is ameliorated by vitamin D3 treatment. Acta Pharmacol Sin. 2019;40(7):957-970.
    1. Corachán A, Ferrero H, Escrig J, et al. . Long-term vitamin D treatment decreases human uterine leiomyoma size in a xenograft animal model. Fertil Steril. 2020;113(1):205-216.e4.
    1. Ciavattini A, Delli Carpini G, Serri M, et al. . Hypovitaminosis D and “small burden” uterine fibroids: Opportunity for a vitamin D supplementation. Medicine (Baltimore). 2016;95(52):e5698.
    1. Arjeh S, Darsareh F, Asl ZA, Azizi Kutenaei M. Effect of oral consumption of vitamin D on uterine fibroids: a randomized clinical trial. Complement Ther Clin Pract. 2020;39:101159.
    1. Ciebiera M, Ali M, Prince L, Zgliczyński S, Jakiel G, Al-Hendy A. The significance of measuring vitamin D serum levels in women with uterine fibroids. Reprod Sci. 2021;28(8):2098-2109.
    1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
    1. Lv LX, Fang DQ, Shi D, et al. . Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol. 2016;18(7):2272-2286.
    1. Wang W, Li Y, Wu Q, Pan X, He X, Ma X. High-throughput sequencing study of the effect of transabdominal hysterectomy on intestinal flora in patients with uterine fibroids. BMC Microbiol. 2020;20(1):98.
    1. Qin J, Li R, Raes J, et al. ; MetaHIT Consortium . A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.
    1. Claesson MJ, Cusack S, O’Sullivan O, et al. . Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4586-4591.
    1. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10(4):324-335.
    1. Rajagopala SV, Vashee S, Oldfield LM, et al. . The human microbiome and cancer. Cancer Prev Res (Phila). 2017;10(4):226-234.
    1. Flores R, Shi J, Fuhrman B, et al. . Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.
    1. Breban M. Gut microbiota and inflammatory joint diseases. Joint Bone Spine. 2016;83(6):645-649.
    1. Fuhrman BJ, Feigelson HS, Flores R, et al. . Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 2014;99(12):4632-4640.
    1. Verstraelen H, Vilchez-Vargas R, Desimpel F, et al. . Characterisation of the human uterine microbiome in nonpregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. Peerj. 2016;4:e1602.
    1. Moreno I, Franasiak JM. Endometrial microbiota-new player in town. Fertil Steril. 2017;108(1):32-39.
    1. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29(1):51-58.
    1. Green KA, Zarek SM, Catherino WH. Gynecologic health and disease in relation to the microbiome of the female reproductive tract. Fertil Steril. 2015;104(6):1351-1357.
    1. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: maternal health and the placental microbiome. Placenta. 2017;54:30-37.
    1. Abdeljabar El Andaloussi JG, Anukrit S, Al-Hendy A, Ismail N. Impact of uterine microbiota on the prevalence of uterine fibroids in women of colors. Reprod Sci. 2019;26, Supplement 1:202A.
    1. Nikitovic D, Jayes FL, Liu B, et al. . Evidence of biomechanical and collagen heterogeneity in uterine fibroids. Plos One. 2019;14(4). doi:10.1371/journal.pone.0215646
    1. Berta DG, Kuisma H, Välimäki N, et al. . Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature. 2021;596(7872):398-403.
    1. Omar M, Laknaur A, Al-Hendy A, Yang Q. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health. 2019;19(1):92.
    1. Paul EN, Burns GW, Carpenter TJ, Grey JA, Fazleabas AT, Teixeira JM. Transcriptome analyses of myometrium from fibroid patients reveals phenotypic differences compared to non-diseased myometrium. Int J Mol Sci. 2021;22(7). doi:10.3390/ijms22073618
    1. Ali M, Shahin SM, Sabri NA, Al-Hendy A, Yang Q. 1,25 Dihydroxyvitamin D3 enhances the antifibroid effects of ulipristal acetate in human uterine fibroids. Reprod Sci. 2019;26(6):812-828.
