Differences in Maternal Immunoglobulins within Mother's Own Breast Milk and Donor Breast Milk and across Digestion in Preterm Infants

Veronique Demers-Mathieu, Robert K Huston, Andi M Markell, Elizabeth A McCulley, Rachel L Martin, Melinda Spooner, David C Dallas, Veronique Demers-Mathieu, Robert K Huston, Andi M Markell, Elizabeth A McCulley, Rachel L Martin, Melinda Spooner, David C Dallas

Abstract

Maternal antibody transfer to the newborn provides essential support for the infant's naïve immune system. Preterm infants normally receive maternal antibodies through mother's own breast milk (MBM) or, when mothers are unable to provide all the milk required, donor breast milk (DBM). DBM is pasteurized and exposed to several freeze-thaw cycles, which could reduce intact antibody concentration and the antibody's resistance to digestion within the infant. Whether concentrations of antibodies in MBM and DBM differ and whether their survival across digestion in preterm infants differs remains unknown. Feed (MBM or DBM), gastric contents (MBM or DBM at 1-h post-ingestion) and stool samples (collected after a mix of MBM and DBM feeding) were collected from 20 preterm (26-36 weeks gestational age) mother-infant pairs at 8-9 and 21-22 days of postnatal age. Samples were analyzed via ELISA for the concentration of secretory IgA (SIgA), total IgA (SIgA/IgA), total IgM (SIgM/IgM) and IgG. Total IgA, SIgA, total IgM and IgG concentrations were 55.0%, 71.6%, 98.4% and 41.1% higher in MBM than in DBM, and were 49.8%, 32.7%, 73.9% and 39.7% higher in gastric contents when infants were fed with MBM than when infants were fed DBM, respectively. All maternal antibody isotypes present in breast milk were detected in the infant stools, of which IgA (not sIgA) was the most abundant.

Keywords: antibodies; breast milk; lactation; passive immunization; prematurity; proteolysis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) pH values of milk and gastric contents at 1-h postprandial time from 20 preterm infants (26–36 weeks of gestational age (GA)) fed mother’s own breast milk (MBM) and donor breast milk (DBM). Values are mean ± SEM, n = 36 for each group (n = 20 for 8–9 days and n = 16 for 21–22 days of postnatal age). (B) Total protein concentration in milk and gastric contents from infant fed MBM and DBM at 8–9 days (n = 20) (C) Total protein concentration in milk and gastric contents from infant fed MBM and DBM at 21–22 days (n = 16). Asterisks show statistically significant differences between variables (*** p < 0.001; ** p < 0.01) using the Wilcoxon matched-pairs signed-rank test.
Figure 2
Figure 2
Immunoglobulin concentrations in milk and gastric contents at 1-h postprandial time from 20 preterm infants (26–36 weeks of gestational age (GA)) fed mother’s own breast milk (MBM) and donor breast milk (DBM). Concentration of (A) total IgA (SIgA/IgA), (B) secretory IgA (SIgA), (C) total IgM (SIgM/IgM) and (D) IgG in milk and gastric samples. Values are mean ± SEM, n = 36 for MBM and DBM (n = 20 for 8–9 days and n = 16 for 21–22 days of postnatal age). Asterisks show statistically significant differences between variables (*** p < 0.001; ** p < 0.01; * p < 0.05) using the Wilcoxon matched-pairs signed-rank test.
Figure 3
Figure 3
Proportion of total IgA, total IgM and IgG (A) in mother’s own breast milk (MBM), (B) in gastric contents at 1-h postprandial time from preterm infants fed MBM and (C) in infant stools (from MBM, DBM and/or infant self). Proportion of SIgA and IgA from total IgA (D) in mother’s own breast milk (MBM), (E) in gastric contents at 1-h postprandial time from preterm infants fed MBM and (F) in infant stools. Values are mean, n = 36 for MBM (n = 20 for 8–9 days and n = 16 for 21–22 days of postnatal age).