    1. Elkafas H, Ali M, Elmorsy E, et al. . Vitamin D3 ameliorates DNA damage caused by developmental exposure to endocrine disruptors in the uterine myometrial stem cells of eker rats. Cells. 2020;9(6). doi:10.3390/cells9061459
    1. Pilgrim J, Arismendi J, DeAngelis A, et al. . Characterization of the role of activator protein 1 signaling pathway on extracellular matrix deposition in uterine leiomyoma. F&S Sci. 2020;1(1):78-89.
    1. Shalaby S, Khater M, Laknaur A, Arbab A, Al-Hendy A. molecular bio-imaging probe for noninvasive differentiation between human leiomyoma versus leiomyosarcoma. Reprod Sci. 2020;27(2):644-654.
    1. Bharambe BM, Deshpande KA, Surase SG, Ajmera AP. Malignant transformation of leiomyoma of uterus to leiomyosarcoma with metastasis to ovary. J Obstet Gynaecol India. 2014;64(1):68-69.
    1. Giuntoli RL 2nd, Metzinger DS, DiMarco CS, et al. . Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol. 2003;89(3):460-469.
    1. Dinh TA, Oliva EA, Fuller AF Jr, Lee H, Goodman A. The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990-1999) at the Massachusetts General Hospital. Gynecol Oncol. 2004;92(2):648-652.
    1. Tsikouras P, Liberis V, Galazios G, et al. . Uterine sarcoma: a report of 57 cases over a 16-year period analysis. Eur J Gynaecol Oncol. 2008;29(2):129-134.
    1. Kho KA, Lin K, Hechanova M, Richardson DL. Risk of occult uterine sarcoma in women undergoing hysterectomy for benign indications. Obstet Gynecol. 2016;127(3):468-473.
    1. Hosh M, Antar S, Nazzal A, Warda M, Gibreel A, Refky B. Uterine sarcoma: analysis of 13 089 cases based on surveillance, epidemiology, and end results database. Int J Gynecol Cancer. 2016;26(6):1098-1104.
    1. Brooks SE, Zhan M, Cote T, Baquet CR. Surveillance, epidemiology, and end results analysis of 2677 cases of uterine sarcoma 1989-1999. Gynecol Oncol. 2004;93(1):204-208.
    1. Sun S, Bonaffini PA, Nougaret S, et al. . How to differentiate uterine leiomyosarcoma from leiomyoma with imaging. Diagn Interv Imaging. 2019;100(10):619-634.
    1. Al Ansari AA, Al Hail FA, Abboud E. Malignant transformation of uterine leiomyoma. Qatar Med J. 2012;2012(2):71-74.
    1. Bertsch E, Qiang W, Zhang Q, et al. . MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144-1153.
    1. Ravegnini G, Mariño-Enriquez A, Slater J, et al. . MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743-749.
    1. Christacos NC, Quade BJ, Dal Cin P, Morton CC. Uterine leiomyomata with deletions of Ip represent a distinct cytogenetic subgroup associated with unusual histologic features. Genes Chromosomes Cancer. 2006;45(3):304-312.
    1. Hodge JC, Morton CC. Genetic heterogeneity among uterine leiomyomata: insights into malignant progression. Hum Mol Genet. 2007;16 Spec No 1:R7-13.
    1. Moyo MB, Parker JB, Chakravarti D. Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat Commun. 2020;11(1):1019.
    1. Omar MK, Yang Q, Laknaur A, Al-Hendy A. Myometrial progesterone hyper-responsivness is associated with increased risk for the development of human uterine fibroids. Fertil Steril. 2016;106(3). doi:10.1016/j.fertnstert.2016.07.280
    1. Huang H, Weng H, Chen J. The Biogenesis and Precise Control of RNA m6A Methylation. Trends Genet. 2020;36(1):44-52.
    1. Nachtergaele S, He C. Chemical modifications in the life of an mRNA transcript. Annu Rev Genet. 2018;52:349-372.
    1. Yang Q, Bariani M, He C, Boyer T, Al-Hendy A. Aberrant expression of N6-Methyladenosine regulators in uterine fibroids from the Eker rat model (Abstract P-314). American Society for Reproductive Medicine, Baltimore, MD; 2021.
    1. Yang Q, Shanmugasundaram K, He C, Al-Hendy A, Boyer T. Pathological reprogramming of epitranscriptomics via METTL3 in uterine fibroids (Abstract W-046). Society for Reproductive Investigation’s 68th Annual Scientific Meeting; 2021, Boston, MA.
    1. Zhang X, Yang Q. A Pyroptosis-Related Gene Panel in Prognosis Prediction and Immune Microenvironment of Human Endometrial Cancer. Front Cell Dev Biol. 2021;9:705828.
    1. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 2010;93(6):2027-2034.
    1. Yang Q, Diamond MP, Al-Hendy A. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. J Clin Epigenet. 2016;2(1):13.
    1. Li Z, Gao X, Peng X, et al. . Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy. Sci Adv. 2020;6(9):eaay4211.
    1. Mars RAT, Yang Y, Ward T, et al. . Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell. 2020;183(4):1137-1140.
    1. Mas A, Alonso R, Garrido-Gómez T, et al. . The differential diagnoses of uterine leiomyomas and leiomyosarcomas using DNA and RNA sequencing. Am J Obstet Gynecol. 2019;221(4):320.e1-320.e23.
    1. Croce S, Ducoulombier A, Ribeiro A, et al. . Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions: a comprehensive array-genomic hybridization analysis of 77 tumors. Mod Pathol. 2018;31(5):816-828.
    1. Croce S, Chibon F. Molecular prognostication of uterine smooth muscle neoplasms: from CGH array to CINSARC signature and beyond. Genes Chromosomes Cancer. 2021;60(3):129-137.
    1. Mas A, Simón C. Molecular differential diagnosis of uterine leiomyomas and leiomyosarcomas. Biol Reprod. 2019;101(6):1115-1123.
    1. Garcia N, Ulin M, Al-Hendy A, Yang Q. The role of hedgehog pathway in female cancers. J Cancer Sci Clin Ther. 2020;4(4):487-498.
    1. Garcia N, Bozzini N, Baiocchi G, et al. . May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors? Hum Pathol. 2016;50:43-50.
    1. Garcia N, Al-Hendy A, Baracat EC, Carvalho KC, Yang Q. Targeting hedgehog pathway and DNA methyltransferases in uterine leiomyosarcoma cells. Cells. 2020;10(1). doi:10.3390/cells10010053
    1. Brunengraber LN, Jayes FL, Leppert PC. Injectable Clostridium histolyticum collagenase as a potential treatment for uterine fibroids. Reprod Sci. 2014;21(12):1452-1459.
    1. Jayes FL, Liu B, Moutos FT, Kuchibhatla M, Guilak F, Leppert PC. Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum. Am J Obstet Gynecol. 2016;215(5):596.e1-596.e8.
    1. Nair S, Curiel DT, Rajaratnam V, Thota C, Al-Hendy A. Targeting adenoviral vectors for enhanced gene therapy of uterine leiomyomas. Hum Reprod. 2013;28(9):2398-2406.
    1. Abdelaziz M, Sherif L, ElKhiary M, et al. . Targeted adenoviral vector demonstrates enhanced efficacy for in vivo gene therapy of uterine leiomyoma. Reprod Sci. 2016;23(4):464-474.
    1. Al-Hendy A, Lee EJ, Wang HQ, Copland JA. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice. Am J Obstet Gynecol. 2004;191(5):1621-1631.
    1. Shalaby SM, Khater MK, Perucho AM, et al. . Magnetic nanoparticles as a new approach to improve the efficacy of gene therapy against differentiated human uterine fibroid cells and tumor-initiating stem cells. Fertil Steril. 2016;105(6):1638-1648.e8.
    1. Senturk LM, Sozen I, Gutierrez L, Arici A. Interleukin 8 production and interleukin 8 receptor expression in human myometrium and leiomyoma. Am J Obstet Gynecol. 2001;184(4):559-566.
    1. Orciani M, Caffarini M, Biagini A, et al. . Chronic inflammation may enhance leiomyoma development by the involvement of progenitor cells. Stem Cells Int. 2018;2018:1716246.
    1. Santulli P, Even M, Chouzenoux S, et al. . Profibrotic interleukin-33 is correlated with uterine leiomyoma tumour burden. Hum Reprod. 2013;28(8):2126-2133.
    1. Chegini N, Tang XM, Ma C. Regulation of transforming growth factor-beta1 expression by granulocyte macrophage-colony-stimulating factor in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 1999;84(11):4138-4143.