References

    1. Demers-Mathieu V., Underwood M.A., Beverly R.L., Nielsen S.D., Dallas D.C. Comparison of human milk immunoglobulin survival during gastric digestion between preterm and term infants. Nutrients. 2018;10:631. doi: 10.3390/nu10050631.
    1. Perkkiö M., Savilahti E. Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr. Res. 1980;14:953. doi: 10.1203/00006450-198008000-00012.
    1. Mantis N.J., Rol N., Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4:603. doi: 10.1038/mi.2011.41.
    1. Apter F.M., Lencer W., Finkelstein R.A., Mekalanos J.J., Neutra M.R. Monoclonal immunoglobulin A antibodies directed against cholera toxin prevent the toxin-induced chloride secretory response and block toxin binding to intestinal epithelial cells in vitro. Infect. Immun. 1993;61:5271–5278.
    1. Mantis N.J., McGuinness C.R., Sonuyi O., Edwards G., Farrant S.A. Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication. Infect. Immun. 2006;74:3455–3462. doi: 10.1128/IAI.02088-05.
    1. Stubbe H., Berdoz J., Kraehenbuhl J.P., Corthésy B. Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol. 2000;164:1952–1960. doi: 10.4049/jimmunol.164.4.1952.
    1. Robert-Guroff M. IgG surfaces as an important component in mucosal protection. Nat. Med. 2000;6:129. doi: 10.1038/72206.
    1. Zemlin M., Hoersch G., Zemlin C., Pohl-Schickinger A., Hummel M., Berek C., Maier R.F., Bauer K. The postnatal maturation of the immunoglobulin heavy chain IgG repertoire in human preterm neonates is slower than in term neonates. J. Immunol. 2007;178:1180–1188. doi: 10.4049/jimmunol.178.2.1180.
    1. Malek A., Sager R., Kuhn P., Nicolaides K.H., Schneider H. Evolution of maternofetal transport of immunoglobulins during human pregnancy. Am. J. Reprod. Immunol. 1996;36:248–255. doi: 10.1111/j.1600-0897.1996.tb00172.x.
    1. Roos N., Mahe S., Benamouzig R., Sick H., Rautureau J., Tome D. 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 1995;125:1238–1244.
    1. Eibl M.M., Wolf H.M., Fürnkranz H., Rosenkranz A. Prevention of necrotizing enterocolitis in low-birth-weight infants by IgA–IgG feeding. N. Engl. J. Med. 1988;319:1–7. doi: 10.1056/NEJM198807073190101.
    1. Bakker-Zierikzee A.M., Van Tol E.A.F., Kroes H., Alles M.S., Kok F.J., Bindels J.G. Faecal SIgA secretion in infants fed on pre-or probiotic infant formula. Pediatr. Allergy Immunol. 2006;17:134–140. doi: 10.1111/j.1399-3038.2005.00370.x.
    1. Schanler R.J., Goldblum R.M., Garza C., Goldman A.S. Enhanced fecal excretion of selected immune factors in very low birth weight infants fed fortified human milk. Pediatr. Res. 1986;20:711. doi: 10.1203/00006450-198608000-00002.
    1. Goldblum R.M., Schanler R.J., Garza C., Goldman A.S. Human milk feeding enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr. Res. 1989;25:184. doi: 10.1203/00006450-198902000-00021.
    1. Carroll K., Herrmann K.R. The cost of using donor human milk in the NICU to achieve exclusively human milk feeding through 32 weeks postmenstrual age. Breastfeed. Med. 2013;8:286–290. doi: 10.1089/bfm.2012.0068.
    1. Orloff S.L., Wallingford J.C., McDougal J.S. Inactivation of human immunodeficiency virus type I in human milk: Effects of intrinsic factors in human milk and of pasteurization. J. Hum. Lact. 1993;9:13–17. doi: 10.1177/089033449300900125.
    1. Hamprecht K., Maschmann J., Müller D., Dietz K., Besenthal I., Goelz R., Middeldorp J.M., Speer C.P., Jahn G. Cytomegalovirus (CMV) inactivation in breast milk: Reassessment of pasteurization and freeze-thawing. Pediatr. Res. 2004;56:529. doi: 10.1203/.
    1. Franklin J.G. A comparison of the bactericidal efficiencies of laboratory Holder and HTST methods of milk pasteurization and the keeping qualities of the processed milks. Int. J. Dairy Technol. 1965;18:115–118. doi: 10.1111/j.1471-0307.1965.tb00185.x.
    1. Bourlieu C., Ménard O., Bouzerzour K., Mandalari G., Macierzanka A., Mackie A.R., Dupont D. Specificity of infant digestive conditions: Some clues for developing relevant in vitro models. Cri. Rev. Food Sci. Nutr. 2014;54:1427–1457. doi: 10.1080/10408398.2011.640757.
    1. Ford J., Law B., Marshall V.M., Reiter B. Influence of the heat treatment of human milk on some of its protective constituents. J. Pediatr. 1977;90:29–35. doi: 10.1016/S0022-3476(77)80759-2.
    1. Evans T.J., Ryley H., Neale L., Dodge J.A., Lewarne V.M. Effect of storage and heat on antimicrobial proteins in human milk. Arch. Dis. Child. 1978;53:239–241. doi: 10.1136/adc.53.3.239.
    1. Pardou A., Serruys E., Mascart-Lemone F., Dramaix M., Vis H.L. Human milk banking: Influence of storage processes and of bacterial contamination on some milk constituents. Neonatology. 2018;65:302–309. doi: 10.1159/000244076.
    1. John A., Sun R., Maillart L., Schaefer A., Spence E.H., Perrin M.T. Macronutrient variability in human milk from donors to a milk bank: Implications for feeding preterm infants. PLoS ONE. 2019;14:e0210610. doi: 10.1371/journal.pone.0210610.
    1. Ballabio C., Bertino E., Coscia A., Fabris C., Fuggetta D., Molfino S., Testa T., Sgarrella M., Sabatino G., Restani P. Immunoglobulin-A profile in breast milk from mothers delivering full term and preterm infants. Int. J. Immunopathol. Pharmacol. 2007;20:119–128. doi: 10.1177/039463200702000114.
    1. Chandra R.K. Immunoglobulin and protein levels in breast milk produced by mothers of preterm infants. Nutr. Res. 1982;2:27–30. doi: 10.1016/S0271-5317(82)80023-7.
    1. Montagne P., Cuillière M.L., Molé C., Béné M.C., Faure G. Immunological and nutritional composition of human milk in relation to prematurity and mothers’ parity during the first 2 weeks of lactation. J. Pediatr. Gastroenterol. Nutr. 1999;29:75–80. doi: 10.1097/00005176-199907000-00018.
    1. Gross S.J., Buckley R.H., Wakil S.S., McAllister D.C., David R.J., Faix R.G. Elevated IgA concentration in milk produced by mothers delivered of preterm infants. J. Pediatr. 1981;99:389–393. doi: 10.1016/S0022-3476(81)80323-X.
    1. Koenig Á., Diniz E.M.D.A., Barbosa S.F.C., Vaz F.A.C. Immunologic factors in human milk: The effects of gestational age and pasteurization. J. Hum. Lact. 2005;21:439–443. doi: 10.1177/0890334405280652.
    1. Goldman A.S., Garza C., Nichols B.L., Goldblum R.M. Immunologic factors in human milk during the first year of lactation. J. Pediatr. 1982;100:563–567. doi: 10.1016/S0022-3476(82)80753-1.
    1. De Oliveira S.C., Bellanger A., Ménard O., Pladys P., Le Gouar Y., Dirson E., Kroell F., Dupont D., Deglaire A., Bourlieu C. Impact of human milk pasteurization on gastric digestion in preterm infants: A randomized controlled trial. Am. J. Clin. Nutr. 2017;105:379–390. doi: 10.3945/ajcn.116.142539.
    1. Zhang Q., Cundiff J.K., Maria S.D., McMahon R.J., Wickham M.S.J., Faulks R.M., van Tol E.A. Differential digestion of human milk proteins in a simulated stomach model. J. Proteome Res. 2013;13:1055–1064. doi: 10.1021/pr401051u.
    1. Demers-Mathieu V., Underwood M.A., Beverly R.L., David D.C. Survival of immunoglobulins from human milk to preterm infant gastric samples at 1, 2, and 3 hours postprandial. Neonatology. 2018;114:242–250. doi: 10.1159/000489387.
    1. Demers-Mathieu V., Nielsen S.D., Underwood M.A., Borghese R., Dallas D.C. Changes in proteases, antiproteases and bioactive proteins from mother’s breast milk to the premature infant stomach. J. Pediatr. Gastroenterol. Nutr. 2018;66:318–324. doi: 10.1097/MPG.0000000000001719.
    1. Blum P.M., Phelps D.L., Ank B.J., Krantman H.J., Stiehm E.R. Survival of oral human immune serum globulin in the gastrointestinal tract of low birth weight infants. Pediatr. Res. 1981;15:1256–1260. doi: 10.1203/00006450-198109000-00006.
    1. Ogundele M.O. Effects of storage on the physicochemical and antibacterial properties of human milk. Brit. J. Biomed. Sci. 2002;59:205–211. doi: 10.1080/09674845.2002.11783661.
    1. Bitman J., Wood D.L., Mehta N.R., Hamosh P., Hamosh M. Lipolysis of triglycerides of human milk during storage at low temperatures: A note of caution. J. Pediatr. Gastroenterol. Nutr. 1983;2:521–524. doi: 10.1097/00005176-198302030-00021.
    1. Narayanan I., Murthy N.S., Prakash K., Gujral V.V. Randomised controlled trial of effect of raw and Holder pasteurised human milk and of formula supplements on incidence of neonatal infection. Lancet. 1984;2:1111–1113. doi: 10.1016/S0140-6736(84)91554-X.
    1. Schanler R.J., Lau C., Hurst N.M., Smith E.O.B. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics. 2005;116:400–406. doi: 10.1542/peds.2004-1974.

Source: PubMed

3
Suscribir