    1. Kurachi O, Matsuo H, Samoto T, Maruo T. Tumor necrosis factor-alpha expression in human uterine leiomyoma and its down-regulation by progesterone. J Clin Endocrinol Metab. 2001;86(5):2275-2280.
    1. Ciebiera M, Włodarczyk M, Wrzosek M, et al. . TNF-α serum levels are elevated in women with clinically symptomatic uterine fibroids. Int J Immunopathol Pharmacol. 2018;32:2058738418779461.
    1. Moridi I, Mamillapalli R, Kodaman PH, Habata S, Dang T, Taylor HS. CXCL12 attracts bone marrow-derived cells to uterine leiomyomas. Reprod Sci. 2020;27(9):1724-1730.
    1. Sozen I, Olive DL, Arici A. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril. 1998;69(6):1095-1102.
    1. Syssoev KA, Kulagina NV, Chukhlovin AB, Morozova EB, Totolian AA. Expression of mRNA for chemokines and chemokine receptors in tissues of the myometrium and uterine leiomyoma. Bull Exp Biol Med. 2008;145(1):84-89.
    1. Ali M, Chaudhry ZT, Al-Hendy A. Successes and failures of uterine leiomyoma drug discovery. Expert Opin Drug Discov. 2018;13(2):169-177.
    1. Mohammed NH, Al-Taie A, Albasry Z. Evaluation of goserelin effectiveness based on assessment of inflammatory cytokines and symptoms in uterine leiomyoma. Int J Clin Pharm. 2020;42(3):931-937.
    1. Alfini P, Bianco V, Felice R, Magro B. [Treatment of uterine fibroma with goserelin]. Ann Ostet Ginecol Med Perinat. 1991;112(6):359-367.
    1. Eizenberg DH. Goserelin reduction of uterine fibroids prior to vaginal hysterectomy. Aust N Z J Obstet Gynaecol. 1995;35(1):109-110.
    1. Ahmed RS, Liu G, Renzetti A, et al. . Biological and mechanistic characterization of novel prodrugs of green tea polyphenol epigallocatechin gallate analogs in human leiomyoma cell lines. J Cell Biochem. 2016;117(10):2357-2369.
    1. Roshdy E, Rajaratnam V, Maitra S, Sabry M, Allah AS, Al-Hendy A. Treatment of symptomatic uterine fibroids with green tea extract: a pilot randomized controlled clinical study. Int J Womens Health. 2013;5:477-486.
    1. Shime H, Kariya M, Orii A, et al. . Tranilast inhibits the proliferation of uterine leiomyoma cells in vitro through G1 arrest associated with the induction of p21(waf1) and p53. J Clin Endocrinol Metab. 2002;87(12):5610-5617.
    1. Chuang TD, Rehan A, Khorram O. Tranilast induces MiR-200c expression through blockade of RelA/p65 activity in leiomyoma smooth muscle cells. Fertil Steril. 2020;113(6):1308-1318.
    1. Chuang TD, Khorram O. Tranilast inhibits genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation and epigenetically induces miR-29c expression in leiomyoma cells. Reprod Sci. 2017;24(9):1253-1263.
    1. Tsuiji K, Takeda T, Li B, et al. . Inhibitory effect of curcumin on uterine leiomyoma cell proliferation. Gynecol Endocrinol. 2011;27(7):512-517.
    1. Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril. 2009;91(5 Suppl):2177-2184.
    1. Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor β3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178-184.
    1. Han M, Kim JY, Park JE, Kim JM, Lee KS. Effects of letrozole on proliferation and apoptosis in cultured leiomyoma cells treated with prostaglandin E(2). Eur J Obstet Gynecol Reprod Biol. 2008;138(1):83-88.
    1. Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf). 2008;69(3):462-470.
    1. Ciebiera M, Ali M, Prince L, et al. . The evolving role of natural compounds in the medical treatment of uterine fibroids. J Clin Med. 2020;9(5):1479. doi:10.3390/jcm9051479
    1. Chen HY, Lin PH, Shih YH, et al. . Natural antioxidant resveratrol suppresses uterine fibroid cell growth and extracellular matrix formation in vitro and in vivo. Antioxidants (Basel). 2019;8(4). doi:10.3390/antiox8040099

Source: PubMed

3
Suscribir